Skip to main content
Log in

How to select the elastic modulus for cancellous bone in patient-specific continuum models of the spine

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Patient-specific finite element (FE) modelling is a promising technology that is expected to support clinical assessment of the spine in the near future. To allow rapid, robust and economic patient-specific modelling of the whole spine or of large spine segments, it is practicable to consider vertebral cancellous bone in the spine as a continuum material, but the elastic modulus of that continuum material must reflect the quality of the individual vertebral bone. A numerical parametric model of lattice trabecular architecture has been developed for determining the apparent elastic modulus of cancellous bone Ecb in vertebrae. The model inputs were apparent morphological parameters (trabecular thickness TbTh and trabecular separation TbSp) and the bone mineral density (BMD), which can all be measuredin vivo, using the spatial resolution of current clinical quantitative computed tomography (QCT) commercial whole-body scanners. The model predicted that Ecb values between 30 and 110 MPa represent normal morphology and BMD of human spinal cancellous bone. The present Ecb to TbTh, TbSp and BMD relationships pave the way for automatic generation of patientspecific continuum FE spine models that consider the individual's osteoporotic or other degenerative condition of cancellous bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Borah, B., Gross, G. J., Dufresne, T. E., Smith, T. S., Cockman, M. D., Chmielewski, P. A., Lundy, M. W., Harke, J. R., andSod, E. W. (2001). ‘Three-dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis’,Med. Anat. Rec.,265, pp. 101–110

    Google Scholar 

  • Boyd, S. K., Matyas, J. R., Wohl, G. R., Kantzas, A., andZernicke, R. F. (2000): ‘Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury’,J. Appl. Physiol.,89, pp. 2359–2364

    Google Scholar 

  • Crawford, R. P., Cann, C. E., andKeaveny, T. M. (2003a): ‘Finite element models predictin vitro vertebral body compressive strength better than quantitative compute tomography’,Bone 33, pp. 744–750

    Article  Google Scholar 

  • Crawford, R. P., Rosenberg, W. S., andKeaveny, T. M. (2003b): ‘Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions’,J. Biomech. Eng.,125, pp. 434–438

    Article  Google Scholar 

  • Dagan, D., Be'ery, M., andGefen, A. (2004): ‘Single-trabecula building block for large-scale finite element models of cancellous bone’,Med. Biol. Eng. Comput.,42, pp. 549–556

    Google Scholar 

  • Damrongrungruang, T., Kuroda, S., Kondo, H., Aoki, K., Ohya, K., andKasugai, S. (2004): ‘A simple murine model for immobilization osteopenia’,Clin. Orthop.,425, pp. 244–251

    Google Scholar 

  • David, V., Laroche, N., Boudignon, B., Lafage-Proust, M. H., Alexandre, C., Ruegsegger, P., andVico, L. (2003): ‘Noninvasivein vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography’,J. Bone Miner. Res.,18, pp. 1622–1631

    Google Scholar 

  • Ditsios, K., Boyer, M. I., Kusano, N., Gelberman, R. H., andSilva, M. J. (2003). ‘Bone loss following tendon laceration, repair and passive mobilization’,J. Orthop. Res.,21, pp. 990–996

    Article  Google Scholar 

  • Durand, E. P. andRuegsegger, P. (1991). ‘Cancellous bone structure: analysis of high-resolution CT images with the run-length method’,J. Comput. Assist. Tomogr.,15, pp. 133–139

    Google Scholar 

  • Ebbesen, E. N., Thomsen, J. S., Beck-Nielsen, H., Nepper-Rasmussen, H. J., andMosekilde, L. I. (1999). ‘Age- and gender-related differences in vertebral bone mass density and strength’,J. Bone. Miner. Res.,14, pp. 1394–1403

    Google Scholar 

  • Fagan, M. J., Julian, S., andMohsen, A. M. (2002): ‘Finite element analysis in spine research’,Proc. Inst. Mech. Eng. (H).,216, pp. 281–298

    Google Scholar 

  • Ferguson, S. J., andSteffen, T. (2003): ‘Biomechanics of the aging spine’,Eur. Spine J.,12, pp. S97-S103

    Article  Google Scholar 

  • Fyhrie, D. P., andCarter, D. R. (1986): ‘A unifying principle relating stress to trabecular bone morphology’,J. Orthop. Res.,4, pp. 304–317

    Article  Google Scholar 

  • Gordon, C. L., Lang, T. F., Augat, P., andGenant, H. K. (1998): ‘Image-based assessment of spinal trabecular bone structure from high-resolution CT images’,Osteoporos Int.,8, pp. 317–325

    Article  Google Scholar 

  • Guo, X. E., andGoldstein, S. A. (1997): ‘Is trabecular bone tissue different from cortical bone tissue?’Forma,12, pp. 185–196

    Google Scholar 

  • Harrigan, T. P., Jasty, M., Mann, R. W., andHarris, W. H. (1988): ‘Limitations of the continuum assumption in cancellous bone’,J. Biomech.,21, pp. 269–275

    Article  Google Scholar 

  • Hou, F. J., Lang, S. M., Hoshaw, S. J., Reimann, D. A., andFyhrie, D. P. (1998): ‘Human vertebral body apparent and hard tissue stiffness’,J. Biomech.,31, pp. 1009–1015

    Article  Google Scholar 

  • Kim, D. G., Christopherson, G. T., Dong, X. N., Fyhrie, D. P., andYeni, Y. N. (2004): ‘The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone’,Bone,35, pp. 1375–1382

    Article  Google Scholar 

  • Laib, A., Hauselmann, H. J., andRuegsegger, P. (1998): ‘In vivo high resolution 3D-QCT of the human forearm’,Technol. Health Care,6, pp. 329–337

    Google Scholar 

  • Lindh, M. (1989): ‘Biomechanics of the lumbar spine’, in Nordin, M., and Frankel, V. H. (Eds). ‘Basic biomechanics of the musculoskeletal system’ (Lea & Febiger, Philadelphia, London, 1989)

    Google Scholar 

  • Lindsey, C. T., Narasimhan, A., Adolfo, J. M., Jin, H., Steinbach, L. S., Link, T., Ries, M., andMajumdar, S. (2004): ‘Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee’,Osteoarthr. Cartilage,12, pp. 86–96

    Google Scholar 

  • Majumdar, S., Genant, H. K., Grampp, S., Newitt, D. C., Truong, V. H., Lin, J. C., andMathur, A. (1997): ‘Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status:in vivo studies in the distal radius using high resolution magnetic resonance imaging’,J. Bone Miner. Res.,12, pp. 111–118

    Google Scholar 

  • McCalder, R. W., McGeough, J. A., andCourt-brown, C. M., (1997): ‘Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture’,J. Bone. Joint. Surg. Am.,79-A, pp. 421–427

    Google Scholar 

  • Mitton, D., Cendre, E., Roux, J. P., Arlot, M. E., Peix, G., Rumelhart, C., Babot, D., andMeunier, P. J. (1998): ‘Mechanical properties of ewe vertebral cancellous bone compared with parameters’,Bone,22, pp. 651–658

    Article  Google Scholar 

  • Mittra, E., Rubin, C., andQin, Y. X. (2005): ‘Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone’,J. Biomech.,38, pp. 1229–1237

    Article  Google Scholar 

  • Morgan, E. F., Bayraktar, H. H., andKeaveny, T. M. (2003): ‘Trabecular bone modulus-density relationships depend on anatomic site’,J.Biomech.,36, pp. 897–904

    Article  Google Scholar 

  • Nordin, M., andFrankel, V. H. (1989): ‘Biomechanics of bone’, in Nordin, M., and Frankel, V. H. (Eds): ‘Basic biomechanics of the musculoskeletal system’ (Lea & Febiger, Philadelphia, London, 1989).

    Google Scholar 

  • Pidaparti, R. M., andTurner, C. H. (1997): ‘Cancellous bone architecture: advantages of nonorthogonal trabecular alignment under multidirectional joint loading’,J. Biomech.,30, pp. 979–983

    Article  Google Scholar 

  • Pope, M. H., andDeVocht, J. W. (1999): ‘The clinical relevance of biomechanics’,Neurol. Clin.,17, pp. 17–41

    Article  Google Scholar 

  • Thomsen, J. S., Ebbesen, E. N., andMoskilde, L. (2002): ‘Zonedependent changes in human vertebral trabecular bone: Clinical implications’,Bone,30, pp. 664–669

    Google Scholar 

  • van Rietbergen, B., Weinans, H., Huiskes, R., andOdgaard, A. (1995): ‘A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models’,J. Biomech.,28, pp. 69–81

    Google Scholar 

  • van Rietbergen, B., Muller, R., R. Ulrich,Ruegsegger, P., andHuiskes, R. (1999): ‘Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions’,J. Biomech.,32, pp. 443–451

    Google Scholar 

  • van Rietbergen, B., Huiskes, R., Eckstein, F., andRuegsegger, P. (2003): ‘Trabecular bone tissue strains in the healthy and osteoporotic human femur’,J. Bone Miner. Res.,18, pp. 1781–1788

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gefen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamant, I., Shahar, R. & Gefen, A. How to select the elastic modulus for cancellous bone in patient-specific continuum models of the spine. Med. Biol. Eng. Comput. 43, 465–472 (2005). https://doi.org/10.1007/BF02344727

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344727

Keywords

Navigation