Skip to main content
Log in

Instrument to measure the heat convection coefficient on the endothelial surface of arteries and veins

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The primary objective of the paper was to present the design and analysis of an instrument to measure the heat convection coefficient h on the endothelial surfaces of arteries and veins. An invasive thermistor probe was designed to be inserted through the vessel wall and positioned on the endothelial surface. Electrical power was supplied to the thermistor by a constant temperature anemometry circuit. Empirical calibrations were used to relate electrical measurements in the thermistor to the h at the endothelial surface. As the thermal processes are strongly dependent on baseline blood temperature, the instrument was calibrated at multiple temperatures to minimise this potentially significant source of error. Three different sizes of thermistor were evaluated to optimise accuracy and invasiveness, and the smallest thermistors provided the best results. The sensitivity to thermistor position was evaluated by testing the device at multiple locations, varying both depth of thermistor penetration and position along the vessel. Finally, the measurement accuracy of the instrument was determined for the range of h from 430 to 4200 W m−2K, and the average error of the reading was 4.9% for the smallest thermistor. Although the instrument was designed specifically for measurements in the portal vein to obtain useful data for current numerical modelling, the device can be used in any large vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barozzi, G. S., andDumas, A. (1991): ‘Convective heat transfer coefficients in the circulation’,J. Biomech. Eng.,113, pp. 308–313

    Google Scholar 

  • Browing, P. D. (1992): ‘Hepatic ablation with use of radiofrequency electocautery in animal model’,J. Vasc. Interv. Radiol.,3, pp. 291–297

    Google Scholar 

  • Bruun, H. H. (1995): ‘Hot wire anemometry: principles and signal analysis’ (Oxford University Press Inc., New York, USA, 1995)

    Google Scholar 

  • Craciunescu, O. I., andClegg, S. T. (2001): ‘Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels’,J. Biomech. Eng.,123, pp. 500–505

    Article  Google Scholar 

  • Charm S., Paltiel B., andKurland, G. S. (1968): ‘Heat transfer coefficients in blood flow’,Biorheology,5, pp. 133–145

    Google Scholar 

  • Curley, S. A., Izzo, F., Delrio, P., Ellis, L. M., Granchi, J., Vallone, P., Fiore, F., Pignata, S., Banielle, B., andCremona, F. (1999): ‘Radiofrequency ablation of unresectable primary and metastsic hepatic malignancies: Results in 124 patients’,Ann. Surg.,230, pp. 1–8

    Article  Google Scholar 

  • Dos Santos, I., Shah, J., Da Rocha, A. F., Webster, J. G., andValvano, J. W. (2003): ‘An instrument to measure the heat convection coefficient on the endocardial surface’,Physiol. Meas.,24, pp. 321–335

    Google Scholar 

  • Fitzgerald, T. J., Catipovic, N. M., andJovanovic, G. N. (1981): ‘Instrumented cylinder for studying heat transfer to immersed tubes in fluidized beds’,Ind. Eng. Chem. Fund.,20, pp. 82–88

    Article  Google Scholar 

  • Fujita, H., Ohhashi, T., Yamada, M., andWatanabe, K. (1993): ‘A thermistor anemometer for low flow measurements’,IEEE Trans. Instrum. Meas.,44, pp. 779–782

    Google Scholar 

  • Gray, H. (1918): ‘Anatomy of the human body’ (Lea & Febiger, Philadelphia, 1918)

    Google Scholar 

  • Goldberg, S. N., Hahn, P. F., Tanabe, K. K., Mueller, P. R., Schima, W., Athanasoulis, C. A., Compton, C. C., Solbiati, L., andGazelle, G. S. (1998): ‘Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis?’,J. Vasc. Interv. Radiol.,9, pp. 101–111

    Google Scholar 

  • Haemmerich, D., Staelin, S. T., Tsai, J. Z., Tungjitkusolmun, S., Mahvi, D. M., andWebster, J. G. (2002): ‘Finite element analysis of hepatic multiple probe radio frequency ablation’,IEEE Trans. Biomed. Eng.,48, pp. 836–842

    Google Scholar 

  • Haemmerich, D., Wricht, A. W., Mahvi, D. M., Lee, F. T. Jr, andWebster, J. G. (2003): ‘Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: A finite element study’,Med. Biol. Eng. Comput.,41, pp. 217–323

    Google Scholar 

  • Incropera, F. P., andDewitt, D. P. (1996): ‘Fundamentals of heat and mass transfer’ (Wiley, New York, USA, 1996)

    Google Scholar 

  • Kostka, M., andRam, V. R. (1992): ‘On the effect of fluid temperature on hot wire characteristics. Part1: Results of experiments’,Exp. Fluids,13, pp. 155–162

    Article  Google Scholar 

  • Livraghi, T., Goldberg, S. N., Monti, F., Bizzini, A., Lazzaroni, S., Meloni, F., Pellicano, S., Solbiati, L., andGazelle, G. S. (1997): ‘Saline enhanced radio frequency tissue ablation in the treatment of liver metastases’,Radiology,202, pp. 205–210

    Google Scholar 

  • Lu, D. S., Raman, S.S., Vodopich, D.J., Wang, M., Sayre, J., andLassman, C. (2002): ‘Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: Assessment of the ‘heat sink’ effect’,Am. J. Roentgenol.,178, pp. 47–51

    Google Scholar 

  • McGahan, J. P., Brock, J. M., Tesluk, H., Gu, W. Z., Schneider, P., andNath, S., Lynch, C. III, Whayne, J. G., andHaines, D. E. (1993): ‘Cellular electrophysiological effects of hyperthermia on isolated Guinea pig papillary muscle: Implications for catheter ablation’,Circulation,88, pp. 1826–1831

    Google Scholar 

  • Neeman, N., andWood, B. J. (2002): ‘Radiofrequency ablation beyond the liver’,J. Vasc. Interv. Radiol.,5, pp. 156–163

    Google Scholar 

  • Oliveira, A., Freire, R. C. S., andDeep, G. S. (1997): ‘Compensation of the fluid temperature in hot-wire anemometry’,IEEE Instrum. Meas. Technol. Conf. pp. 1377–1380

  • Patterson, E. J., Scudamore, C. H., Owen, D. A., Nagy, A. G., andBuczkowski, A. K. (1998): ‘Radiofrequency ablation of porcine liver in vivo: Effects of blood flow and treatment time on lesion size’,Ann. Surg.,227, pp. 559–565

    Article  Google Scholar 

  • Rahman, A. A., Tropea, C., Slawson, P., andStrong, A. (1987): ‘On temperature compensation in hot wire anemometry’,J. Phys. E Sci. Instrum.,20, pp. 315–319

    Google Scholar 

  • Ram, V. R. (1992): ‘On the effect of fluid temperature on hot wire characteristics. Part 2: Foundations of a rational theory’,Exp. Fluids,13, pp. 267–278

    Google Scholar 

  • Sapareto, S. A., andDewey W. C. (1984): ‘Thermal dose determination in cancer therapy’,Int. J. Radiat. Oncol.,10, pp. 787–800

    Google Scholar 

  • van Heiningen, A. R. P., Mujumdar, A. S., andDouglas, W. J. M. (1976): ‘On the use of hot film and cold film sensors for skin friction and heat transfer measurements in impingement flows’,Lett. Heat Mass Transf.,3, pp. 532–528

    Google Scholar 

  • Valvano, J. W. (1985): ‘Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors’,Int. J. Thermophys.,3, pp. 301–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, J., dos Santos, I., Haemmerich, D. et al. Instrument to measure the heat convection coefficient on the endothelial surface of arteries and veins. Med. Biol. Eng. Comput. 43, 522–527 (2005). https://doi.org/10.1007/BF02344735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344735

Keywords

Navigation