Skip to main content
Log in

Feasibility study of the use of similarity maps in the evaluation of oncological dynamic positron emission tomography images

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A preliminary study is presented on the potential role of similarity mapping (SM) in the evaluation of oncological dynamic18F-fluorodeoxyglucose positron emission tomography studies, mainly in lesion localisation and detectability. Similarity maps were calculated using previously described (correlation coefficient (COR) and normalised correlation coefficient (NCOR) and newly introduced similarity measures (sum of squares coefficient (SSQ), squared sum coefficient (SQS), sum of cubes coefficient (SC) and cubed sum coefficient (CS)). The results were evaluated using simulated and clinical data. The study revealed that the best-suited similarity measure for such applications was the CS similarity coefficient, which provided the best parametric images, delineating structures of interest and supporting the visual interpretation of data sets. It was shown that SM and standardised uptake value (SUV) images had comparable diagnostic performance, although SM was able to offer additional time-related information in a single image. For the case of colorectal recurrences (17 cases), the measured contrast values for the CS and SUV images were 2.36±0.47 and 4.12±0.42, respectively, whereas, for three cases of giant cell tumours, these values were 11.6±2.1 and 11.9±1.8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, L. E., Zaers, J., Ostertag, J. H., Trojan, H., Bellemann, M. E., andBrix, G. (1997): ‘Performance evaluation of the whole-body PET scanner ECAT EXACT HR/sup +/following the IEC standard’,IEEE Trans. Nucl. Sci.,44, pp. 1172–1179

    Google Scholar 

  • Alavi, A., andReivich, M. (2002): ‘Guest editorial: the conception of FDG-PET imaging’,Semin. Nucl. Med.,32, pp. 2–5

    Article  Google Scholar 

  • Amaral, T. G., Crisostomo, M. m., andde Almeida, A. T. (1998): ‘Fuzzy segmentation-an important tool in image processing’.Proc. IEEE World Congress on Computational Intelligence,2, pp. 1577–1582

    Google Scholar 

  • Bandettini, P. A., Jesmanowicz, A., Wong, E. C., andHyde, J. S. (1993): ‘Processing strategies for time-course data sets in functional MRI of the human brain’,MRM,30, pp. 161–173

    Google Scholar 

  • Barnea, D. I., andSilverman, H. F. (1972): ‘A class of algorithms for the fast digital image registration’,IEEE Trans. Comput.,21, pp. 179–186

    Google Scholar 

  • Boudraa, A.-O., Champier, J., Djebali, M., Behloul, F., andBeghdadi, A. (1999): ‘Analysis of dynamic nuclear cardiac images by covariance function’,Comput. Med. Imag. Graph.,23, pp. 181–191

    Article  Google Scholar 

  • Boudraa, A.-O., Behloul, F., Janier, M., Canet, E., Champier, J., Roux, J.-P., andRevel, D. (2001): ‘Temporal covariance analysis of 1rst-pass contrast-enhanced myocardial magnetic resonance images’,Comput. Biol. Med.,31, pp. 133–142

    Article  Google Scholar 

  • Brix, G., Zaers, J., Adam, L. E., Bellemann, M. E., Ostertag, H., Trojan, H., Haberkorn, U., Doll, J., Oberdorfer, F., andLorenz, W. J. (1997): ‘Performance evaluation of a whole-body PET scanner using the NEMA protocol’,J. Nucl. Med.,38, pp. 1614–1623

    Google Scholar 

  • Connine, C. M., Titone, D., Deelman, T., andBlasko, D. (1997): ‘Similarity mapping in spoken word recognition’,J. Memory Lang.,37, pp. 463–480

    Google Scholar 

  • Dufournaud, Y., Schmid, C., andHoraud, R. (2004): ‘Image matching with scale adjustment’,Comput. Vis. Image Und.,93, pp. 175–194

    Google Scholar 

  • Gambhir, S. S., Czernin, J., Schwimmer, J., Silverman, D. H. S., Coleman, E., andPhelps, M. E. (2001): ‘A tabulated summary of the FDG PET literatura’,J. Nucl. Med.,42, pp. 1S-93S

    Google Scholar 

  • Huang, S.-C. (2000): ‘Anatomy of SUV’,Nucl. Med. Biol.,27, pp. 643–646

    Google Scholar 

  • Hyman, T., Rothmann, C., Heller, A., Malik, Z., andSalzberg, S. (2001): ‘Structural characterization of erythroid and megakaryocytic differentiation in Friend erythroleukemia cells’,Exper. Hematol.,29, pp. 563–571

    Google Scholar 

  • Jerusalem, G., Hustinx, R., Beguin, Y., andFillet, G. (2003): ‘PET scan imaging in oncology’,Eur. J. Cancer,39, pp. 1525–1534

    Article  Google Scholar 

  • Keyes, J. W. (1995): ‘SUV: standard uptake or silly useless value?’,J. Nucl. Med.,36, pp. 1836–1839

    Google Scholar 

  • Kontaxakis, G., Strauss, L. G., Thireou, T., Ledesma-Carbayo, M. J., Santos, A., Pavlopoulos, S., andDimitrakopoulou-Strauss, A. (2002): ‘Iterative image reconstruction for clinical PET using ordered subsets, median root prior and a Web-based interface’,Mol. Imag. Biol.,4, pp. 219–231

    Google Scholar 

  • Lapela, M., Eigtved, A., Jyrkki, S., et al., (2000): ‘Experience in qualitative and quantitative FDG PET in follow-up of patients with suspected recurrence from head and neck cancer’,Eur. J. Cancer,36, pp. 858–867

    Article  Google Scholar 

  • Lee, J. S., Lee, D. D., Choi, S., Park, K. S., andLee, D. S. (2001): ‘Non-negative matrix factorization of dynamic images in nuclear medicine’,IEEE Nuclear Science Symposium Conference Record,4, pp. 2027–2030

    Google Scholar 

  • Lo, E. H., Rogowska, J., Bogorodzki, P., Trocha, M., Matsumoto, K., Saffran, B., andWolf, G. L. (1996): ‘Temporal correlation analysis of penumbral dynamics in focal cerebral ischemia’,J. Cereb. Blood Flow Metab.,16, pp. 60–68

    Google Scholar 

  • Lucas-Quesada, F. A., Sinha, U., andSinha, S. (1996): ‘Segmentation strategies for breast tumors from dynamic MR images’,JMRI,6, pp. 753–763

    Google Scholar 

  • Lucignani, G., Paganelli, G., andBombardieri, E. (2004): ‘The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective’,Nucl. Med. Commun.,25, pp. 651–656

    Google Scholar 

  • Phelps, M. E. (2004): ‘PET—molecular imaging and its biological applications’, (Springer Science and Business Media, NY, 2004)

    Google Scholar 

  • Rogowska, J., andWolf, G. L. (1992): ‘Temporal correlation images derived from sequential MR scans’,J. Comput. Assist. Tomogr.,16, pp. 784–788

    Google Scholar 

  • Rogowska, J., Preston Jr, K., Aronen, H. J., andWolf, G. L. (1994): ‘A comparative analysis of similarity mapping and eigen-imaging as applied to dynamic MR imaging of low grade astrocytoma’,Acta Radiologica,35, pp. 371–377

    Google Scholar 

  • Rogowska, J., Preston, K., Hunter, G. J., Hamberg, L. M., Kwong, K. K., Salonen, O., andWolf, G. L. (1995): ‘Applications of similarity mapping in dynamic MRI’,IEEE Trans. Med. Imag.,14, pp. 480–486

    Google Scholar 

  • Rothmann, C., Levinshal, T., Timan, B., Avtalion, R. R., andMalik, Z. (2000): ‘Spectral imaging of red blood cells in experimental anemia of Cyprinus carpio’,Compar. Biochem. Physiol. A,125, pp. 75–83

    Google Scholar 

  • Strauss, L. G., andConti, P. S. (1991): ‘The applications of PET in clinical oncology’,J. Nucl. Med.,32, pp. 623–648

    Google Scholar 

  • Strauss, L. G. (1996): ‘F-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients’,Eur. J. Nucl. Med.,23, pp. 1409–1415

    MathSciNet  Google Scholar 

  • Strauss, L. G., Kontaxakis, G., Dimitrakopoulou-Strauss, A., Pavlopoulos, S., andSantos LLEO, A. (1998): ‘Parametric imaging of dynamic PET studies, based on compartmental and non-compartmental approaches’,Eur. J. Nucl. Med.,25, p. 938

    Google Scholar 

  • Strauss, L. G., Dimitrakopoulou-Strauss, A., andHaberkorn, U. (2003): ‘Shortened PET data acquisition protocol for the quantification of18F-FDG kinetics’,J. Nucl. Med.,44, pp. 1933–1939

    Google Scholar 

  • Tanimoto, T. T. (1961): ‘A nonlinear model for a computer-assisted medical diagnostic procedure’,New York Acad. Sci. Trans. (ser. II),23, pp. 576–578

    Google Scholar 

  • Thireou, T., Strauss, L. G., Dimitrakopoulou-Strauss, A., Kontaxakis, G., Pavlopoulos, S., andSantos, A. (2003): ‘Performance evaluation of principal component analysis in dynamic FDG-PET studies of recurrent colorectal cancer’,Comput. Med. Imaging Graphics,27, pp. 43–51

    Google Scholar 

  • Toorongian, S. A., Mulholland, G. K., Jewett, D. M., Bachelor, M. A., andKilbourn, M. R. (1990): ‘Routine production of 2-deoxy-2(F-18)fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-amino-pyridinium resin’,Nucl. Med. Biol.,3, pp. 273–279

    Google Scholar 

  • Venot, A., Lebruchec, J. F., andRoucayrol, J. C. (1984): ‘A new class of similarity measures for robust image registration’,Comput. Vis. Graphics Image Proc.,28, pp. 176–184

    Google Scholar 

  • Visvikis, D., Cheze-LeRest, C., Costa, D. C., Bomanji, J., Gacinovic, S., andEll, P. J. (2001): ‘Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET’,Eur. J. Nucl. Med.,28, pp. 1326–1335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thireou, T., Kontaxakis, G., Strauss, L.G. et al. Feasibility study of the use of similarity maps in the evaluation of oncological dynamic positron emission tomography images. Med. Biol. Eng. Comput. 43, 23–32 (2005). https://doi.org/10.1007/BF02345119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345119

Keywords

Navigation