Skip to main content
Log in

Modelling encapsulation tissue around cochlear implant electrodes

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The objective of the study was to explore the effect of electrode encapsulation by fibrous scar tissue on electrical potential distributions and auditory nerve fibre excitation patterns. A finite element model in combination with an auditory nerve fibre model was used to predict changes in threshold currents and auditory nerve fibre excitation patterns. The model showed that electrical potentials at the target nerve fibres and the electrode contacts changed in the presence of encapsulation tissue. This led to changes in threshold currents and spread of excitation. The effect of electrode encapsulation on threshold currents and spread of excitation depended on the thickness of the perilymph layer separating the fibrous tissue encapsulation and the electrode array, nerve fibre survival status, electrode geometry and configuration, and array location. Model results suggested that arrays located close to the modiolus were most sensitive to threshold changes caused by electrode encapsulation (changes were between −0.26 and 2.41 dB), whereas encapsulation of an electrode array had less effect on threshold currents when the array was located in a lateral position in the scala tympani (changes were between −0.64 and 1.5 dB). For medially located arrays, changes in the spread of excitation varied between an increase of 0.21 mm and a decrease of 0.33 mm along the length of the basilar membrane, and an increase of 0.18 mm and a decrease of 0.66 mm along the length of the basilar membrane were calculated for laterally located arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balkany, T. J., Eshraghi, A. A., andYang, N. (2002): ‘Modiolar proximity of three perimodiolar cochlear implant electrodes’,Acta Otolaryngologica,122, pp. 363–369

    Google Scholar 

  • Bertoluzza, A., Fagnano, C., Monti, P., Simoni, R., Tinti, A., Tosi, M. R., andCaramazza, R. (1992): ‘Raman spectroscopy in the study of biocompatibility»,Clin. Mater.,9, pp. 49–68

    Article  Google Scholar 

  • Black, R. C., Clark, G. M., andPatrick, J. F. (1981): ‘Current distribution measurements within the human cochlea’,IEEE Trans. Biomed. Eng.,28, pp. 721–724

    Google Scholar 

  • Brown, C. J., Abbas, P. J., Bertschy, M., Tyler, R. S., Lowder, M., Takahashi, G., Purdy, S., andGantz, B. J. (1995): ‘Longitudinal assessment of physiological and psychophysical measures in cochlear implant users’,Ear Hearing,16, pp. 439–449

    Article  Google Scholar 

  • Clark, G. M., Shute, S. A., Shepherd, R. K., andCarter, T. D. (1995): ‘Cochlear implantation: Osteoneogenesis, electrode-tissue impedance, and residual hearing’,Ann. Otol., Rhinol. Laryngol. Suppl. (United States),166, pp. 40–42

    Google Scholar 

  • Clark, G. M. (1996): ‘Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people’,Clin. Exp. Pharmacol. Physiol.,23, pp. 766–776

    Google Scholar 

  • Cohen, L. T., Saunders, E., andClark, G. M. (2001): ‘Psychophysics of a prototype peri-modiolar cochlear implant electrode array’,Hearing Res.,155, pp. 63–81

    Article  Google Scholar 

  • Cohen, L. T., Richardson, L. M., Saunders, E., andCowan, R. S. (2003): ‘Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking»,Hearing Res.,179, pp. 72–78

    Article  Google Scholar 

  • de Sauvage, R. C., Da Costa, D. L., Erre, J.-P., andAran, J. M. (1997): ‘Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea’,Hearing Res.,110, pp. 119–134

    Google Scholar 

  • Dorman, M. F., Smith, L. M., Dankowski, K., McCandless, G., andParkin, J. L. (1992): ‘Long-term measures of electrode impedance and auditory thresholds for the Ineraid cochlear implant’J. Speech Hearing,35, pp. 1126–1130

    Google Scholar 

  • Eddington, D., Dobelle, W., Brackmann, D. E., Mladejousky, M. andParkin, J. L. (1988): ‘Auditory prosthesis research with multiple channel intracochlear stimulation in man’,Ann. Otol. Rhinol. Laryngol. Suppl.,87, pp. 5–39

    Google Scholar 

  • Engström, H., Ades, H. W., andBredberg, G. (1970): ‘Normal structure of the organ of Corti and the effect of noise-induced cochlear damage’ inWolstenholme, G. E. W. andKnight, J. (Eds): ‘Sensorineural hearing loss’ (J. & A. Churchill, London, 1970)

    Google Scholar 

  • Finley, C. C., Wilson, B. S., andWhite, M. W. (1990): ‘Models of neural responsiveness to electrical stimulation’, inMiller, J. M. andSpelman, F. A. (Eds), ‘Cochlear implants’ (Springer-Verlag Inc., New York, 1990), pp. 55–96

    Google Scholar 

  • Frijns, J. H. M., De Snoo, S. L., andSchoonhoven, R. (1995): ‘Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea’,Hearing Res.,87, pp. 170–186

    Article  Google Scholar 

  • Frijns, J. H. M., De Snoo, S. L., andTen Kate, J. H. (1996): ‘Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea’,Hearing Res.,95, pp. 33–38

    Article  Google Scholar 

  • Frijns, J. H. M., Briaire, J. J., De Laat, J. A. P. M., andGrote, J. J. (2002): ‘Initial evaluation of the Clarion CH cochlear implant: Speech perception and neural response imaging’,Ear Hearing,23, pp. 184–197

    Google Scholar 

  • Grill, W. M., andMortimer, J. T. (1994): ‘Electrical properties of implant encapsulation tissue’,Ann. Biomed. Eng.,22, pp. 23–33

    Google Scholar 

  • Gstoettner, W., Adunka, O., Franz, P., Hamzavi, J., Plenk, H. Jr., Susani, M., Baumgartner, W., andKiefer, J. (2001): ‘Perimodiolar electrodes in cochlear implant surgery’,Acta Otolaryngologica,121, 216–219

    Google Scholar 

  • Hanekom, T. (2001): ‘Three-dimensional spiraling finite element model of the electrically stimulated cochlea’,Ear Hearing,22, pp. 300–315

    Google Scholar 

  • Jolly, C. N., Clopton, B. M., Spelman, F. A., andLineaweaver, S. K. (1997): ‘Guinea pig auditory nerve response triggered by a high density electrode array’,Med. Progr Technol.,21, pp. 13–23

    Google Scholar 

  • Kawano, A., Seldon, H. L., Clark, G. M., Ramsden, R. T., andRaine, C. H. (1998): ‘Intracochlear factors contributing to psychophysical percepts following cochlear implantation’,Acta Oto-Laryngologica,118, pp. 313–326

    Google Scholar 

  • Kessler, D. K. (1999): ‘The Clarion multi-strategy cochlear implant’,Ann. Otol., Rhinol. Laryngol.,108, pp. 8–16

    Google Scholar 

  • Leake, P. A., Snyder, R. L., Hradek, G. T., andRebscher, S. J. (1992): ‘Chronic intracochlear electrical stimulation in neonatally deafened cats: Effects of intensity and stimulating electrode location’,Hearing Res.,64, pp. 99–117

    Article  Google Scholar 

  • Linthicum, F. H. Jr., Fayad, J., Otto, S. R., Galey, F. R., andHouse, W. F. (1991): ‘Cochlear implant histopathology’,Am. J. Otol.,12, pp. 245–311

    Google Scholar 

  • Miller, A. L., Morris, D. J., andPfingst, B. E. (2000): ‘Effects of time after deafening and implantation on guinea pig electrical detection thresholds’,Hearing Res.,144, pp. 175–186

    Article  Google Scholar 

  • Nanas, N. N. (1988): ‘Blocompatibility overview: Classes of materials, inflammation, infection’, inWebster, J. G. (Ed.): ‘Encyclopedia of medical devices and instrumentation’ (Wiley, 1988), pp. 181–194

  • Pfingst, B. E. (1990): ‘Changes over time in thresholds for electrical stimulation of the cochlea’,Hearing Res.,50, pp. 225–236

    Google Scholar 

  • Reilly, J. P., Freeman, V. T., andLarkin, W. D. (1985): ‘Sensory effects of transient electrical stimulation. Evaluation with a neuroelectric model’,IEEE Trans. Biomed. Eng.,32, pp. 1001–1011

    Google Scholar 

  • Seldon, H. L., Dahm, M. C., Clark, G. M., andCrowe, S. (1994): ‘Silastic with polyacrylic acid filler: Swelling properties, biocompatibility and potential use in cochlear implants’,Biomaterials,15, pp. 1161–1169

    Article  Google Scholar 

  • Shepherd, R. K., Hatsushika, S.-I., andClark, G. M. (1993): ‘Electrical stimulation of the auditory nerve. The effect of electrode position on neural excitation’,Hearing Res.,66, pp. 108–120

    Article  Google Scholar 

  • Skinner, M. W., Ketten, D. R., Vannier, M. W., Gates, G. A., Yoffie, R. L., andKalender, W. A. (1994): ‘Determination of the position of Nucleus cochlear implant electrodes in the inner ear’,Am. J. Otol.,15, pp. 644–651

    Google Scholar 

  • Spelman, F. A., Pfingst, B. E., Miller, J. M., Hassul, M., andPowers, W. E. (1980): ‘Biophysical measurements in the implanted cochlea’,Oto-Laryngol.: Head-Neck Surg.,88, pp. 183–187

    Google Scholar 

  • Spelman, F. A., Clopton, B. M., andPfingst, B. E. (1982): ‘Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis’,Ann. Otol. Rhinol. Laryngol. Suppl. (United States),91, pp. 3–8.

    Google Scholar 

  • Spelman, F. A., Clopton, B. M., Clary, T., Corbett, S., Jolly, C. N., Voie, A. H., Rodenhiser, K. L., andLineaweaver, S. K. (1996): ‘Potential field focussing and the design of cochlear electrode arrays’. 18th Ann. Int. Conf. IEEE EMBS. Amsterdam, pp. 329–330

  • Spoendlin, H., andSchrott, A. (1989): ‘Analysis of the human auditory nerve’,Hearing Res.,43, pp. 25–38

    Article  Google Scholar 

  • Tye-Murray, N., Tyler, R. S., Woodworth, G. G., andGantz, B. J. (1992): ‘Performance over time with Nucleus or Ineraid cochlear implant’,Ear Hearing,13, pp. 200–209

    Article  Google Scholar 

  • Tykocinski, M., Saunders, E., Cohen, L. T., Treaba, C. G., Briggs, R. J. S., Gibson, P., Clark, G. M., andCowan, R. S. (2001): ‘The Contour electrode array: Safety study and initial patient trials of a new perimodiolar design’,Otol. Neurotol.,22, pp. 33–41

    Google Scholar 

  • Webb, R. L., Clark, G. M., Shepherd, R. K., Franz, B. K., andPyman, B. C. (1988): ‘The biological safety of the Cochlear Corporation multiple-electrode intracochlear implant’,Am. J. Otol.,9, pp. 8–13

    Google Scholar 

  • Young, N. M., andGrohne, K. M. (2001): ‘Comparison of pediatric Clarion recipients with and without the electrode positioner’,Otol. Neurotol.,22, pp. 195–199

    Google Scholar 

  • Zappia, J. J., Niparko, J. K., Oviat, D. L., Kemink, J. L., andAltschuler, R. A. (1991): ‘Evaluation of the temporal bones of a multichannel cochlear implant patient’,Ann. Otol. Rhinol. Laryngol.,100, pp. 914–921

    Google Scholar 

  • Zwicker, E., andFastl, H. (1990): ‘Psychoacoustics: Facts and models’, (Springer-Verlag, Berlin, Heidelberg, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hanekom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanekom, T. Modelling encapsulation tissue around cochlear implant electrodes. Med. Biol. Eng. Comput. 43, 47–55 (2005). https://doi.org/10.1007/BF02345122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345122

Keywords

Navigation