Skip to main content
Log in

Three-dimensional cell cycle model with distributed transcription and translation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A computational cell cycle model that can describe three state properties, cell maturation age, specific mRNA and protein content, has been developed. Cell cycle propression is monitored by maturation age, and population heterogeneity is generated by the introduction of a probable random event embedded in the G1 phase. Specific mRNA is generated with a constant transcription rate at the single-cell level, and its turnover is governed by a first-order decay. Translation is modelled as a first-order dependence on the transcripts, and the protein product is subsequently exported. Dynamic chemostat simulations are used to demonstrate the ability of the model to track evolving parent and daughter subpopulations in maturation and cellular contents. The cell subpopulations eventually converge to an equilibrium distribution corresponding to the steady state of a chemostat, and halving of cellular content at cell division is the dominant driving force leading towards the population equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

maturation age, age

a B :

maturation age in the B-phase, age

D :

dilution rate, (volumetric flow rate)/(culture volume) time−1

k d :

first-order cell death rate, time−1

K m :

Monod constant, mole·volume−1

k T :

transition rate, time−1

K T :

transition saturation constant, mole·volume−1

k x :

first-order export rate, time−1

k y :

first-order turnover rate, time−1

m :

normalised messenger transcripts

m c :

exogenous maintenance coefficient, mole·cell−1 time−1

n A :

cell density in the A-state, cell·(transcripts/cell)−1 (chains/cell)−1 volume−1

n B :

cell density in the B-phase, cell·age−1 (transcripts/cell)−1 (chains/cell)−1 volume−1

N V :

total cell density, cell·volume−1

p :

normalised protein chains

S :

substrate concentration, mole·volume−1

S o :

inlet substrate concentration, mole·volume−1

t :

time

T B :

B-phase duration, age

v B :

maturation velocity in the B-phase, age·time−1

v x :

rate of protein chain accumulation, (chains/cell)·time−1

v 0 x :

translation rate, (chains/cell)·(transcripts/cell)−1 time−1

v y :

rate of mRNA accumulation, (transcripts/cell)·time−1

v 0 y :

zero-order transcription rate, (transcripts/cell)·time−1

x :

protein chains in a cell, (chains/cell)

y :

specific mRNA in a cell, (transcripts/cell)

Y N/S :

cell number yield coefficient, cell·mole−1

μ:

specific growth rate, time−1

References

  • Aarnæs, E., Clausen, O. P., Kirkhus, B., andde Angelis, P. (1993): ‘Heterogeneity in the mouse epidermal cell cycle analysed by computer simulations’,Cell Prolif.,26, pp. 205–219

    Google Scholar 

  • Adams, J., Rothman, E. D., andBeran, K. (1981): ‘The age structure of populations of Saccharomyces cerevisiae’,Math. Biosci.,53, pp. 249–263

    Article  Google Scholar 

  • Alberghina, L., Mariani, L., andMartegani, E. (1981): ‘Cell cycle variability: Modeling and simulation’, inRotenberg, M. (Ed.), ‘Biomathematics and cell kinetics’ (Elsevier/North-Holland, Amsterdam, 1981), pp. 295–309

    Google Scholar 

  • Bélair, J., Mackey, M. C., andMahaffy, J. M. (1995): ‘Age-structured and two-delay models for erythropoiesis’,Math. Biosci.,128, pp. 317–346

    Google Scholar 

  • Bélair, J., andMahaffy, J. M. (2001): ‘Variable maturation velocity and parameter sensitivity in a model of haematopoiesis’,IMA J. Math. Appl. Med. Biol.,18, pp. 193–211

    Google Scholar 

  • Bertuzzi, A., Gandolfi, A., andVitelli, R. (1986): ‘A regularization procedure for estimating cell kinetic parameters from flow cytometry data’,Math. Biosci.,82, pp. 63–85

    Article  Google Scholar 

  • Bertuzzi, A., Faretta, M., Gandolfi, A., Sinisgalli, C., Starace, G., Valoti, G., andUbezio, P. (2002): ‘Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modelling’,Bull. Math. Biol.,64, pp. 355–384

    Article  Google Scholar 

  • Bibila, T. A., andFlickinger, M. C. (1991): ‘A structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells’,Biotechnol. Bioeng.,37, pp. 210–226

    Article  Google Scholar 

  • Cain, S. J., andChau, P. C. (1997a): ‘A transition probability cell cycle model simulation of bivariate DNA/bromodeoxyuridine distributions’,Cytometry,27, pp. 239–249

    Article  Google Scholar 

  • Cain, S. J., andChau, P. C. (1997b): ‘Transition probability cell cycle model. Part I. Balanced growth’,J. Theor. Biol.,185, pp. 55–67

    Google Scholar 

  • Cain, S. J., andChau, P. C. (1997c): ‘Transition probability cell cycle model. Part II. Non-balanced growth’,J. Theor. Biol.,185, pp. 69–79

    Google Scholar 

  • Cain, S. J., andChau, P. C. (1998): ‘Transition probability cell cycle model with product formation’,Biotechnol. Bioeng.,58, pp. 387–399

    Article  Google Scholar 

  • Cazzador, L., andMariani, L. (1993): ‘Growth and production modeling in hybridoma continuous cultures’,Biotechnol. Bioeng.,42, pp. 1322–1330

    Article  Google Scholar 

  • Fredrickson, A. G., Ramkrishna, D., andTsuchiya, H. M. (1967): ‘Statistics and dynamics of procaryotic cell populations’,Math. Biosci. 1, pp. 327–374

    Article  Google Scholar 

  • Fredrickson, A. G., andTsuchiya, H. M. (1977): ‘Microbial kinetics and dynamics’, inLapidus, L. andAmundson, N. R. (Eds): ‘Chemical reactor theory: a review’ (Prentice-Hall, Englewood Cliffs, NJ, 1977)

    Google Scholar 

  • Grasman, J. (1990): ‘A deterministic model of the cell cycle’,Bull. Math. Biol.,52, pp. 535–547

    Article  MATH  Google Scholar 

  • Gyllenberg, M., andWebb, G. F. (1987): ‘Age-size structure in populations with quiescence’,Math. Biosci.,86, pp. 67–95

    Article  MathSciNet  Google Scholar 

  • Hannsgen, K. B., Tyson, J. J., andWatson, L. T. (1985): ‘Steady-state size distributions in probabilistic models of the cell division cycle’,SIAM J. Appl. Math.,45, pp. 523–540

    Article  MathSciNet  Google Scholar 

  • Hirsch, H. R. (1983): ‘Influence of the existence of a resting state on the probability of cell division in culture’,J. Theor. Biol.,100, pp. 399–410

    Article  Google Scholar 

  • Hirsch, H. R. (1984): ‘Influence of the existence of a resting state on the decay of synchronization in cell culture’,J. Theor. Biol.,111, pp. 61–79

    MathSciNet  Google Scholar 

  • Keasling, J. D., Kuo, H., andVahanian, G. (1995): ‘A Monte Carlo simulation of the Escherichia coli cell cycle’,J. Theor. Biol.,176, pp. 411–430

    Article  Google Scholar 

  • Liou, J.-J., Srienc, F., andFredrickson, A. G. (1997): ‘Solutions of population balance models based on a successive generations approach’,Chem. Eng. Sci.,52, pp. 1529–1540

    Google Scholar 

  • Mahaffy, J. M., Belair, J., andMackey, M. C. (1998): ‘Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis’,J. Theor. Biol.,190, pp. 135–146

    Article  Google Scholar 

  • Mc Adams, H. H., andArkin, A. (1999): ‘It's a noisy business! Genetic regulation at the nanomolar scale’,Trends Genet.,15, pp. 65–69

    Google Scholar 

  • Nielsen, L. K., Reid, S., andGreenfield, P. F. (1997): ‘Cell cycle model to describe animal cell size variation and lag between cell number and biomass dynamics’,Biotech. Bioeng.,56, pp. 372–379

    Article  Google Scholar 

  • Rotenberg, M. (1982): ‘Theory of distributed quiescent state in the cell cycle’,J. Theor. Biol.,96, pp. 495–509

    Article  MathSciNet  Google Scholar 

  • Rotenberg, M. (1983): ‘Transport theory for growing cell populations’,J. Theor. Biol.,103, pp. 181–199

    Article  MathSciNet  Google Scholar 

  • Rounseville, K. J., andChau, P. C. (2004): ‘Three-dimensional cell cycle model supplementary material’, available at http://pcclab.ucsd.edu/ccm/

  • Schiesser, W. E. (1991): ‘The numerical method of lines: integration of partial differential equations’ (Academic Press, San Diego, 1991)

    Google Scholar 

  • Smith, J. A., andMartin, L. (1973): ‘Do cells cycle?’,Proc. Natl. Acad. Sci. USA,70, pp. 1263–1267

    Google Scholar 

  • Smith, J. A., andMartin, L. (1974): ‘Regulation of cell proliferation’, inPadilla, G. M., Cameron, I. L., andZimmerman, A. (Eds): ‘Cell cycle controls’, (Academic Press, New York, 1974), pp. 43–60

    Google Scholar 

  • Sulsky, D. (1993): ‘Numerical solution of structured population models. I. Age structure’,J. Math. Biol.,31, pp. 817–839

    Article  MATH  MathSciNet  Google Scholar 

  • Watts, D. J., andStrogatz, S. H. (1998): ‘Collective dynamics of ‘small-world’ networks’,Nature,393, pp. 440–442

    Article  Google Scholar 

  • Webb, G. F., andGrabosch, A. (1987): ‘Asynchronous exponential growth in transition probability models of the cell cycle’,SIAM J. Math. Anal.,18, pp. 897–908

    Article  MathSciNet  Google Scholar 

  • Yanagisawa, M., Dolbeare, F., Todoroki, T., andGray, J. W. (1985): ‘Cell cycle analysis using numerical simulation of bivariate DNA/bromodeoxyuridine distributions’,Cytometry,6, pp. 550–562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rounseville, K.J., Chau, P.C. Three-dimensional cell cycle model with distributed transcription and translation. Med. Biol. Eng. Comput. 43, 155–161 (2005). https://doi.org/10.1007/BF02345138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345138

Keywords

Navigation