
Measuring orientation of human body 
segments using miniature 

gyroscopes and accelerometers 

H. J. Luinge P .H .  Veltink 

Signals Systems Group, Department of Electrical Engineering, University of Twente, 
Enschede, The Netherlands 

Abstract-- In the medical field, there is a need for small ambulatory sensor systems for 
measuring the kinematics of body segments. Current methods for ambulatory 
measurement of body orientation have limited accuracy when the body moves. The 
aim of the paper was to develop and validate a method for accurate measurement 
of the orientation of human body segments using an inertial measurement unit 
(IMU). An IMU containing three single-axis accelerometers and three single-axis 
micromachined gyroscopes was assembled in a rectangular box, sized 
20 x 20 x 30 mm. The presented orientation estimation algorithm continuously cor- 
rected orientation estimates obtained by mathematical integration of the 3D angular 
velocity measured using the gyroscopes. The correction was performed using an incli- 
nation estimate continuously obtained using the signal of the 3D accelerometer. This 
reduces the integration drift that originates from errors in the angular velocity signal. 
In addition, the gyroscope offset was continuously recalibrated. The method was 
realised using a Kalman filter that took into account the spectra of the signals involved 
as well as a fluctuating gyroscope offset. The method was tested for movements of the 
pelvis, trunk and forearm. Although the problem of integration drift around the global 
vertical continuously increased in the order of 0.5 ° s 7, the inclination estimate was 
accurate within 3 ° RMS. It was shown that the gyroscope offset could be estimated 
continuously during a trial. Using an initial offset error of I rad s 7, after 2 min the off- 
set error was roughly5% of the original offset error. Using the Kalman filter described, 
an accurate and robust system for ambulatory motion recording can be realised. 
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1 Introduction 

SINCE MICROMACHINED sensors such as gyroscopes and accel- 
erometers have become generally available, human movement 
can be measured continuously outside a specialised laboratory 
with ambulatory systems. Applications involve monitoring 
activities of daily living (ADL) and level of  activity (BoUTEN, 
et  el. ,  1997; FOE~STE~ et  el. ,  1999; USWATTE, 2000; VELTINK 
et  al., 1996; MATHIE et  al., 2003), gait analysis (TONG and 
GRANAT, 1999; WILLIAMSON and ANDREWS, 2001; MAYAGOI- 
TIA et  el. ,  2002; WILLEMSEN et  el . ,  1990b; MIYAZAKI, 1997; 
MOE-NILSSEN, 1998; MOE-NILSSEN and HELBOSTAD, 2004; 
PAPPAS et  el . ,  2001), research into motor control and stability 
(DINGWELL et  el. ,  2000; ALUSI et  el . ,  2001; NAJAFI et  el . ,  
2002; MANSON et  el . ,  2000), load estimation (BATEN et  el . ,  
1996; VAN DEN BOGERT et  el . ,  1996) or functional electrical 
stimulation (WILLEMSEN et  el. ,  1990e; WILLIAMSON and 
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ANDREWS, 2000; SWEENEY et  al., 2000; TONG and GRANAT, 
1998; VELTINK et  al., 2003). 

In many of  these applications, orientation is an essential 
quantity to be estimated. If  accelerometers and gyroscopes 
axe to be used for load estimation using inverse dynamics 
techniques, the orientation and angular velocity, as well as 
the acceleration, of a segment have to be known. Also, the 
identification of  daily tasks will be more detailed once the 
orientation can be measured. Acceleration can be used to 
analyse stability. Measurement of  acceleration with a body- 
mounted accelerometer will be more accurate once the incli- 
nation with respect to gravity is known. 

A 3D accelerometer unit can be used as an inclinometer in 
the absence of  acceleration (KEMP et  al., 1998; LC)TTERS 
et  al.,  1998; WILLEMSEN et  al.,  1990b; BERNMARK and 
WIKTORIN, 2002; HANSSON et  al., 2001). Under this condition, 
it measures the angle of  the sensor unit with respect to gravity. 
This method is appropriate if the magnitude of  the acceleration 
can be neglected with respect to the gravity, but will be less 
accurate for movements with relatively large accelerations. 
Furthermore, accelerometer signals do not contain information 
about the rotation around the vertical and therefore do not give 
a complete description of  orientation. The accuracy of  an incli- 
nation estimate can be increased using a Kalman filter and 
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a model  of  the spectrum of the acceleration (LUINGE and 
VELTINK, 2004). It was suggested that, to increase accuracy, 
gyroscopes could be used in addition to accelerometers. 

A gyroscope measures angular velocity. Change in orien- 
tation can be estimated by integrating the angular velocity 
according to an algorithm such as given by Bortz or Ignagni 
(BORTZ, 1971; IGNAGNI, 1990). However,  an error in measured 
angular velocity will result in increasing inaccuracy in the esti- 
mated orientation. In particular, a relatively small offset on the 
gyroscope signal will  give rise to large integration errors, 
restricting the time of  accurate measurement to less than 
1 min for current commercial ly  available micromachined gyro- 
scopes. Moreover,  if  an absolute orientation is required instead 
of  a change in orientation, a reference orientation has to be 
obtained at least once during a recording. 

Orientation can be estimated by combining the sensor 
signals from gyroscopes and accelerometers. This has already 
been performed in the automotive field (BARSHAN and 
DURRANT-WHYTE, 1995) and for the assessment of  human 
balancing (BASELLI et al., 2001). The design of  a filter for esti- 
mation of  the orientation of  human body segments has been 
described by BACHMAN (2000) and FOXLIN (1996). Bachman 
used a filter that relied on accelerometers and magnetometers 
for low-frequency components of  the orientation and used 
gyroscopes to measure faster changes of  orientation. This 
method seemed to be robust, although the performance of the 
filter has not been investigated for 3D human movements.  It 
did not take the different error sources explici t ly into 
account. In particular, the use of magnetometers could give 
large errors in the vicinity of  ferromagnetic materials. Foxlin 
described a sensor unit containing a 2D fluid inclinometer, a 
2D electronic compass and 3D gyroscopes, with a Kalman 
filter that incorporated a continuous gyroscope offset estimate. 
Although this method seemed to work for some controlled 2D 
test movements,  applicabil i ty of  this sensor was limited for 
general 3D movements,  owing to the singularities arising 
from the 2D instead of  3D sensors and the use of Euler angles. 

The aim of this paper was to design and evaluate a Kalman 
filter that fuses triaxial accelerometer and triaxial gyroscope 
signals for ambulatory recording of human body segment 
orientation. It obtains the orientation in a statistical, most- 
l ikely sense, given clear assumptions about the movement  
that is to be recorded and about the sensor error behaviour. 
Because of this, it can be assumed that the solution is the 
best  given the assumptions that can be made. The Kalman 
states that are continuously corrected include the orientation 
and offset errors. Body segment orientation obtained with 
this 3D inertial measurement unit was compared with an orien- 
tation obtained using a laboratory bound camera system. The 
movement  of  pelvis and trunk during lifting tasks and the 
forearm movement  during some ADL tasks were recorded. 

2 Design of an optimum filter for 
orientation estimation 

2.1 Sensor fus ion  with a Kalman f i l ter 

A complementary Kalman filter (KALMAN, 1960; BROWN 
and HWANG, 1997) was designed to estimate orientation by 
combining the three accelerometer and three gyroscope 
signals using a model  of  the inertial measurement unit (IMU) 
system and relevant signals. The structure of the estimation 
procedure is shown in Fig. 1. Based on a model  describing 
the sensor signals, both the 3D gyroscope and 3D acceler- 
ometer systems yield a measure of inclination (Z~ and ZA, 
respectively),  each with different accuracies and error 
sources. The inclination difference ( Z A -  Z~) is a function 
of  errors in the two measurement systems, particularly an 
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Fig. 1 Structure of Kalman filter estimation. Both accelerometer and 
gyroscope system are used to make estimate of  global vertical 
unit vector( ZA and s ~ ,  respectively) and system error 
covariances. Covariances are Qb for offset uncertainty, Qo 
for orientation uncertainty and Qz~ and Qza for vertical 
uncertainty. Difference between two inclination estimates 
S~A _ S ~  is written as function of orientation and offset 
errors. Kalman filter uses function with covariances and 
inclination diffetfence to estimate these orientation and offset 
errors ( 0~ and b,, respectively) 

orientation error and a gyroscope offset error in the gyroscope 
system. This function is also known as the error model. The 
Kalman filter uses the inclination difference with the error 
model  to estimate the orientation and offset errors in a statisti- 
cal, most- l ikely manner. These orientation errors and offset 
errors axe then used to correct the orientation and offset at 
each timestep. 

To implement  the Kalman filter requires an error model  in 
state space format that gives the inclination difference as a 
function of orientation errors, offset errors and measurement 
noise. This error model  was derived by first describing a 
model  of the sensor output and considering the effect of  uncer- 
tain model  states on the inclination estimate. The model  of  the 
sensor output is based on only a few clear assumptions regard- 
ing the sensor system and the movement  that is to be recorded, 
so that any tuning of  the parameters of  the Kalman filter has a 
clear interpretation, and the orientation estimate is opt imum 
within the given assumptions. 

2.2 Model  o f  sensor signals 

The sensor is assumed to be attached to a human body 
segment that rotates and translates with respect to a global  
co-ordinate frame. A model  of  the measured signals is based 
on the following assumptions (Fig. 2): 

I~ YG 

(.o I , ~  GSR 

"a [ m I Ga sa s 9 
't 'ewpass I Gg ' ro,a,  i ' 

Fig. 2 Sensor signal model. Model of  relationships between segment 
kinematics and measured gyroscope and accelerometer 
signals (y~ and YA). Gyroscope signal is modelled as slowly 
varying offset plus angular velocity ~o and white mea- 
surement noise v~. Relationship between angular velocity 
and orientation ~sR is described in box labelled 'strapdown 
integration'. Accelerometer signal is composed of accele- 
ration and gravity contribution, expressed in sensor frame 
(sa-Sg) plus measurement noise vector VA. Acceleration of 
segment is modelled as low-pass filtered white noise, and 
gravity is constant vector 
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(a) a gyroscope measures a 3D angular velocity plus an offset 
and white measurement noise in the sensor co-ordinate 
frame 

(b) the spectrum of  the gyroscope offset has a low cutoff 
frequency in comparison with the bandwidth of  the 
kinematic signals that are to be measured 

(c) a 3D accelerometer measures acceleration minus gravity 
and a white noise component,  all in the sensor co-ordinate 
frame 

(d) the acceleration of  a body segment in the global  system can 
be described as low pass filtered white noise. 

Using assumption (a), the signals as measured using the 
gyroscope system (described by the column vector YG = [YG,x 
YG,y YG,z] T) are assumed tO be the sum of  the angular velocity 
vector cot, a slowly varying offset vector (bt) and a three- 
element white Gaussian noise vector vG,t. The variation of 
the offset is assumed to be caused by slowly changing pro- 
perties of  the sensor, e.g. mechanical  wear and temperature 
sensitivity. 

YG, t = cot + bt + vG, t (1) 

The slow variation of  the gyroscope offset b is model led as a 
realisation of a first-order Maxkov process, driven by a small 
white Gaussian noise vector wb,t 

bt = bt 1 Jr- Wb,t (2) 

The three accelerometer signals are model led as the sum of  
the linear acceleration vector (at), the gravity vector g and a 
white Gaussian noise signal VA. 

YA,t = Sat -- Sgt + VA,t (3) 

In (3), a superscript S is used to indicate vectors that are 
expressed in the sensor co-ordinate system. 

The acceleration was modelled as a first order low-pass 
filtered white noise process according to 

Gat ~ Ca" Gat 1 + Wa,t (4) 

where c a is a dimensionless constant that determines the 
cutoff frequency. The superscript G is used to denote a 
vector that is expressed in the global co-ordinate system. 

A strapdown integration algorithm calculates the change in 
orientation from an angular velocity signal. The word strap- 
down means that the angular velocity is obtained using gyro- 
scopes strapped to an object. A number of  integration 
methods have been described (IGNAGNI, 1990; BORTZ, 1971; 
JIANG and LIN, 1992). The orientation of  the sensor with 
respect to the global co-ordinate frame is expressed with a 
rotation matrix, containing the three unit column vectors 
of  the global co-ordinate system expressed in the sensor 
co-ordinate system (5). 

G~R=[~X ~v ~z] ~ (5) 

The acceleration and gravity in the global  co-ordinate frame 
(4) are related to the acceleration and gravity in the sensor co- 
ordinate frame (3) through the axes transformation of  (6). 

a a aSRt (Sat Sgt) (6) at - -  g t  = " - -  
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2.3 Inclination estimation based on sensor model  

The sensor model  was used to make two estimates of  the 
inclination, one on the basis of the 3D gyroscope signals and 
one on the basis of  the accelerometer signals. Fig. 3 describes 
the estimation procedure. The inclination was defined as the esti- 
mate of  the vertical direction by the IMU. Because the global 
Z-axis was defined in the vertical direction, the inclination was 
expressed as S z  t, the Z-axis of  the global co-ordinate system 
expressed in the sensor co-ordinate frame. 

The offset, angular velocity and acceleration are esti- 
mated using (2), (1), (3) and (4) and setting unknown white 
noise components wb,t, vG,t Va,t and Wa,t to zero. The esti- 
mated angular velocity @ and the estimated orientation at 
the previous timestep GSR+ 1 are then used to calculate the 
current orientation according to the algorithm proposed by 
IGNAGNI (1990). The third row of  the resulting rotation 
matrix (5) gives the inclination based upon the gyroscope 
signals S'Z g,t. 

A hat on top of  a symbol denotes an estimate, a minus super- 
script denotes the a priori  estimate that is made using the 
sensor model, and a plus superscript denotes an estimate that 
is made after correction by the Kalman filter. 

The inclination estimated from the accelerometer is 
achieved by subtracting the predicted acceleration a t  from 
the accelerometer signal to obtain the gravity vector. The 
gravity estimate is normalised and reversed to produce an 
estimation of  the inclination SZA, t. 

^ Y t  - sgtt 
SZA -- Iy, Sht[  (7) 

2.4 Error model  

A Kalman filter uses a state space representation to 
model  the relationship between errors in estimated model  
variables x~ and the error in the inclination predicted by the 
model  (8). 

xe,t = A .  xe,t 1 + Wt 

Z~,t = C -  x~,t + vt (8) 

where wt and vt are Gaussian white noise processes speci- 
fied by covariance matrices Qw,t and Qv,t, respectively. 
The measurement difference vector z~ is formed by the 

Y G , t  

Fig. 3 

GSR÷ S-~- 
~t  1 . . ~ G , t  S'n a  r Wn  

gt-1 
| yA, t 

% ~ _ ~ , ~ S z ~ t  

Diagram describing estimation of  inclination of  human body 
segment based on gyroscope system and based on 
accelerometer system using sensor signals, previously 
estimated states and model described in Fig. 2. Angular 
velocity o4 is estimated by subtracting estimated offset from 
gyroscope signal Yr. Strapdown integration algorithm is 
used to estimate change in orientation ~SR i and inclination 
Sz~, t. Acceleration gt i is estimated by assuming it is 
factor c, of  previously measured acceleration. Orientation 
is used to estimate acceleration in sensor co-ordinate 
system, enablins~ measurement of  inclination based on 
accelerometers Za, t 
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difference between the gyroscope and accelerometer incli- 
nation estimates. 

output (1) and the expression for the offset error (11) into the 
definition of  the angular velocity error 

Z e , t  = S Z  A - -  S z  G (9) 

A difference in the two inclination estimates is caused by 
prediction errors. The two most important factors causing an 
inclination error are incorporated in the error state vector x~, 
which is estimated using the Kalman filter (10). The first 
factor is the orientation error at the previous timestep, as this 
orientation is used as a starting point to obtain the next 
orientation by strapdown integration. The second factor is the 
gyroscope offset error, as, already, a small offset error causes 
a dramatic effect on the estimated orientation. 

x~,t = [0~,t 1 b~,t] r (10) 

The orientation error is defined as the angle and direction 
is which the actual sensor co-ordinate frame has to be rotated 
to coincide with the estimated sensor co-ordinate frame. It is 
expressed by 0~, which has a magnitude that equals the angle 
of  rotation, whereas the rotation axis is given by the direction 
of  0~. As other error sources axe not incorporated into the 
state vector, these are only specified as part of  the covariance 
matrix of  wt and yr. 

To use the Kalman filter to make an estimate of  the error 
vector x~, the matrices A and C and the covariance matrices 
Qw and Q~ axe derived. Matrix A and noise w describe the 
propagation of  the a priori  error state vector x~. They were 
found by considering the effect of  unknown system com- 
ponents on the error state. Matrix C and noise v describe the 
relationship between the error states and the Kalman filter 
input z~. They were found by considering the effect of  an 
offset and orientation error on the inclination estimate. The 
covariances Q~ and Qw were derived by taking the variances 
of  v and w. 

2.4.1 Error propagat ion 
The offset prediction error is denoted by b~,t 1 and can be 

found by substituting the prediction of the offset in the offset 
model  (2). 

= be+t 1 - -  W b ,  t (11) 

For  small errors, the relationship between the actual and esti- 
mated orientations is given by (12) (BORTZ, 1971) 

Gsi¢ = o s R  . ( I  + [0~x]) (12) 

The matrix cross product operator is given by 

+ 
= W b ,  t - -  be,t 1 + VG, t (14) 

If  we substitute the angular velocity estimation and the 
orientation estimation (13) and neglect products of errors, the 
estimated orientation is given by 

• 0 + _ _  + G S R ; ~ G S R t  ( I + [ (  ~,t 1 Tb~, t I + T v G , t ) × ] )  (15) 

Finally,  comparing (15) with (12), it follows that the error 
propagation 0~, t is described by 

Oe, t + + Oe, t  1 - -  Tbe,t 1 ~ -  TI~G,  t (16) 

The matrix A of  (8) describes the propagation of  the a priori  
error state vector x~. Considering (16) and (11), it can be found 
that the a priori  expected errors b ,  t and 0~, t do not depend on 
previous a priori estimated states be, t 1 and 0~, t 1- This means 
that knowledge about previous errors is incorporated into the 
current estimate, and that there is no correlation left between 
the a priori  estimate errors of  two timesteps. Therefore the A 
matrix equals the zero matrix. 

2.4.2 Relationship between fil ter input and error states 
The error of  the gyroscope based inclination estimate was 

obtained in the same way as the error in the orientation estimate 
(15), yielding 

s,~G,t ~ Zt + S'zt 1 × O~,t+ 1 - TS'zt 1 × be,t 

+ TsZt  1 × VG, t (17) 

The error of  the accelerometer-based inclination estimate 
S'z A, (7) depends on the error in estimated acceleration 
expressed in the sensor co-ordinate frame and the acceler- 
ometer noise. The error in predicted acceleration in the 
global co-ordinate frame was found by comparing the real 
acceleration with the estimate, using (4). 

G a ~ ^ _ 
e , t  G a t  G a t  

G ^ +  
Ca " a e , t  1 - -  W a , t  (18) 

To obtain the acceleration error in the sensor co-ordinate 
frame, relationship (6) was applied using the acceleration 
error estimate (18) and orientation estimate (12). The resulting 
error is caused by both an orientation error and an error in the 
global acceleration estimate (19). 

[ax]  = I 0 - a z  ay 1 az 0 - ax 
- -  ay ax 0 

The orientation after one integration step is found by consid- 
ering a first order approximation of a strapdown integration 
step 

G,k; = G'k+, + - [r,;,; ×] (13) 

where T is the sample time. An expression for the angular 
velocity estimate d ~  was found by substituting the gyroscope 
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S a e , t  = s~t t -- Sa t 

= ca" Sa~, t 1 - Swa,t + sgtt × 0~,t (19) 

Then the accelerometer-based inclination estimate can be 
found using (7), where y is given by (3) 

1 
= z , + - ( J a ;  A,t g , e , t  , 

(2o) 

In (20), the magnitude of  the accelerometer output vector 
is approximated by the gravitational constant g, and products 
of  errors axe neglected. 
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The relationship between the inclination difference and the 
filter states (8) was found by substitution of  (17) and (20) 
into (9) and use of  the matrix format of  the cross product to 
obtain the relationship as a matrix multiplication. 

Z e , t  = S Z  A - -  S z  G 

= Szt 1 " × O ~ , t + T s Z t  1 ×b~,t 

1 Sa Jr- I~A,t) Szt  1 x T vG, t Jr- - -  ( S W a ,  t - -  Ca " e , t  - -  " 
g 

/ 
= C .  b~,t ] + v t  (21) 

where C is a 3 x 6 matrix, consisting of  two 3 x 3 cross product 
matrices. 

The noise term vt is described by the third and fourth terms 
of  (21) 

1 
• S a  Jr- ~ - I ' A , t )  - -  S Z t  1 X I 'G, t I, t z - -  ( S W a ,  t - -  C a e , t  

g 
(23) 

2•4•3 Covariance matrices 
The error covariance matrix Qw,t of the noise term w in the 

error propagation part of the Kalman filter (8) can be obtained 
using the knowledge that the matrix A equals the zero matrix• 
Therefore the error covaxiance matrix can be found by taking 
the variance of  the error propagation equations (11) and (16). 

[ E(o, , , .  E(o, , , .  
E(b,, ,  E(b, , , .  

Q~,t 1 + T Qb, t 1 + T2Q~G T Qb,~ 1 
= 2 + Q+ + Qb 

T Qb,~ 1 b,~ 1 

where ÷ Q÷ Qo,t 1 and b,t 1 are the a posteriori error covaxiance 
matrices of the orientation and offset at the previous timestep, 
respectively. Qb is the very small covaxiance matrix of  the 
offset noise wb and Q~G is the gyroscope noise covaJciance matrix. 

Taking the covaxiance of the noise term (23) yields 

1 
Q~,t = -~ (c2~ • Q~,t + 1 + Qw~ + Q~)  + QvG (24) 

where Q+ is the a posteriori acceleration error covariance a, t  1 
matrix, QN~ is the covaxiance matrix of  Wa,t, and Q~a is the 
covariance of  the measurement noise vector I 'a ,  t .  The last 
term of  (24) was found by assuming that the gyroscope noise 
variance is equal in the x-y- and z-directions• In this case, the 
noise covariance matrix does not change when the noise is 
expressed in a different reference system• 

3•1 Comparison with optokinetic system 

The Kalman filter was tested by comparison of  the orien- 
tation as calculated by the Kalman filter with the orientation 
that was obtained by a laboratory-bound 3D human motion 
tracking system Vicon. Three markers on 0 . 1 0 m  carbon- 
fibre sticks, on a PVC holder, were securely attached to 
each sensor box to measure the sensor orientation. The accu- 
racy of  the reference measurements was estimated by looking 
at the relative movement  between the markers. The orientation 
of  the marker frame with respect to the IMU co-ordinate frame 
was obtained using the accelerometer output vector during 
two moments in which the IMU was put in a different orien- 
tation. Gyroscope and accelerometer signals were sampled at 
100 Hz and recorded with a portable datalogger. 

The IMU was placed on the pelvis, trunk and forearm. 
Tasks that were performed were: lifting crates, mimicking 
eating and mimicking typical morning routine tasks. For  the 
crate-lifting tasks, the IMU was placed on the dorsal side 
of  the pelvis and between the shoulder blades at the height 
of  the T10 vertebra. The z-axis of  the pelvis and trunk IMU 
pointed cranially, and the y-axis pointed laterally, to the left. 
The forearm IMU was placed on the dorsal side of  the 
wrist, with the y-axis of  the IMU unit along the arm, pointing 
in the proximal  direction, and the z-axis pointing in the dorsal 
direction. 

The first task was a 2 min lifting task. A stack of  six empty 
beer crates was placed in front of  the subject. The subject 
was asked to move the crates one by one from the stack to 
build a new stack 1 m away. Once the new stack was com- 
pleted, the routine was reversed. This was repeated for the 
duration of  the trial. Ten recordings were made at different 
lifting speeds. The pace of  crate stacking was dictated by 
a metronome. The time intervals between the handling of  
two crates were 7 s, 6 s, 5 s (twice), 4 s, 3.5 s (twice), 3 s 
(twice) and 2 s. Two trials were performed at a pace of  
3.5 s per  crate, as this was experienced as a comfortable 
lifting speed. 

The second task consisted of  three trials of  90 s in which the 
subject was asked to mimic eating. It consisted of  subsequent 
sessions of  the following activities: pouring a glass (10 s), 
eating soup (20 s), eating spaghetti (20 s), eating meat (30 s), 
drinking (10 s). The morning-routine tasks consisted of: pouring 
water on face and drying it using a towel (10 s), applying 
deodorant (10 s), buttoning a blouse (10 s), combing hair (20 s), 
brushing teeth (30 s). 

The tasks described were chosen, not only because of  their 
relevance in ambulatory movement  recording, but also for 
their very different movement  characteristics and 3D character. 
Prior to and after each recording, the subject was asked to stand 
still for 4 s. The gyroscope signals that were recorded in this 
interval were averaged to yield the initial offset. Experiments 
were performed on two healthy subjects. The first subject 
(male, 29 years) performed the lifting task, and the second 
(female, 28 years) performed the eating and morning routine 
tasks. Both subjects signed an informed consent prior to the 
measurement. 

3 Experimental methods 

An inertial measurement unit (IMU) was constructed by 
mounting three vibrating beam gyroscopes* and three piezo- 
resistive accelerometers t perpendicular to each other in a 
30 x 20 x 50 mm 3 box. These sensors were calibrated accor- 
ding to FERRARIS et al. (1995) to obtain the gains and offsets 
of  both the accelerometers and gyroscopes. 

*Murata ENCO5 
tAD XL05 

3•2 Model parameter estimation 

Before the Kalman filter was used, the model  parameters 
were determined• The sensor noise variances Qva and 
QvG were found by taking the variance of  the sensor signal 
while the sensor was lying still on the laboratory floor• The 
parameters Ca and Qwa were chosen to give reasonable 
results while the filter was tested• Gyroscope offset varia- 
tion, described by Qwb, was determined with a temperature 
experiment• 
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A measurement of gyroscope and accelerometer offset 
fluctuation was carried out to 

(i) identify the parameter for gyroscope offset change wb 
(ii) validate the assumption that the accelerometer offset does 
not change because the subjects skin warms up. 

It was assumed that the major factor influencing the offsets is 
the temperature, so that the variation due to a varying tempera- 
ture is an approximation of the entire offset variation. The 
effect of temperature on gyroscope and accelerometer offset 
was measured by cooling down two IMUs in an oven from 
40 to 20°C in a time period of 3 h. This was done by laying 
the sensor on six different sides, enabling us to measure both 
the gyroscope and the accelerometer offset dependence on 
temperature. 

A practical value for gyroscope offset variation wb could be 
estimated by taring the time derivative with respect to temp- 
erature at 30°C and assuming that the temperature during 
measurements will not fluctuate by more than 1 ° min -1. A 
value for the change in accelerometer offset resulting from 
mounting an IMU on a subject was obtained using the 
change in output from 20 to 30°C, as this was assumed to be 
a typical temperature step from the calibration temperature to 
the temperature near the skin. 

3.3 Analysis 

The filter performance was split into one part describing the 
ability of the filter to estimate the gyroscope offset and one part 
describing the quality of the orientation measurement. The 
ability of the filter to estimate the gyroscope offset was 
tested by adding an error of 1 rad s-1 to each of the separate 
gyroscope channels during off-line analysis and determining 
the offset error at the end of each trial after applying the 
Kalman filter. The robustness of the filter for orientation esti- 
mation was tested by comparing the orientation errors during 
a trial for different tasks and one for different lifting speeds. 
The quality of the orientation estimation was described by 
the magnitude of 0~, expressed in the global co-ordinate 
system. The orientation error has different behaviour for incli- 
nation and for the orientation around the vertical. Therefore the 
orientation error 0~ was split into an inclination and a heading 
part. When 0~ is considered a vector, the vector component in 
the vertical direction is called the heading, and the component 
in the horizontal plane is defined as the inclination error. As 
long as one of these two errors is small, this is a reasonable 
error measure. 

The heading can be interpreted as the rotation around the 
vertical, and the inclination error can be interpreted as the 
angle the estimated Z-axis makes with the real Z-axis. 

The inclination of the Kalman filter was compared with 
the inclination obtained by low-pass filtering accelerometers. 
The heading error was continuously increasing, and therefore 
its derivative with respect to time was used to compare with 
the orientation that was obtained by strapdown integration of 
gyroscope signals. Comparisons were made with a paired 
t-test at a significance level of 5%. 

4 Results  

4.1 Accuracy of the reference measurement system 

The accuracy of the reference measurements performed with 
the Vicon system depends on the accuracy of the position 
measurement of the markers and on the accuracy of the 
maxker-sensor orientation estimate. The accuracy of the pos- 
ition measurement was estimated by considering the distance 
between two markers. The standard deviation of the fluctuation 
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in measured distance was 1 mm. This corresponds to a standard 
deviation in measured orientation of less than 1 °. 

Fluctuation of accelerometer offset can cause an error in 
sensor-maxker orientation. Using the temperature exper- 
iments, the offset change of six accelerometers after a tempera- 
ture ste~ from 20 to 30 ° was 0 .2ms -2 on average (SD 
0.2 m s -  ). An offset error of 0.2 ms -2 corresponds to an 
angle error of 1.1 °. It was assumed that these were the 
largest sources of error of the reference system. 

4.2 Parameter identification 

An example of a gyroscope and accelerometer recording is 
given in Fig. 4. It shows the signals of a sensor on the trunk 
during the lifting of one crate, involving flexion as well as 
lateroflexion. It can be seen that the z-component of the 
accelerometer output is close to 1 g at the beginning and 
end, indicating an upright posture. As soon as the movement 
starts, the magnitude of the accelerometer output vector 
differs from 1 g, indicating an acceleration. 

Static measurement with the sensor lying still on the labora- 
tory floor, to obtain gyroscope and accelerometer noise, resulted 

1 2 in an RMS of 0.01 rad s -  and 0.1 m s , respectively. The temp- 
erature tests indicated that the temperature dependency of the 
gyroscope offset was 2 deg s - I ° c - I ( S D  1) for six gyroscopes. 
Assuming a temperature change of less than I°C rain -1 for lab- 
oratory experiments, this corresponds to an offset change per 
timestep wb of 0.3 x 10 -3 deg s -1. While testing the KaJman 
filter, it appeared that a low Ca of 0.6 and a standard deviation 
of each component of Wa of 0.4 ms -2 gave good results. 

4.3 Orientation accuracy 

An example of the filter performance during a crate-lifting 
trial is shown in Fig. 5. The error of the orientation obtained 
using the filter was compared with the integration method 
described by BORTZ (1971). The error was defined as the mag- 
nitude of the orientation error vector. It can be seen that the 
orientation error, as obtained by integration of the gyroscope 
signal, is larger than the error of the Kalman filter estimate. 
The reason that the slope of the orientation error is close to 
zero at the start and end of the trial is because the gyroscope 
offset was determined at these points. 

The magnitude of the orientation drift was defined as the 
time derivatives of the orientation error. The heading drift 
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Fig. 4 Measured sensor signals during one crate lift. Sensor is 
attached to trunk. (a) gyroscope output vector," (b) 
accelerometer output vector. Accelerometer magnitude is 
represented by thick line 
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Example trial of orientation error during crate-lifting trial. 
Orientation error is defined as angle over which computed 
sensor frame has to be rotated to coincide with actual 
sensor frame 

was defined l ikewise as the time derivative of  the change in 
heading error. The average orientation and heading drift over 
several trials is given in Fig. 6. Using paired t-tests with a 
5% significance level, it was found that the orientation errors 
from the Kalman filter are significantly smaller than the 
errors obtained by integration alone. However,  the heading 
errors from the Kalman filter axe not significantly different 
from the heading errors from the strapdown integration 
algorithm. 

The RMS value of the inclination error during different tasks 
is shown in Fig. 7. For three tasks, the inclination as computed 
with the Kalman filter is compared with the inclination that 
is obtained by low-pass filtering the accelerometer signals 
and applying (7). The low-pass filter is a fourth order 
Butterworth filter with a 5 Hz cutoff frequency. The Kalman 
filter performed significantly better than the method without 
Kalman filter. To test the robustness of  the filter for the 
speed of  movement,  the influence of  the lifting speed on the 
inclination error was determined (Fig 8). A linear regression 
was made between the lifting speed and inclination error. 
The slope was significantly different from zero and the corre- 
lation coefficient was 0.77 for the Kalman filter and 0.95 for 
the method using only the accelerometer. Especial ly at high 
lifting speeds, the Kalman filter shows a considerable improve- 
ment over the use of  accelerometers as inclinometers. 
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Fig. 7 

Pelvis Trunk Forearm 

RMS value of inclination error for three types of movement, 
obtained using Kalman filter and using accelerometer as 
inclinometer. Inclination of pelvis and trunk were obtained 
during crate-lifting tasks (number of measurements = 10), 
and inclination of forearm was obtained from three morning 
and three eating daily routines 

An example of gyroscope offset estimation during a crate- 
lifting experiment is given in Fig. 9. The decline in offset 
that is estimated using the Kalman filter is presented using an 
initial offset error of  t0  deg s -1. Fig. t0  also gives the standard 
deviation estimated by the Kalman filter. These are the square 
roots of  the three diagonal elements of  Qb+t. As the acceler- 
ometer gives an estimate of  the inclination, merely the gyro- 
scope offset of  gyroscopes with their sensitive axes in the 
horizontal plane can be corrected. This is also shown in the 
standard deviation graph. As the y-axis points in the lateral 
direction during the entire trial, the y-component  of  the offset 
has the smallest covaxiance at the end of  the trial. 

The offset estimation was tested for the lifting experiments 
(N = t0), with the sensor on the trunk and pelvis, as well as 
for the eating and morning routine tasks together (N = 6), 
with the sensor on the forearm. The remaining offset error 
after 120 s is shown in Fig. t0. From the Figure, it can be 
seen that, for crate-lifting tasks, the estimation of  the offsets 
in the sensor z-axis is most difficult. This is because the 
z-axis of  the sensor co-ordinate frame is predominantly vertical 
during these trials. 

4.4 Gyroscope offset estimation 

The time required for the filter to estimate the offset was 
tested by off-line processing of the sensor signals using an 
initial offset error, artificially added to the gyroscope signals 
prior to application of  the Kalman filter. The offset error at 
the end of  the measurement was then used as a measure for 
the ability of  the filter to estimate the offset. 

• Kalman filter 
~ 2.0 5 gyroscopes 

8 ~ f.5 
~ 1.0 

C 
orientation heading orientation heading orientation heading 

Pelvis Trunk Forearm 

Fig. 6 Heading and orientation drift when using Kalman filter, 
compared with strapdown integration of gyroscope signals 
only. Drift of estimated orientation during trial was 
obtained by taking time derivative of orientation and 
heading error. Inclination of pelvis and trunk were obtained 
during crate-lifting task (number of measurements = 10), 
and inclination of forearm was obtained from three morning 
and three eating routines 

Medical & Biological Engineering & Computing 2005, Vol. 43 

5 Discussion 

Considering Figs 6 and 7, it can be concluded that the orien- 
tation drift of  the examined trials processed using the Kalman 
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Inclination error as function of lifting speed for inclination 
obtained using accelerometer and Kalman filter, along with 
95% confidence intervals 
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Example of  offset estimation of trunk sensor during crate- 
lifting trial. Initial offset error was 10 deg s -1 added to 
x-gyroscope. (a) Offset error," (b) offset SD, estimated by 
filter. Offsets of  gyroscopes in horizontal plane can only 
be estimated on basis of inclination information from 
accelerometer, y-gyroscope points laterally and is, most of  
time, approximately in horizontal plane. Therefore offset on 
y-gyroscope can be estimated better than x- and z-offsets 

filter can almost completely be attributed to heading error. This 
is in accordance with the notion that the accelerometer signal 
only contains information about inclination and not about 
heading. In theory, the heading drift from the Kalmma filter 
could be smaller than the heading drift of strapdown integration, 
because the KaJman filter estimates the offset in all three direc- 
tions. However, the heading errors obtained with the Kalman 
filter and with the strapdown integration appeared to be almost 
the same. In terms of the model (Fig. 2), this would mean that 
the offsets axe not sufficiently observable to reduce the 
heading drift effectively. This is in accordance with the finding 
that the offset estimation is especially difficult for the gyroscope 
that is mostly in the vertical direction (Fig. t0). 

,5 5 

0 
a b c a b c a b c 

Pelvis Trunk Forearm 
X Y Z 

Fig. 10 Offset estimation after trial of 120 s. Each trial was filtered 
using initial offset error of  1 rad applied to x-, y- and 
z-axes subsequently. (X) Offset error of IMU on pelvis 
during lifting experiment. (Y) Offset error of IMU on trunk 
in lifting experiment. (Z) Offset error of IMU on arm, 
morning routine tasks. 
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For applications in which the heading is important, 
additional sensors or assumptions are required. For  example, 
biomechanical  constraints on the joints between segments 
can be used. This method could only result in an accurate orien- 
tation between two segments. Magnetic field sensors may make 
the heading observable (BACHMAN ( 2 0 0 0 ) ) ,  but have the 
disadvantage that they are difficult to use in the vicinity of  
ferromagnetic metals. 

If  the inertial sensing unit is to be used during measurement 
of  activities of  daily living, the temperature may fluctuate more 
than in the laboratory, resulting in considerable errors because 
of  offset fluctuation. In this case, the offset errors shown in 
Fig. t0  will be realistic and will give large errors in orientation 
estimates. The Kalman filter and sensor unit described in this 
article have a limited ability to track these offset changes. 

The gyroscope offset estimation could be improved by use of  
a better spectral model  for the acceleration signal. In this study, 
the acceleration was model led as a low pass realisation of a 
white-noise signal. Therefore the Kalman filter will assume 
low-frequency components in the acceleration. In practice, 
however, a segment will never accelerate in the same direction 
for more than a few seconds. Therefore the acceleration will 
have a bandpass spectrum. If  the acceleration spectrum is mod- 
elled as a bandpass spectrum, the overlap of the acceleration 
and gyroscope offset spectra will be less. This makes it 
easier for the filter to distinguish between both. A disadvantage 
of  this method is that more assumptions restrict the general 
applicabil i ty of the filter. 

Adding the acceleration to the state vector will not greatly 
improve the filter performance, whereas it will significantly 
increase computational burden. Because the acceleration is 
only moderately correlated in time, an accurate estimation of  
acceleration at one time step will not have a great influence 
on the next t ime step. 

The experimental  evaluation of  the orientation estimation 
algorithm was conducted on two subjects, each performing 
part of  the protocol. This does not limit generalisation, as it 
was not our aim to evaluate the inter-individual performance 
of  movement  tasks, but merely to evaluate the performance 
of  the orientation estimation algorithm under the condition of  
representative 3D human movements.  It is critical that this 
evaluation includes very different daily-l ife tasks. Therefore 
a lifting task, performed at different lifting speeds, and eating 
and morning-routine tasks were included. 

Contrary to what could be expected, the orientation and 
heading drift of the forearm during eating and morning 
routine tasks was less than that of the pelvis during crate stack- 
ing, although the rotations and accelerations were larger. This 
could be attributed to the fact that different sensor modules 
were placed on different segments. As not all gyroscopes axe 
equal, a plausible explanation would be that, coincidentally, 
the arm sensor performed better than the pelvis sensors. 

This means that the heading drift is determined by the 
quality of  the sensors and, to a lesser extent, by the conducted 
task. 

The most important effect of the Kalman filter is the ability 
to estimate inclination. The inclination error is not only depen- 
dent on the gyroscope noise and offset but also on the accelera- 
tion. The inclination errors for different tasks (Fig. 7) give an 
indication of the effect of the Kalman filter. These errors axe 
within the specifications required by most applications. 

Because of  the heading drift, the proposed Kalman filter will 
only be useful for long measurements if  only an accurate incli- 
nation is required. There are, however,  many applications that 
require only short measurements or for which the heading is 
not important. A Kalman filter for estimating inclination 
merely using accelerometers was described in LUINGE and 
VELTINK (2004). For  measuring trunk and pelvis inclination 
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during lifting tasks, the RMS value of the inclination error 
obtained using the Kalman filter for accelerometer signals 
only was in the same order as when using accelerometers 
and gyroscopes. This means that, for these tasks, the relatively 
heavy and power-consuming gyroscopes could be omitted. The 
advantage of applying gyroscopes, however, is that angular 
velocity and a short-term estimate of total orientation are 
available. 
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