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Abstract. We propose a variation of the Diffie and Hellman key distribution 
scheme for which we can prove that decryption of a single key requires the ability 
to factor a number that is the product of two large primes. The practical advantage 
of such a scheme is that it will still be secure if the cryptanatyst knows a very fast 
algorithm for either factoring or computing discrete logarithms, but not for both. 
Using these keys in the E1Gamal public-key cryptosystem provides a scheme for 
which the decryption of a message requires the ability to factor the modulus and 
break the original Diffie and Hellman scheme. 
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1. The Diffie and Hel lman Key Dis t r ibut ion  Scheme 

In a l andmark  paper  in 1976, Diffie and  Hel lman I-DH] proposed  an implementa t ion  
of  a publ ic  key dis t r ibut ion  scheme whose securi ty depends  on the difficulty of 
solving a p rob l em in computa t iona l  number  theory.  The  Diffie and  He l lman  scheme 
m a y  be general ized to work over  an  a rb i t r a ry  g r o u p  (or ra ther ,  a finite cyclic sub- 
g roup  genera ted  by some known element). Let  g be an e lement  of  the g roup  G, 
and assume that  both  g and an efficient a lgo r i thm for mul t ip ly ing  e lements  in 
G are publ ic ly  known.  Two users A and  B who wish to agree on a c o m m o n  key 
(cor responding  to a group element  in some na tu ra l  way) proceed as follows: 

• A chooses  a r a n d o m  number  x, computes  gX, and  sends the result  to B over  
any publ ic  channel ,  keeping x secret. 

• B chooses  a r a n d o m  number  y, computes  gY, and  sends the result  to A over  any 
publ ic  channel ,  keeping y secret. 

• Both  A and  B then use the key g~Y, which A computes  as (gY)~, and  B computes  
as (g~y. 

The  or iginal  p roposa l  of Diffie and  He l lman  used G = GF(p)* ,  the mul t ip l ica t ive  
g roup  of  units  modu lo  a pr ime p, where p is large ( >  101°°), and g a pr imi t ive  roo t  
m o d u l o  p. The  actual  const ruct ion  o fp  and  g is easily car r ied  out, as is the a r i thmet ic  
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in the group. At present the best-known approaches to breaking the Diffie and 
Hellman scheme use algorithms for solving the discrete logarithm problem, which 
can be stated as the following: 

Given group elements g and y, f ind an integer x with g~ = y, provided one exists. 

It is conjectured that the problem of recovering the secret key gX, (mod p) for 
the original Diffie and Hellman scheme is equivalent to the discrete logarithm 
problem in GF(p)*, but this remains open. The best discrete logarithm algorithm 
for an arbitrary finite group when g has known order m requires O(q 1/2) group 
operations in the worst case, where q is the largest prime factor of m [PHI ,  
I'Kn, pp. 9, 575-576], [P]. Faster algorithms are known for the groups GF(p)* 
and GF(2k)*; for a discussion of such algorithms, see [COS], [C], [CD],  and 
the survey [O]. 

Given that the Diffie and Hellman scheme can make use of an arbitrary group, 
we should choose a group for which the corresponding discrete logarithm problem 
is difficult. There are numerous groups that we might envision using instead of 
GF(p)* or GF(2k) *, including the following: 

• The group of points on an elliptic curve over a finite field (see I-Ko] and IMi]). 
• The group of equivalence classes of binary quadratic forms of a given negative 

discriminant. 
• The group GL(m, R) of invertible m x m matrices over a ring R. 

It may be that the discrete logarithm problem for some of these groups is inherently 
much harder than others, but at present we have no way of knowing. 

The Diffie and Hellman key distribution scheme is only one of many cryptosystems 
that have been proposed whose security depends on the presumed difficulty of 
solving an instance of a problem in computational number theory. Some of the 
schemes have turned out to be insecure, but others are still open. The most well 
known of these is the RSA public key cryptosystem [RSA] and its variants [W]. 
These schemes have the property that the success of various cryptanalytic attacks 
depends on the ability to factor a large integer of a special form. Since factoring 
is a problem that has received intense scrutiny over an extended period of time, this 
gives some credence to the belief that the systems are secure. 

Due to the current state of computational complexity theory, there is no proof 
that any the problems mentioned so far are in fact difficult to solve, even though 
they have been studied by numerous researchers. The only guarantee of security 
that can be ascribed to these systems is, to quote from [GJ, p. 3], "I can't find 
an efficient algorithm, but neither can all these famous people." Given this state of 
affairs, a user of such a system may be more convinced of its security if breaking 
it requires the cryptanalyst to solve several problems that are presumed difficult 
rather than just one, and if the problems are ones that have been studied extensively 
(such as integer factoring). 

With this in mind, we propose a variation of the Diffie and Hellman scheme 
working on the multiplicative group (Z/nZ)* with composite n that in effect combines 
the security of the original scheme with the difficulty of factoring large integers, 
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at only slightly greater expense in key construction. We prove that if the keys for 
these cryptosystems are chosen carefully, then any algorithm that will break the 
system for the published keys can be used to factor the modulus n and break 
the original DiNe and Hellman scheme modulo the factors of n. Hence if the keys 
are chosen large enough as to render both problems intractible using current 
algorithms, then the system will remain secure so long as at least one of the two 
problems remains intractibte. 

The specific construction of keys proceeds as follows. We choose numbers r and 
s such that 

2r + 1 has a large prime factor, 4r + 1 is prime, and 8r + 3 is prime, 

s has a large prime factor, 4s - 1 is prime, and 8s - 1 is prime. 
(1) 

We set p = 8r + 3, q = 8s - 1, and n = pq. The size of p and q are dictated by the 
current state of the art in discrete logarithm algorithms and factoring algorithms, 
but the author  suggests that p and q should have at least 100 decimal digits, 
and preferably 150 digits. The conditions (1) are designed for the two purposes of 
proving the equivalence to factoring and foiling some known attacks on factoring 
and computing discrete logarithms, and indeed, such keys have been suggested for 
use in other cryptosystems [W], [GMR] ,  [B1]. If so desired, the key n can be 
constructed once and for all by a trusted center, and the factors p and q discarded 
afterward. Any two users A and B wishing to agree on a secret key use the public 
key n in the following procedure, which we hereafter refer to as the Composite DiNe 
and Hellman scheme, or C D H  for short: 

• A chooses a random number x, computes 16 x (Nod n), and sends the result 
to B over any public channel, keeping x secret. 

• B chooses a random number y, computes 16 y (mod n), and sends the result 
to A over any public channel, keeping y secret. 

• Both A and B use the key l &  y (mod n). 

In Section 2 we state and prove a precise theorem concerning the security of this 
system from which it follows that any algorithm that will break the C D H  scheme 
for a nonnegligible proportion of the possible inputs can be used to factor n. It is 
also easy to see that any algorithm that will break the C D H  scheme for a given 
modulus n can also be used to break the original Diffie and Hellman scheme for 
the prime moduli that are factors of n. Hence the keys proposed here essentially 
combine the difficulty of the two problems. If the cryptanalyst discovers an algorithm 
that will factor n, then he or she is still left with the problem of breaking the 
DiNe and Hellman schemes for the two prime factors p and q. Our  theorem also 
guarantees that the cryptanalyst will be unsuccessful in discovering an algorithm 
for breaking the C D H  scheme without factoring n. 

The idea of using a composite modulus in the DiNe and Hellman scheme was 
arrived at independently by Shmuely IS] and the author  [Mc],  and indeed this 
paper  may be regarded as a technical refinement of the ideas in Shmuely's paper. 
Shmuely proved a result that says roughly: "any algorithm that will break a DiNe 
and Hellman scheme with composite modulus for a nonnegligibte proportion of 
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bases 9 can be used to factor the modulus." The algorithm for factoring n uses 
the construction of random bases g, in the hope that one will satisfy certain 
properties. From a cryptographic standpoint, this result does not present as strong 
an argument as we might like for the security of the scheme, since the cryptanalyst 
is unlikely to be in a position to specify a random base g of his or her choosing 
when mounting an attack. The specific choice of keys described here allows us to 
prove that any algorithm which will break the scheme using the published base 
9 = 16 can be used to factor the modulus. This provides a more direct relationship 
between the problems of factoring and breaking the key distribution scheme. 

2. Security of the CDH Scheme 

Throughout  this paper we use the following notation: 

• Z* denotes the multiplicative group of units in Z/nZ. 
° (g) ,  denotes the cyclic subgroup of Z* generated by g. 
• o r d ,  g denotes the order of the subgroup (g), .  
• # S denotes the cardinality of the set S. 
° Q(n) denotes the set {ala ~ Z*, ord,  g is odd}. 
• G(n) is the number of bit operations required to compute greatest common 

divisors of positive integers not exceeding n (note that G(n) = O(log 2 n)). 

The problem of breaking the Diffie and Hellman scheme with a modulus n and 
base g is equivalent to the problem of computing a value of the function 

DH(g, n, a, b): (g) ,  x (9) ,  ~ (9) , ,  

defined by 

DH(g, n, 9 x, gY) = 9 ~y mod n. 

It is easily verifed that DH is in fact a well-defined function. 
We now state (in slightly different notation) a result of Shmuely connecting the 

problem of computing DH with the problem of factoring n. 

Theorem(Shmuely). L e t O < 6 <  1 , 0 < f l <  1, n = p q ,  p -  1 =2kp ' , q -  l=2~q  ', 
with p' and q' odd, and p, q odd primes. Let A be an algorithm that will output 
OH(g, n, a, b) in T(n) bit operations for at least 6 # Q(n) of the inputs g ~ Q(N), and 
for each of these g's, at least fl(ordn g)2 of the input pairs (a, b) ~ (g) ,  x (g) , .  Then 
A can be used to construct an algorithm that will output the factors of n with 
probability at least 0.5 in o(2k+16 -1 fl-I (T(n) + G(n))) bit operations. 

Roughly speaking, this theorem may be paraphrased as saying that if we can 
quickly compute DH(g, n, a, b) for a nonnegligible proportion of bases g having 
odd order, then we can quickly factor n. The algorithm described by Shmuely 
for factoring n involves choosing random numbers c, r 1, and r2, and computing 
DH(c 4, n, c 2r~, c2'2). If c2e  Q(n), then we can prove that c .... and J = DH(c 4, n, 
c 2't, c 2r2) are random square roots of c 2"~'2 (mod n). The probability is 0.5 that 
J ~ _+c 2"~'2 (mod n), so that we have a good chance of factoring n by computing 
gcd(c "~'~ + J mod n, n). 
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The  randomness  of  the base g was a key ingredient  in Shmuely 's  argument ,  since 
it was required to guarantee that  the square  roots  genera ted by the a lgori thm were 
indeed random.  As it turns out, we can show that  if the keys p, q, are chosen as 
in (t), then the ability to compute  DH(g, n, a, b) for the fixed base g = 16 implies 
the ability to factor  n. 

Theorem. Let n = pq be as specified in (1) and 0 < 6 < 1. Let Ao be an algorithm 
using at most R(n) bit operations that will output DH(16,  n, a, b) for at least 
6(ord,  16) 2 of the input pairs (a, b) ~ ( 16), x (16) , .  Then there exists an algorithm B~ 
that will output p and q with probability at least 0.5 using at most O(6-1(R(n) + G(n))) 
bit operations. 

The proof  of  this result is quite easy, and  as a first step we state the following 
lemma.  

Lemma.  Let p be a prime for which p' = (p - 1)/2 is also prime. 

1. I f p  -= 3 (mod 8), then ordp2  = p - 1 and (4)p = (16)p.  
2. I f p  - 7 (mod 8), then ordp2  = p' ,  (2)p  = (4)p = (16)p,  and - 1  ¢ (2)~o 

Proof.  Clearly we must  have either ordp 2 = p '  or  ordp 2 = 2p', since ordp 2 is 
a divisor of p - 1. It  follows from Euler 's cri terion that  

2'" - ( ~ )  = ( - -  I) ~p~-1)/8 (mod p). (2) 

Assume first that  p = 7 (rood 8). Then ordp 2 = p', and since (4)p and (16)p are 
nontrivial  subgroups  of (2)p, we have (2)~ = (4)p = (16)p.  It also follows from 
(2) that  2 is a quadrat ic  residue mod u lo  p, so tha t  (2)p contains  only quadrat ic  
residues. Hence  - 1 q~ ( 2 )  r 

If p - 3 (mod 8), then (2) implies that  ordp 2 = p - 1. The  subgroup  (4)p then 
has order  p' ,  and by the same argument  as before we have (4)p = (16)p. [ ]  

We now prove  our  main theorem. Let 0 < 6 < 1, n = pq be as specified in (i), 
and  let A~ be a Monte  Carlo a lgor i thm tha t  a t t empts  to compu te  DH(16, n, z, w). 
We now describe an algorithm Bn for comput ing  p and q. 

Algori thm B~. ( Input  n satisfying (1), ou tpu t  factors p and q of  n.) 
Begin F o r  i = 1, 2 . . . . .  1 + [ 1 / - l o g 2 ( 1  - 6)], do steps B 1 - B 3  

B1 Choose  r andom odd numbers  x and  y between 0 and n. 
B2 Execute Ao to a t tempt  to compu te  DH(16,  n, 4 x, 4Y). 
133 If  A6 returns an output  D, then compu te  v = gcd(n, D + 2 ~y m o d  n). If 

1 < v < n, then return v and n/v as the pr ime factors  of  n. 
End 

Clearly this algorithm has running time that  is O(6-1(R(n) + G(n))) bit operations. 
In  order  to p rove  the main  theorem, let us first observe  that  if A n prodtices a correct 
ou tpu t  D = DH(16, n, 4 x, 4Y), then B6 will ou tpu t  the factors  p and q. For  this it 
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suffices to prove  that  

By the lemma,  

D 2 ~ 4 xy (rood n), (3) 

D ~  + 2  ~y (modn) .  (4) 

ord ,  2 = lcm(ordp 2, ordq 2) = lcm(p - 1, (q - 1)/2) = 2k, 

where k = (4r + 1)(4s - 1) is odd. I t  follows that  

ord .  4 = ord ,  16 = k, 

so that  16 (k+:)/2 - 4 (mod n). Hence  we have 

D = DH(16, n, l &  (k+1)/2, 16 y(k~ 1)/2) 

= 16 ~y(k+l)'/4 (mod n) 

= 2 ~yk2+~ (mod n), (5) 

so that  D 2 - 22xyk2+2xy ~ 4 xy (mod n), which proves  (3). It suffices now to prove  (4). 
If we assume on the cont rary  that  2 ~y - D (rood n), then it follows f rom (5) that  
2 ~yk2 -= t (mod n). If  x and y are odd,  then this is a contradic t ion to the fact that  
ord .  2 is even. If  on the other  hand  we have 2 ~y - - D  (mod n), then it follows 
f rom (5) that  2 ~yk'-- - 1  (mod n), and  this is a contradic t ion to the fact that  
- I ¢ <2)p. 

In order  to complete  the p roof  of  the theorem,  we compute  the probabi l i ty  
that  Bo will fail to output  correct ly the factors p and  q. Since <4>, = <16>,, it 
follows that  a given element of <16>. will be hit by 4 x and 4 y with probabi l i ty  
k- :(1 + O(1/min(p, q)), so that  A~ will ou tpu t  DH(16, n, 4 x, 4 y) with probabi l i ty  
very nearly 6. Let m = 1 + [ ' l / - l o g 2 ( 1  - 6)]. Then  

P(B6 fails) = P(A~ fails for i = 1 . . . . .  m) 

g½. 

This completes  the proof.  [ ]  

3. The EIGamal Schemes 

In 1985 E1Gamal  [E]  proposed  new implementa t ions  of  a public-key cryptosys tem 
and digital s ignature scheme whose security is related to the p rob lem of  comput ing  
discrete logar i thms modulo  a large pr ime p. In this section we describe how to 
modify  the schemes to work  instead with a composi te  modulus ,  and  discuss the 
relat ion to factoring. In  the original scheme the public keys required for bo th  
systems are a large pr ime p, a primit ive roo t  9 (mod iv), and,  for each user, a number  
y with 0 < y < p. Each user generates his own public key y by  choosing a r andom 
value x and comput ing  y - 9 x (mod p). The  number  x is kept  secret. If  so desired, 
the keys p and 9 m a y  be shared by all users. The  E1Gamal  c ryptosys tem and 
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signature scheme use the same keys but are otherwise different, and we therefore 
separate the discussion of the two. 

3.1. T h e  C r y p t o s y s t e m  

The E1Gamal public-key cryptosystem is actually just a variation of the original 
Diffie and Hellman key distribution scheme. Suppose that party B wishes to send 
an encrypted message to party A. B consults a public file to find the keys y,  p,  and g 
of the user A. In order for party B to send an encryption of the message m to party A, 
where 1 < m < p - 1, B first chooses a random integer k with 1 < k < p - 1, and 
computes j -  yk (mod p). The encrypted message is then the pair (u, t), where 
u = gk (rood p) and t = j m  (mod p). The decryption is carried out by first computing 
j - u x (rood p), and then m - t j  -1 (mod p). This is the two-step decryption process 
described by E1Gamal, but there is an alternative method that is slightly faster. 
Instead of performing two separate operations, the receiver can compute p - 1 - x 
once when the system is set up, record it, and then compute m directly by 

m - u P - l - x t  (rood p). 

Using this method, the decryption is essentially as fast as the corresponding operation 
for the RSA scheme, assuming that the keys are the same size, but the encryption 
still takes about twice as tong as the corresponding operation in RSA. This dis- 
advantage can be overcome if the random numbers gk (mod p) are precomputed 
in background. 

Clearly, in order for the cryptanalyst to recover the secret key x, he must compute 
a discrete logarithm modulo p, and in order to decipher a message m from the 
cyphertext, the cryptanalyst must solve an instance of the original Diffie and 
Hetlman key distribution scheme, since he must recover j from u and y. 

It is quite easy to modify the EIGamal schemes to work with a composite modulus. 
Let us assume that n = pq is constructed as in (1), and let us assume that a number 
n satisfying (1) is supplied by a trusted center, but that its prime factorization is kept 
secret (it is also possible for each user to have his own modulus n, and we shall 
discuss this later). Each user chooses an odd number  x to serve as his secret key, 
and computes y - t6 x (rood n). The number  y is published in a public file, keeping 
x secret. 

In order for someone to send an encryption of the message m using the receiver's 
public key y, the sender chooses a random integer k with 1 < k < n and computes 
t ~ my k (mod n), and then computes u - 16 k (mod n). The encrypted message is 
then the pair (u, t). The secret key x allows the decryption to be carried out by 
computing 

m =- t (u~)  -1 (mod n). 

The reason for choosing the exponent x to be odd is that it is then almost certainly 
true that we will have gcd(x, q~(n)) = 1. Without this it may turn out that only a few 
values of t will appear  as cyphertext. As in the original E1Gamal scheme,.a different 
value of k should be used each time, for otherwise knowledge of the plaintext for 
a single block of the message enables the cryptanalyst to decypher other blocks of 
the message that  are encrypted using the same k. 
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It  follows from our main theorem that any algorithm that will decrypt a non- 
negligible proportion of messages for a nonnegligible proport ion of public keys y 
can be used to factor the modulus n. In addition, it was proved by Bach [Ba] that 
if we have an algorithm to solve the generic instance of the discrete logarithm 
problem modulo n, then we can also use the algorithm to factor n and compute 
discrete logarithms modulo the prime factors of n. Hence recovery of the secret 
key x is in some sense equivalent to factoring the modulus. Bach's argument used 
the discrete logarithm problem with a variable base (similar to Shmuely), but we 
can give a variant of the argument as follows: assume that n satisfies (1). Choose 
a random integer z with I < z < n, and compute y ---- 16" (rood n). Then use the 
discrete logarithm algorithm to compute an integer x with y - 16 x (mod n). There 
at least four distinct choices of x with 1 < x < n, and the probability is at least ½ 
that z - w will be a nonzero multiple of k = ord, 16. F rom k it is a simple matter  
to recover the prime factors of n. A slight modification of the ideas of Miller I-M] 
can be used to give a similar argument for the case of a general odd modulus n, 
provided the base g has ord, g divisible by all of the large primes dividing q~(n). 
For  the general modulus however, we lose the close connection between decryption 
and factoring. 

Instead of having everybody using the same modulus n, it is also possible for 
every user to use a different n. In this case the public file will be larger, but the 
decryption process can be speeded up if the exponent ~0(n) - x is computed once 
and for all when the system is set up. The decryption process then uses 

m =- tu ~"~-~ (mod n), 

eliminating the need for the Euclidean algorithm. 

3.2. The  Signature  Scheme 

The original E1Gamal signature scheme uses the same keys as the cryptosystem. 
In order for a user to sign the message m, he chooses a random number  k with 
0 < k < p - t and gcd(k, p -- I) = 1, and computes r = g k (mod p). He then com- 
putes s =- k - l ( m  - xr) (mod p - 1), using his secret key x. The signature of the 
message m consists of the pair (r, s). Verification of the signature is accomplished 
easily since the receiver simply uses the public key y and verifies that the congruence 
g r" =- y ' P  (mod p) is satisfied. It is presumed that the problem of finding such an r 
and s is computationally infeasible if x is unknown. It  is unknown whether the 
success of a forgery at tempt is equivalent to computing a discrete logarithm or 
breaking a Diffie and Hellman scheme. 

In the original EtGamal  schemes, it was possible for everyone to use the same 
prime p, and indeed this is still possible in the cryptosystem using a composite 
modulus as described in Section 3.1. In order to modify the signature scheme to use 
a composite modulus, each user must have a different public key n. In order for 
someone to sign messages in the composite scheme, he must know ~o(n), and in 
this case he can factor n (see [RSA]). If an unscrupulous user of the system knows 
the factorization of another user's public n, then, if he can also quickly compute 
discrete logarithms modulo the factors, he can forge other users's signatures and 
read the other user's encrypted messages. The whole point of the composite scheme 
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is to use the difficulty of both factoring and computing discrete logarithms to 
provide added security. With this understanding, the signature scheme of E1Gamal 
requires only a slight modification in order to use a composite modulus. In order to 
sign the message m, the user chooses a random number k with gcd(k, ~0(n)) = 1 and 
computes r = 16 k (mod n). He then computes s with s =- k - l ( m  - -  x r )  (mod q~(n)). 
As before, the signature is the pair (r, s), and the signature is assumed to be authentic 
if 16 m = yrr~ (rood n). 

There is very little that can be said concerning the security against forgery for 
either the original E1Gamal signature scheme or the E1Gamal signature scheme 
with composite modulus, since there is no known argument to show that the ability 
to carry out a key or forgery attack implies the ability to solve one of the com- 
putational problems mentioned so far. It appears at first sight that the problem of 
recovering the secret key is equivalent to computing a discrete logarithm modulo p, 
but in practice the cryptanalyst would also have access to signatures of some 
messages, which is more information than was available in the discrete logarithm 
problem. It is not clear how the cryptanalyst can gain any advantage from this 
information. 

4. Further Remarks on Key Selection 

The specific choice of keys that are described here are by no means the only ones 
for which it is possible to prove a direct link between the Diffie and Hellman scheme 
and factoring. The choice of n described in (1) is simply convenient for exhibiting 
a number # whose orders modulo the prime factors of n have certain desired 
properties. The base g = 16 may however have some advantage for implementation 
due to its simple binary representation. 

We might wonder if it is easy to construct the numbers r and s. Let m be an integer 
for which 2m + 1, 12m + 5, and 24m + 11 are prime. If we set r = 3m + 1, then 
r will satisfy (1). Let zq(x) denote the number of such integers m between 1 and x. 
It is a consequence of a well-known conjecture in analytic number theory (see [BH]) 
that 

as x --, m, where 

Cx 
~l(X)~log3 X 

1 - 3p 
C = 1 8  v~sI-I l + ~ ) ~ l l . 4 . ( p  

As a consequence we should expect that a randomly chosen number m near 10 l°° 
will satisfy the required conditions with probability at least 9.3 x 10 -7. Hence we 
should expect to find such an integer m before we examine a million or so consecutive 
numbers. In fact, a simple sieve procedure similar to the sieve of Eratosthenes will 
speed up the search for keys considerably. Note that the number of such integers 
m with 100 decimal digits probably exceeds 1093, SO that an exhaustive search for 
the factor p is hopeless. We may also formulate a similar argument for the number 
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of integers k such that 2k + 1, 24k + 11, and  48k + 23 are prime, and if we set 
s = 6k + 3, then we have numerous  examples satisfying (1). 

If p and q had been chosen so that  p - 1 or  q - 1 had no large prime factors, 
then the scheme would have been vulnerable to an at tack based on factoring the 
modulus  n using the Pollard p - 1 method  followed by the Poh l ig -He l lman  algo- 
r i thm for comput ing  discrete logarithms. The  condi t ion (1) is furthermore designed 
to thwart  an at tempt to factor n via the Williams p + I method.  

It  should also be observed that the cons t ruc t ion  of the primes p and q satisfying 
(t) is facilitated by the fact that  if m > 3 is prime, then p = 2rn + 1 is prime if and 
only if 3" - I (mod p). 
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