Skip to main content
Log in

Matrix computation of subresultant polynomial remainder sequences in integral domains

Матричное вычисление субрезультантных полиномиальнх последовательностей остатков в интегральных областях

  • Mathematical Research
  • Published:
Reliable Computing

Abstract

We present an improved variant of the matrix-triangularization subresultant prs method [1] for the computation of a greatest common divisor of two polynomialsA andB (of degreesm andn, respectively) along with their polynomial remainder sequence. It is improved in the sense that we obtain complete theoretical results, independent of Van Vleck’s theorem [13] (which is not always true [2, 6]), and, instead of transforming a matrix of order 2·max(m, n) [1], we are now transforming a matrix of orderm+n. An example is also included to clarify the concepts.

Abstract

Представлен улучшенный вариант матрично-грианіулярннационноіо субрезультантного метода пояиномиальных носледовательностей остатков (ППО) [1] для вычисления наибольшего общеіо дедителя двух мноточленовA иB (стеиенейm иn соответственно) с одновременным нахождением нх ПОП. Улучшение заключается в том, что нолучены законченные теоретические результаты, независимые от теоремы Ван Влека [13] (которая нэ всегда снраведлива, см [2, 6]). Кроме того, вместо преобразования матрицы норядка 2 · мах (m, n) [1] тенерь нреобразуется матрица норядкаm+n. Представлен численный нример для иллюстрации этих ноложений.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akritas, A. G.A new method for computing polynomial greatest common divisors and polynomial remainder sequences. Numerische Mathematik52 (1988), pp. 119–127.

    Article  MATH  MathSciNet  Google Scholar 

  2. Akritas, A. G.,Elements of computer algebra with applications. J. Wiley Interscience, New York, 1989.

    Google Scholar 

  3. Akritas, A. G.Exact algorithms for the matrix-triangularization subresultant prs method. In: “Proceedings of the Conference on Computers and Mathematics”, Boston, Massachusetts, June 1989, pp. 145–155.

  4. Bareiss, E. H.Sylvester’s identity and multistep integer-preserving Gaussian elimination. Mathematics of Computation22 (1968), pp. 565–578.

    Article  MATH  MathSciNet  Google Scholar 

  5. Dodgson, C. L.,Condensation of determinants. Proceedings of the Royal Society of London15, (1866), pp. 150–155.

    Google Scholar 

  6. González, L., Lombardi, H., Recio, T., and Roy, M-F.Spécialization de la suite de Sturm et sousrésultants. University of Cantabria, Department of Mathematics, Statistics and Computation, Technical Report 8-1990, S-39071, Santander, Spain.

  7. Habicht, W.,Eine Verallgemeinerung des Sturmschen Wurzelzaelverfahrens, Commentarii Mathematici Helvetici21 (1948), pp. 99–116.

    MATH  MathSciNet  Google Scholar 

  8. Kowalewski, G.,Einfürung in die Determinantentheorie. Chelsea, New York, 1948.

    Google Scholar 

  9. Malaschonok, G. I.Solution of a system of linear equations in an integral domain. Journal of Computational Mathematics and Mathematical Physics23 (1983), pp. 1497–1500 (in Russian).

    Google Scholar 

  10. Malaschonok, G. I.,System of linear equations over a commutative ring. Academy of Sciences of Ukraine, Lvov, 1986 (in Russian).

    Google Scholar 

  11. Sylvester, J. J.On the relation between the minor determinants of linearly equivalent quadratic functions. Philosophical Magazine1 (Fourth Series) (1851), pp. 259–305.

    Google Scholar 

  12. Sylvester, J. J.On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest common measure. Philosophical Transactions143 (1853), pp. 407–548.

    Google Scholar 

  13. Van Vleck, E. B.On the determination of a series of Sturm’s functions by the calculation of a single determinant. Annals of Mathematics1 (1899–1900), Second Series, pp. 1–13.

    Article  Google Scholar 

  14. Waugh, F. V. and Dwyer, P. S.Compact computation of the inverse of a matrix. Annals of Mathematical Statistics16, (1945), pp. 259–271.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akritas, A.G., Akritas, E.K. & Malaschonok, G.I. Matrix computation of subresultant polynomial remainder sequences in integral domains. Reliable Comput 1, 375–381 (1995). https://doi.org/10.1007/BF02391682

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391682

Keywords

Navigation