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Fast error estimates for indirect 
measurements: applications to pavement 
engineering 
CARLOS FERREGLrr, SOHEIL NAZARIAN, KRISHNAMOHAN VENNALAGANTI, 

CHING-CHUAN CHANG, a n d  VLADIK KREINOVICH 

In ninny real-life situations, we have the fi~llowing problen|: we want it) know the vahle ~)f ~)n|e 
characteristic U that is diffiodt to measure directly (e.g., lifetin|e of a pavement, effidency of an engine, 
etc.). To esti|mate U, we mug know the relationship between 9 and aane directly measurable physical 
quamities X h . . . ,  xn. Fro|n this relationship, we extract an algorithm f that alh|ws us, given xi, to 
cmnpute p: 9 ---- f ( x l  . . . .  ,xa).  &~, we measure zi ,  apply an algorithm f ,  and get the d~sired estimate. 

Existing algorithms fi~r err .r  ~timate (interval nmthematics, Monte-Carlo methods, nun|eri~l differ- 
entiadon, etc.} require cmnputation dine that is several times larger than the time necessary to compute 
Y = f ( x h . . . , x a ) .  So, if an algorithm f is already time-consuming, error estimates will take t(x~ hmg. 

In ,many cases, this algorithm f consists of two parts: first, we use xi to determine the parameters 
zk of a nuMel that describes the measured object, and seomd, we use these parameters to estimate Y. 
The most tin|e-consunfing part is finding zk; this is done by ~dving a system of ram-linear equatkms; 
usually least squares method is used. 

We show that for such f ,  one can estimate errors repeating this time~msu|ning part of f only 
once. So, we can omlpute |xgh y and an em)r estimate fi,r U with practically m~ increase in total 
con|putadon dine. As an example of this m~htgtology, we give pavement lifetime estimates. 
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.pe~mtua.~mlix 're, gtrropme Hya~,~ ltaa nu~,caemta y = f(zt , . . . ,Zn),  lqo:)xoMy, eC~'tU a;iropwrM 
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3Ty TpyJlilMgyal qac rb  tll,lqHt~IfHtliYI T i t , lb l ( l  11211114 p;13. ~ l ' a l i lY  1~2111 l ,  i b l  i i t ~ K e i  Bbl t l t lG/ l l l lb  gag 

~, Tag tl l l l lel tKy I I l I rpel l l i l l lCrl l  ILIH ~ IIpRKTIIqCCKil ~ 3  yBeJltlqeHilil i~l l l [erl) BpeMelltl BblMiI~IeHtlI71. B 
KilqecrB~ npit.~epa i lCI l l i ) Ib3II I~HliH 3TOI~! Mf~TOJIIIKtl i lpil~lj l~rc~ IIIIeHKtl Cp41Kil ~KII3HIi MIICTOBIII~I. 

l i  Formulation of a general problem: error estimation 
for indirect measurements 

Indirect  measurements :  a real- l l fe  situation. In this paper,  we will consider the following 
engineering problem: 

We want: to know the value of some physical quantity y. 
Problem: It is difficult (or even impossible) to measure y directly (examples of such quantities 

are lifetime of a pavement, efficiency of an engine, etc.). 
Solution: To estimate y, we must know the relationship between y and some directly 

measurable physical quantities zx , . . . , x~ .  From this relationship, we extract an algorithm f 
that allows us, given zi, to compute y: y = f ( z l , . . . , x ~ ) .  So, we measure zi, apply an 
algorithm f to the measurement results ~i, and get the desired estimate ~ = f (~ l ,  ~2 . . . .  , ~n). 
This procedure is called an ~lirea me~ur~m~t of y. 

Warning: This f is rarely an explicit analytical expression; usually, it is a complicated 
algorithm. 

Remaining problem: What  is the precision of  the resulting value 0? 

What  do we know a b o u t  t h e  e r r o r s  of  measur ing  xi? T h e  error  of  an indirect measure- 
ment  is caused by the errors  with which we know zi. So, to estimate the precision of  y, let us 
find out what we know about these precisions. 

For each measuring device, its supplier must provide some information about its precision 
(else, i f  no  precision is guaranteed,  this measuring device is of  no use). There  are two main 
ways to describe such a precision (see, e.g., [4]): 

1) In many  cases, we know only a characteristic of  the t am error  Axi  = a:i - xi. Namely, 
the supplier provides a number  Ai  such that  the er ror  never exceeds Ai (IAxil _< Ai); in other 
words, the actual value zi  belongs to an interval [~:i - E ,  a:i + z]. 

This  number  A i can depend  on a:i. For example,  a supplier can provide us with a relative 
error  6i, meaning that tAxd < (so, in this case, Ai = 8ia:i)- 

2) Measurement  er ror  AX is random.  Therefore ,  we can represent it as a sum of  two 
components:  the mathematical  expectation E ( A x )  that is called a systemat/c error (denoted by 
Axe), and the difference A x  -- E ( A x )  that  is called a random error (and denoted by Ax[).  For 
some measuring devices, we know the characteristics of  the both components.  Namely, the 
supplier provides a value A~ such that IAz$1 _< zX~, and a value ai such that the s tandard 
deviation ~'(Axi)  does not exceed cri. 
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These  two characteristics can also depend on xi. For example,  they can be given as relative 
errors 6~ and s~. In this case, A~ = ~i6~ and ai = ~isi. 

Systematie er rors  are usually negligible. T o  improve the quality of  a measuring device, it 
makes sense to calibrate it first. By this we mean that before we release this device, we compare  
its restllts with the results of  a more  precise device, find an average error ,  and compensate for 
it. For calibrated devices, the systematic error  is negligible, so we can assume that the total 
er ror  coincides with its random component ;  After  the calibration, we also have enough data 
to estimate the s tandard deviation a (x i ) .  So, we can assume that a (x i )  is known. 

In view of  this, in this paper,  we will consider only two cases: 

1) we known an interval for  an error;  

2) the error  has 0 average, we know its standard deviation o'(xi), and the errors of  
different measurements  are independent  r andom variables. 

21 How are errors estimated now? 

The  main methodologies for estimating the er ror  of  y are: numerical differentiation, Monte- 
Carlo method (for detailed description of  these methods, see, e.g., [1, 2, 5, 13-15]), and interval 
mathematics  (see, e.g., [11]). Let us briefly describe these methods. 

Numerical  different ia t ion.  The  e r ror  All = 0 - Y can be expressed as the difference 

f ( : c l , - . . ,~ :n )  - f ( X h . . - , X n )  = f( :~X,.-- ,Xn) -- f (xx  -- A X h . . . , X n  -- Axn) .  (1) 

Usually, the errors Axi  are relatively small, so we can neglect the terms that are quadratic in 
errors. I f  we neglect quadratic (and higher  order  terms) in the Taylor  expansion of  the r.h.s. 
of  (1), we can conclude that 

i= l  OXi 

I f  we know that  IAz, l < A,, then we can conclude that IAyl _< A, where 

Of Ai A (3)  = 

I f  we know cr(zi), then we can compute  a ( y )  as 

a(y) = ~ t-ff~xi ) ~r txi). (4) 
i = l  

Since ] is usually given as an algorithm, and not as an analytical expression, we must 
somehow compute the partial derivatives. We can do that by applying formula (2) to the case 
when A l l  = h for some i and 0 for all other i (here, h is some small number). As a restilt, 
we get the following estimate: 

Of f(X' l ' ' '  "Xi-li~Ci'Xi+l''' "~Cn) - f ( x l "  ""xi- l ' :c i  - h'xi+l"" ' " x n )  (5)  

Oxi h 

This is a standard formula for numerical differentiation. 
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So, in order to get an estimate for Ay, we must compute the partial derivatives using (5), 
and then estimate A or a(y) using (3) or (4). 

Monte-Chrlo methods. A standard Monte-Carlo method (see, e.g., [13]) is used to estimate 
cr(y). This method is based on the following idea: First, we choose the number of iterations 
N. Then, for k = 1 . . . . .  N,  we substitute into f the values xi + 37, where 37 are computer- 
simulated normally distributed random numbers with 0 average and standard deviation a(z~). 
As a result, we get N values y l . . . ,  yN. Because of (2), the distribution of yk _ y is Gaussian, 

with 0 average and standard deviation a(y). So, we can estimate a(y) as X/~(y ~''- y)~/N. 

This method gives an approximate value of ¢(y). In real life, it is sufficient to know a(y) 
with ~ 20% precision (practically no one distinguishes between the cases when the precision is, 
say, 0.01, or 0.012, which is 20% more). To get such precision, we need N ~ 25 iterations. 

A Monte-Carlo style method to compute A was proposed in [7] (see also [6]). This method 
uses N ~ 50 iterations to guarantee the desired 20% precision. 

Interval techniques. Standard techniques of interval mathematics require that we decom- 
pose the algorithm f into elementary operations, and then apply interval operations instead of 
usual ones. 

3. What is wrong with the existing methods 
To use a numerical differentiation method, we must apply the algorithm f n + 1 times: once 
to get O, and then n times to estimate partial derivatives. 

For example, if we have 10 variables, we need 11 times more time to estimate the error 
than to compute y itself. If f is fast, there is no problem. But if f is already a time-consuming 
algorithm, this is no good. 

For Monte Carlo methods, we must apply f 25 or 50 times; so, the computation time for 
this method is 25-50 times longer than the time that is necessary to compute y. 

For interval methods: an operation with intervals consist of 2 or 4 operations with 
numbers. Therefore, by applying interval mathematics, we increase the computation time at 
least 2 -4  times. In addition, the error estimates that we obtain this way are often "overshoots" 
(i.e., much bigger than the biggest possible errors). 

How to diminish this computation time? If we have several processors that can work in 
parallel, then we can use parallel algorithms for a speed-up (see, e.g., [6]). But what if we have 
only one processor? 

In this paper, we will describe a frequent real-life situation, when we can drastically 
decrease this computation time. 

4. The new method of estimating errors 
To develop a new method, we will use the fact that in many real-life situations, the algorithm 
f is of a very specific type, and for such f ,  we can estimate the error in y really fast. 

To elaborate on that, we need to recall where f usually comes from. 

Where does f come from? We have mentioned that an algorithm f comes from the 
known relationship between xi and y. Usually, such a relationship exists in a form of a model 
of the physical phenomenon. By a model, we mean that we have (relatively simple) formulas 
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or algorithms that, given some parameters, allow us to compute all physical characteristics, 
including azi and ?/. 

Some of these parameters can be known from the previous experiments (we will denote 
them by t~, . . . , tq).  Some of these parameters are specific to this particular situation (we 
will denote them by z l , . . . , zp) .  These paremeters must be determined from the known 
measurement results z l ,  • . . ,  xn. 

SO, an algorithm that estimates ?~ from :~i, consists of two stages: 

• first, we use the measurement results ~i to get estimates ~ for the parameters of the 
model, and 

second, we use the estimates z'k and {~ to estimate y. 

Let us denote by Fi and F' functions that describe the model, i.e., that express :ri and 
~/ in terms of zk and ~l: zi = F i ( z l , . . . , z  v , t l , . . . , t q )  and y = F ( z h . . . , z p ,  t t , . . . , t q ) .  Then, 
to estimate z~, we must solve the system of equations zl  = F~(z l , . . . ,  zp, tl . . . .  , ~q), 1 < i < n. 
Since we know only approximate values of z~, we will get approximate values of zk as well. 
To improve the precision, we can perform additional measurements. In this case, we will get 
an o~er-determined system (with more equations than unknowns). Usually, such systems are solved 
by the least:squares method, i.e., from the condition that 

i--~ 1 z~ ,...,zp 

Example. For example, in celestial mechanics, there are rather simple formulas that 
describe a trajectory of any celestial body in a Solar system (e.g., a comet). The  parameters of 
this trajectory include the position ti of the Sun (that is well known from other measurements), 
and parameters zk of the orbit relative to the Sun (that have to be determined from the 
observations). So, if we want to predict a future position y from several observations Y:i, we 
must find the parameters zk of a trajectory from zi, and then predict y. 

What is the most time-consuming part of this algorithm? If Fi are linear, we can 
easily solve a system of linear equations and find zk. The problem becomes computationally 
complicated when the functions Fi are highly non-linear. In  this case, no matter what method 
we use to compute zk (Newton's method, other optimization techniques, etc.), all these methods 
consist of several iterations: we find a first guess Z, substitute these values into F~, then adjust 
the values of zk, etc. In other words, the first "back-calculation" stage (estimating zk from :ri) 
includes several "forward" steps (computing z~ from zk). Therefore, the computation time for 
the first stage is much longer than the time for the second stage. 

So, the most time-consuming part of an algorithm f is estimaing zk from ~.~. 

Our idea. The reason why existing methods take so tong is that they involve several 
applications of f and, therefore, several repetitions of a time-consuming "back-calculation" step: 
for the initial values ~ = ( x l , . . . ,  f~n), to get the estimates Z'k, and then, for several other input 
values ~ that are close to .~i. 

Of course, we need to apply this back-calculation once, to get the values ~'k. But next 
time, when we want to compute zk for some close values zk, we do not have to repeat this 
complicated procedure of solving a system of non-linear equations: indeed, if zi are close to 
zl, then the corresponding zk will be close to ;~k. So, it is sufficient to find the small deviations 
Azk = zk - ;~k. We consider .the casewhen the errors are relatively small, so we can neglect 
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the terms that are quadratic in Azk, and therefore, instead of the original nonqinear system 
of equations Fi(z", ~ = xi, solve its linearized version. 

How to use this idea in ease of interval estimates. Since we assume that our 
model is accurate, the true values z~ and tt of the parameters must satisfy the equations 
F~(zx, . . . ,  zp, h , . . . ,  q )  = z~. 

If we substitute zk = ~'k - Azk ,  tt = tt -- At , ,  and xi = Y:i - Axl into these equations, 
expand Fi into Taylor series, and retain only terms that are linear in Az~ and Art, we will 
conclude that 

where 6, = :~i - F/(~k, tl), 

ai~Azk = A z i  - ~i - Y~ buAtt  (6) 
k l 

OF~ 0F~ 
= b-Td' = 0 i ; "  (7) 

From y = F ( z l , . . . ,  zp, t l , . . . ,  tq), we can likewise conclude that 

where 

Ay = ckaz  + (s) 
k 

OF OF 
ck = oz--;' d, = Or--7" (9) 

The only thing we know about the values Axi, Azk and At/ is that they satisfy (6) and 
that the values of Axi and Art are limited by the corresponsing measurement errors. So, to 
find possible the interval of possible values of Ay, we must find the biggest and the smallest 
value of Ay under these conditions. Since these condiditons are Iinear in the unknowns, 
this optimization problem becomes a well-known linear programming problem, for which fast 
algorithms are well-known. 

So, we are ready to formulate an algorithm. 

Algori thm that est imates  errors for  the case when  we  know intervals. 

Given: 

1) An algorithm ~ that estimates xi from zk and tl. 

2) An algorithm F that estimates y from zk and ft. 

3) An algorithm f that gives an estimate ~ for y from xi by first estimating zk and then 
estimating y. 

4) The measured values xi, 1 <__ i < n and their precisions Ai (i.e., such numbers that 

iAzd = t:~i - z d  <_ Ad. 

5) The measured values t l , . . . ,  tq, and their precisions A~. 

O~eaive: To find an estimate A for Ay = y -- 9 (i.e., a value A such that lAy[ < A). 

Algorithm: 

1) Apply f and get estimates £'k and 9. 
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2) Use numerical  differentiat ion to est imate the derivatives (7) and (9). 

3) Estimate cSi = Axi -- Fi(;~1 . . . .  , z',, ~1,.--, t'q). 

4) Find A+ as a soh,tions of the following linear programming problem with unknowns 
Axi, Azk, and Art: ~ ckAzk + drAft --+ max under the conditions (6), - A i  < Axi < Ai 
(1 <: i < n), and -A~ < At < A~(1 < l <_ q). 

5) Find A-  as a solution to a similar problem, but with min instead of max. 

6) Compute A = max(A*,  IA-]). 

Comment. In this algorithm, a time-consuming ~back-calculation" part is repeated only once. 
Therefore, for time-consuming f ,  this algorithm enables us to estimate Ay with practiaclly no 
increase in total computation time. 

The ease of random errors. In this case, for xi close to xl, we can also linearize the 
expression for Fi. Threfore, instead of a system of non-linear equations, we get a linearized 
system (6). After this system has been solved, we can use (8) to estimate Ay. 

We must estimate the standard deviation of y. Because of (8), 

~r(y) 2 = E(Ay)  2 = ~ ceck, E(AykAyk,) + ~ ckdtE(AykAtz) + ~_, dtdvE(AtlAtv). (10) 

So, to estimate a(y), we must estimate these mathematical expetations E(AykAyk,), etc. If we 
denote Xk = Azk and Xp+~ = Ate, then can say that we must know E(XkXI) for all k and l. 

To get these estimates, we can apply the standard methodology of (linear) least squares 
method (see, e.g., [8, 10]). We are interested in p+q variables Azk, t < k < p and Atl, 1 < l < q. 
For these unknowns, we have the following system of equations: ~ aikAzk 4- ~, buAtl ~ 0 with 
standard deviation a(xi), and Atl ~ 0 with standard deviation a(tl). In terms of Xt¢, we have 
n 4- q equations: ~ Ai~Xk ~ 0 with standard deviation al, where for i < n: A~k = aik for 
k < p, and Ai,p+t = bp~; for i > n, An÷I,l -- 1 and A~+hk = 0 for k # n + l; o'~ = ey(xi) for 
i < n, and aa+l = a(t;l). 

According to the least squares theory, the matrix E(XkXl) is an inverse to the matrix 
UkI = ~i  A~kAua:( 2. So, we can compute U~:z, invert it, and use the resulting values of E(XkXI) 
to estimate a(y). 

Hence, we arrive at the following algorithm: 

Algorithm that estimates o'(y) when errors a(xi)  are random. 

Given: 

1) An algorithm F/ that estimates xi from zk and ~l. 

2) An algorithm F that estimates y from zk and ft. 

3) An algorithm f that gives an estimate ~ for y from Y:i by first estimating zk and then 
estimating y. 

4) The measured values 5h, 1 < i < n and their standard deviations ~(x~). 

5) The measured values t l , . . . ,  tq, and their standard deviations a(tt). 

O~jective: To find a standard deviation a(y) .  

Algorithm: 

t) Apply f and get estimates ~,~ and Y. 
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9.) Use numerical differentiation to esdmate the derivatives (7) and (9). 

3) Compute Aik, cri, and Ukt (as above). 

4) Invert the matrix Uta and get E(XkXI). 

5) Substitute the resulting values of E(XkXt) into the formula (10) and thus compute rr(V ). 

Comments. 

1. In this algorithm, a time-consuming %ack-calculation" part is also repeated only once. 
Therefore, for time-consuming f ,  we can estimate ~ and o'(y) with practically no increase 
in total computation time. 

2. If some parameters tt are already known with much better precision than our measure- 
ments, then we can simplify our computations by asuming that they are absolutely precise 
(Art = 0). In this case, it is sufficient to consider fewer than t9 + q variables, and thus, 
the computation will be even smaller. Another case when we can invert matrices of sizes 
smaller than (19 + q) × (p + q) is when some of the parameters tt do not influence zi at 
all, and are used only to compute V. For such parameters tt, E((At~) 2) = e(tt) 2, and 
E(AttAzk) = 0 for all k. 

5. Case study: pavement engineering 
The problem. One of the main problems of pavement engineering is to predict the remaining 
lifetime y of a pavement. It is impossible to measure y direcdy, so instead a Falling Weight 
Deflectometer (FWD) is used: we drop a mass on the pavement, and measure the resulting 
deviations z l , . . . ,  a:n in several (usually n = 7) locations on the surface of the pavement. 

To estimate V from if:i, a 3-layer pavement model is used [O, 16]. According to this 
model, the pavement consists of 3 layers: 1st asphaltic/concrete, 2nd base, 3rd subgrade layer. 
Each layer is characterized by 3 paremeters: its thickness hi, its Poisson ratio vi, and its elastic 
modulus El. 

Thickness hi does not change in time, so we can take hi from the documents that 
described the design of this pavement. The values vl may somewhat change. However, vi 
describe the horizontal strain, and the pavement is designed for vertical loads only. So, these 
changes do not influence the lifetime, and we can neglect them. 

So, in this problem, we have 7 parameters tt whose values are known from the previous 
measurements: hi, h2, ha, vl, v2, vz, and the weight w of the FWD mass. We have 3 
parameters z~ that  have to be determined from the measurements: El, Eu, Es. Corresponding 
algorithms F/ and F are given in [9, 16] (here, F is also a two-stage algorithm: given za and 
tt, we first compute tensile and compressive strains ~t and ¢v, and then use these strains to 
predict y). 

H o w  errors were estimated before. In this problem, all the sensors are calibrated, so we 
can assume that the errors are random. In [12, 17], a Monte-Carlo method was used. 

Computation time of the existing method. On a 886 IBM PC, forward computations (i.e., 
computing y and zi from the known parameters zk and tz) take about 20 seconds. A program 
f that estimates y from a:l , . . . ,a:n takes about 3 minutes to run. The Monte-Carlo method 
required up to 25 repetitions of this program, so its total computation time is about 80 rain. If 
we take into consideration that we must measure the value of y for every mile, it is too long. 
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Our results, We applied the above algorithm to estimate cr(y) (for details, see [8]). The 
entire algorithm, including both computing 0 from Yzi, and estimating ¢(y), ran for about 
3.5 minutes. This time is close to the time (3 min) required to compute 1/from/:i. 

Conclusion 
With practically no increase in the computation time, we not only compute y, but we also 
estimate its precision. 
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