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Fast error estimates for indirect
measurements: applications to pavement
engineering

CarLos Ferrecur, Sonen. Nazarian, KRISHNAMOHAN VENNALAGANTI,
Crame-Cruan CHang, and Viabx Kremovicu

In many realdife situations, we have the following problem:: we want 10 know the value of some
characteristic y that is difficult to measure directly (eg., lifetime of a pavement, effidency of an engine,
etc). To estimate y, we must know the relationship between y and some directly measurable physical
quantities Z1,...,Tn. From this relationship, we extract an algorithn f that allows us, given xj, 10
compute 3 ¥ = f(Z1,...,Zn). So, we measure z;, apply an algorithm [, and get the desired estimate.

Existing algorithms for error estimate (interval mathematics, Monte-Carlo methods, numerical differ-
entiation, etc) require computation time that is several times larger than the time necessary o compute
y = f(z1,...,Zn). So, if an algorithm f is already time-consuming, error estimates will take too fong.

In many cases, this algorithm f consists of two parts: first, we use Z; to determine the parameters
zx of a model that describes the measured object, and second, we use these parameters to estimate y.
The most time-consuming part is finding 2zg; this is done by solving a system of non-linear equations;
usually least squares method is used.

We shaw that for such f, one can estimate errors repeating this time-consuming part of f only
once. So, we can compute both ¥ and an error estimate for y with pracically no increase in total
computation time. As an example of this methodology, we give pavement lifetime estimates.

bricTpoe oleHMBaHNe MOrPELTHOCTEN IIpK

HETIPAMBIX M3MEPEHIIX: HIPUAOXEHWI K
ITPOEKTHPOBaHMIO MOCTOBBIX

K. ®zrreryt, C. Hasarsn, K. Beanasaranm, Y.-Y. Yanr, B. Keevmiosnu

Ha npaxTixe HacTy BCTPEUAETCA CAERYIONLLA Janava: TPebyeTcs ONpeneayuTs IHAYEHHE HEKueR Xapakrte-
PHCTHUECROR AEPEMEHHOA ¥, KOTUPYKS TPYAHO H3MEPHThL HAUDAMYK (HANPHMEP, CPUK XKHIHH MOCTOBON,
3bpeXTHBHOCTD ABHIATENA ¥ TUL). YTOSH OUEHHTL BEJHUHHY Y, MEl AOJXKHBL JHATH COOTHOWIEHHE MeX-
Y Y M HEXOTOPHIMY (DHINUECKHMH BEAHUHHAME T, ..., Tn, KOTOPHIE HOMRAKTCA NPAMOMY HIMEPEHHK),
Ha ocHOMaHI 3TOID COOTHOLIERMUS CTPOUTCA AAropuT™ f, KOTOPHIA NU3BOASET HCXOUA U3 3ANAHHBIX T
BunemTe ¥ ¥ = F(T1,...,Za). Tocte 3TOro OCTAHETCR THLL MIMEPHTH Ti, NPHMEHHTH ANTOPHTM
f v noayuure Tpefiyemyn> ouenxy.

CyuiecTByionue  aaropHTMEL OUEHHBAHUA IOIPEIMHOCTER (MHTEPBANLHAS MATEMATHKR, METOML!
Monre-Kapao, 4ucienoe nucdepenustposarie i T. 1) TPeBYKST 3aTPaT BPEMEHH, B HECKOJBKO pa3
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HPEBRUIUAIIBIX T€, KOTOPHE HYXHH WA Buyucienns ¥ = f{zy,...,Tn). [ostoMy, ecrn amopary
f .1 6e3 Toro paBoTaeT MEWNEHHO, OUEHHBAHHE HOTPEITHOCTEN MOKET JAHATL HENpHeM/IEMo GBI
BPEMH.

Bo mHonx cayuasx aaropiurM [ COCTOMT M3 ABYX MACTeR: CHAMAJR HR OCHOBE Tji ONPEIEOTCH
HAPAMETPHE 2k MOAEIH, OIHCHIBAIOMIER HIMEPAEMBIA OfBERT, A JATEM 3TH HAPAMETPLL HCHOMBIYIOTCH LIS
oneHky ¥y, HauBoabunix BPEMEHHBIX 3aTPaT TPEHYET HOAYHEHHE JHAMEHMA Zk, AU HETO HEOOXOMMMO
PEUDITL CHCTEMY HEAMHEMHHX YPABHEHIH (KAK HPABIVG, NPHMEHAETCA METOA HAMMEHRBIUHX KBANPATOB).

Flokazans, 4710 s BoaoOHBIX axsopHTMOB [ MUKHO ROAYMITD DUEHKH HOUPEHIHOCTEN, HPOHIBEIA
3Ty TPYAOEMKYH) HaCTh BHMHCIEHHR TOABKO OMMH Daz. Takum ofpasom, MB MOXEM BBINHUIMTL K2k
Y. TAK ¥ OUEHKY HOTPEIHOCTH JUIA Y NpakTHYeCKH Oed ynenuvernin ofuiero speMeHy seiMHclenui. B
RA4ECTBE NPHMEPA HCTOJIB3OBAHMS 3TOH METOAHKK IPHBOAATCA OUEHKH CPOK KHIHH MOCTOBOR,

1. Formulation of a general problem: error estimation
for indirect measurements

Indirect measurements: a reallife situation. In this paper, we will consider the following
engineering problem:

We want: to know the value of some physical quantity y.

Problem: It is difficult {or even impossible} to measure y directly (examples of such quantities
are lifetime of a pavement, efficiency of an engine, etc.).

Solution: To estimate y, we must know the relationship between y and some directly
measurable physical quantities z),...,T,. From this relationship, we extract an algorithm f
that allows us, given z;, to compute y: y = f(Z1,...,%Zn). So, we measure z;, apply an
algorithm f to the measurement results ;, and get the desired estimate § = f(%1,Za,...,Zn).
This procedure is called an ndirect measurement of y.

Warning: This f is rarely an explicit analytical expression; usually, it is a complicated
algorithm.

Remaining problem: What is the precision of the resulting value §?

What do we know about the errors of measuring z;? The error of an indirect measure-
ment is caused by the errors with which we know z;. So, to estimate the precision of y, let us
find out what we know about these precisions.

For each measuring device, its supplier must provide some information about its precision
(else, if no_ precision is guaranteed, this measuring device is of no use). There are two main
ways to describe such a precision (see, e.g., [4]):

1) In many cases, we know only a characteristic of the total error Az; = Z; — z;. Namely,
the supplier provides a number A; such that the error never exceeds A; (|Az;| < A;); in other
words, the actual value z; belongs to an interval [E; — £, Z; +¢€].

This number A; can depend on ;. For example, a supplier can provide us with a relative
error §;, meaning that |Az;] < §;&; (so, in this case, A; = §;).

2) Measurement error Az is random. Therefore, we can represent it as a sum of two
components: the mathematical expectation E(Az) that is called a systematic error (denoted by
Azf), and the difference Az — E(Axz) that is called a random error (and denoted by Az]). For
some measuring devices, we know the characteristics of the both components. Namely, the
supplier provides a value Af such that |Ax?| < Af, and a value 0; such that the standard
deviation ¢(Az;) does not exceed o;.
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These two characteristics can also depend on ;. For example, they can be given as relative
errors 8 and s;. In this case, A} = Z;67 and o0y = I;s;.

Systematic errors are usually negligible. To improve the quality of a measuring device, it
makes sense to calibrate it first. By this we mean that before we release this device, we compare
its results with the results of a more precise device, find an average error, and compensate for
it. For calibrated devices, the systematic error is negligible, so we can assume that the total
error coincides with its random component. After the calibration, we also have enough data
to estimate the standard deviation o(z;). So, we can assume that ¢(%;) is known.

In view of this, in this paper, we will consider only two cases:
1) we known an interval for an error;

2) the error has 0 average, we know its standard deviation o{(z:), and the errors of
different measurements are independent random variables.

2. How are errors estimated now?

The main methodologies for estimating the error of y are: numerical differentiation, Monte-
Carlo method (for detailed description of these methods, see, eg., {1, 2, 5, 13—15]), and interval
mathematics (see, e.g., {11]). Let us briefly describe these methods.

Numerical differentiation. The error Ay = § — ¥ can be expressed as the difference
FE1 . Zn) = fln, .y Zn) = f(E1y. .0 8n) — (&1 — Dz, .. B — Azy). (1)

Usually, the errors Az; are relatively small, so we can neglect the terms that are quadratic in
errors. If we neglect quadratic (and higher order terms) in the Taylor expansion of the rhs.
of (1), we can conclude that

Ay = Zn: g—i:-ﬁz,-. (2)

i=]

If we know that |Az;] < A;, then we can conclude that |Ay| < A, where

_s|9f
A—‘; aSL‘,‘

A (3)
If we know ¢(z;), then we can compute o{y) as

o) = Jz (2L) o2tz @

i=1

Since f is usually given as an algorithm, and not as an analytical expression, we must
somehow compute the partial derivatives. We can do that by applying formula (2) to the case
when Az; = h for some ¢ and 0 for all other i {(here, A is some small number). As a result,
we get the following estimate:

oaf - f(Z1, - Ficy, &y i1y -« oy Zn) — F(&1 o Bicry B — Ay Bigyy .0, En)

B:c,- h ’ (5)

This is a standard formula for numerical differentiation.
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So, in order to get an estimate for Ay, we must compute the partial derivatives using (5),
and then estimate A or o(y) using (3) or (4).

Monte-Cario methods. A standard Monte-Carlo method (see, eg., [13]) is used to estimate
o(y). This method is based on the following idea: First, we choose the number of iterations
N. Then, for k= 1,..., N, we substitute into f the values #; + BF, where 5,-’“ are computer-
simulated normally distributed random numbers with 0-average and standard deviation o(z;).
As a result, we get N values y',...,y". Because of (2), the distribution of y* — y is Gaussian,

with 0 average and standard deviation o(y). So, we can estimate o(y) as /3 (y* — y)?/N.

This method gives an approximate value of o(y). In real life, it is sufficient to know o(y)
with 7 20% precision (practically no one distinguishes between the cases when the precision is,
say, 0.01, or 0.012, which is 20% more). To get such precision, we need N a2 25 iterations.

A Monte-Carlo style method to compute A was proposed in (7] (see also [6]). This method
uses N = 50 iterations to guarantee the desired 20% precision.

Interval techniques. Standard techniques of interval mathematics require that we decom-
pose the algorithm f into elementary operations, and then apply interval operations instead of
usual ones.

3. What is wrong with the existing methods

To use a numerical differentiation method, we must apply the algorithm f n+ 1 times: once
to get §, and then n times to estimate partial derivatives.

For example, if we have 10 variables, we need 11 times more time to estimate the error
than to compute y itself. If f is fast, there is no problem. But if f is already a time-consuming
algorithm, this is no good.

For Monte Carlo methods, we must apply f 25 or 50 times; so, the computation time for
this method is 2550 times longer than the time that is necessary to compute .

For interval methods: an operation with intervals consist of 2 or 4 operations with
numbers. Therefore, by applying interval mathematics, we increase the computation time at
least 24 times. In addition, the error estimates that we obtain this way are often “overshoots”
(i.e., much bigger than the biggest possible errors).

How to diminish this computation time? If we have several processors that can work in
parallel, then we can use parallel algorithms for a speed-up (see, e.g., {6]). But what if we have
only one processor?

In this paper, we will describe a frequent reallife situation, when we can drastically
decrease this computation time.

4, The new method of estimating errors

To develop a new method, we will use the fact that in many real-life situations, the algorithm
f is of a very specific type, and for such f, we can estimate the error in y really fast.

To elaborate on that, we need to recall where f usually comes from.

Where does f come from? We have mentioned that an algorithm f comes from the
known relationship between z; and y. Usually, such a relationship exists in a form of a model
of the physical phenomenon. By a model, we mean that we have (relatively simple) formulas
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or algorithms that, given some parameters, allow us to compute all physical characteristics,
including x; and y.
Some of these parameters can be known from the previous experiments {we will denote

them by t),...,1;). Some of these parameters are specific to this particular situation (we
will denote them by z,...,2z). These paremeters must be determined from the known
measurement results T3, ..., Zn.

So, an algorithm that estimates § from ;, consists of two stages:

e first, we use the measurement results Z; to get estimates Zp for the parameters of the
model, and

® second, we use the estimates 2 and i, to estimate Y.

Let us denote by F; and F functions that describe the model, ie., that express z; and
y in terms of zx and t;: z; = Fi(21,...,2zp,t1,.. ., tg) and y = F(z1,...,2p, t1,.. ., ;). Then,
to estimate 2y, we must solve the system of equations z; = Fi(z1,..., 25, t1,..., ), 1 <1 < n.
Since we know only approximate values of z;, we will get approximate values of zx as well.
To improve the precision, we can perform additional measurements. In this case, we will get
an over-determined system (with more equations than unknowns). Usually, such systems are solved
by the least-squares method, ie, from the condition that

n

Z(E(zl,...,zp,t;,...,tq) —xi)z — min .

=1 Z14menaZp

Example. For example, in celestial mechanics, there are rather simple formulas that
describe a trajectory of any celestial body in a Solar system (e.g., a comet). The parameters of
this trajectory include the position ¢; of the Sun (that is well known from other measurements),
and parameters z; of the orbit relative to the Sun {that have to be determined from the
observations). So, if we want to predict a future position y from several observations I;, we
must find the parameters z; of a trajectory from Z;, and then predict y.

What is the most time-consuming part of this algorithm? If F, are linear, we can
easily solve a system of linear equations and find zz. The problem becomes computationally
complicated when the functions F; are highly non-inear. In this case, no matter what method
we use to compute zx (Newton’s method, other optimization techniques, etc.), all these methods
consist of several iterations: we find a first guess Z, substitute these values into F;, then adjust
the values of z, etc. In other words, the first “back-calculation” stage (estimating zx from ;)
includes several “forward” steps (computing z; from 2;). Therefore, the computation time for
the first stage is much longer than the time for the second stage.

So, the most time-consuming part of an algorithm f i estimaing zy from I;.

Our idea. The reason why existing methods take so long is that they involve several
applications of f and, therefore, several repetitions of a time-consuming “back-calculation” step:
for the initial values £ = (%1, ..., %), to get the estimates Z, and then, for several other input
values T that are close to Z;.

Of course, we need to apply this back-calculation once, to get the values Z;. But next
time, when we want to compute z; for some close values Tz, we do not have to repeat this
complicated procedure of solving a system of non-linear equations: indeed, if z; are close to
Z;, then the corresponding z; will be close to Z;. So, it is sufficient to find the small deviations
Azp = zr — Z;. We consider the case when the errors are relatively small, so we can neglect
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the terms that are quadratic in Az, and therefore, instead of the original non-linear system
of equations Fi{Z| t) = &, solve its linearized version.

How to use this idea in case of interval estimates. Since we assume that our
model is accurate, the true values z; and ¢ of the parameters must satisfy the equations
F;(zl,..‘,zp,tl,...,tq) = Z;.

If we substitute z = % — Az, & = &y — Afy, and z; = & — Az; into these equations,
expand F; into Taylor series, and retain only terms that are linear in Az; and At;, we will
conclude that

Za;k!)zk = Az; - & - ZbggAt,: (6)
k 1
where §; = Z; — Fi(%, &),
oF; OF;
Qg = 5;;, il = '5{'- (7)
From y = F(z1,...,2p,1,...,1,), we can likewise conclude that
Ay = ZC&AZ}C + ngAtg (8)
k 1
where
AF oF
Cp = 5;:, d[ = ‘b—t; (9)

The only thing we know about the values Ax;, Az and At is that they sausfy (6) and
that the values of Az; and At; are limited by the corresponsing measurement errors. So, to
find possible the interval of possible values of Ay, we must find the biggest and the smallest
value of Ay under these conditions. Since these condiditons are linear in the unknowns,
this optimization problem becomes a well-known linear programming problem, for whicn fast
algorithms are well-known.
So, we are ready to formulate an algorithm.

Algorithm that estimates errors for the case when we know intervals.
Given:

1) An algorithm F; that estimates x; from z; and ¢,

2) An algorithm F' that estimates y from z; and #;.

- 8) An algorithm f that gives an estimate § for y from Z; by first estimating 2z and then
estimating y.

4) The measured values %;,1 < 7 < n and their precisions A; (ie. such numbers that
[Az;] =% — x| < Q)

5) The measured values iy,...,t,, and their precisions Al

Objective: To find an estimate A for Ay =y — ¥ (ie, a value A such that |Ay| < A).
Algorithm:
1) Apply f and get estimates Z; and 7.
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2) Use numerical differentiation to estimate the derivatives (7) and (9).
3) Estimate §; = Az; — Fi(Z1,..., 2, b1, .- ., Tg).

4) Find A% as a solutions of the following linear programming problem with unknowns
Az;, Az, and At T Az + diAt; — max under the conditions (6), —A; < Az; < A
(1<i<n),and —AI <At <AH1LI<Lg).

5) Find A~ as a solution to a similar problem, but with min instead of max.

6) Compute A = max(A™,|A]).

Comment. In this algorithm, a time-consuming *back-calculation” part is repeated only once.
Therefore, for time-consuming f, this algoerithm enables us to estimate Ay with practiaclly no
increase in total computation time.

The case of random errors. In this case, for x; close to Z;, we can also linearize the
expression for F;. Threfore, instead of a system of non-linear equations, we get a linearized
system (B). After this system has been solved, we can use (8) to estimate Ay.

We must estimate the standard deviation of y. Because of (8},
o‘(y)2 = E(Ay)z = chck/E(AykAyk:) + chdzE(AykAtz) + ZdldyE(AtlAt[:). (10)

So, to estimate o(y), we must estimate these mathematical expetations E(AyxAyy), etc. If we
denote Xi = Az, and Xp4 = Aty, then can say that we must know E(X X)) for all k and [.

To get these estimates, we can apply the standard methodology of (linear} least squares
method (see, e.g., [8, 10]). We are interested in p+¢ variables Az, 1 <k <pand At;,1 <1 <q.
For these unknowns, we have the following system of equations: ¥ aulzi + X byt = 0 with
standard deviation ¢(z;), and At; = 0 with standard deviation o(#;). In terms of X, we have
n + ¢ equations: Y. Ay Xy = 0 with standard deviation o;, where for i < n: Ay = ai for
k<p and Ajp=by; for i>n, Appy=1and Appp =0 for k# n+ 1 0y = o(z;) for
1< n, and onq = ol{ty).

According to the least squares theory, the matrix E(X; X)) is an inverse to the matrix
U = 3; AiAuoT?. So, we can compute Uy, invert it, and use the resulting values of E( X X))
to estimate o(y).

Hence, we arrive at the following algorithm:
Algorithm that estimates o{y) when errors o(z;) are random.
Grven:

1) An algorithm F; that estimates z; from z; and 1.
2) An algorithm F that estimates y from zx and t;.

3) An algorithm f that gives an estimate § for y from Z; by first estimating z; and then
estimating .

4) The measured values £;,1 < 4 < n and their standard deviations &(z;).
9) The measured values ty,...,t,, and their standard deviations o(%;).

Oljective: To find a standard deviation o(y).
Algorithm:
1) Apply f and get estimates % and 7.
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2) Use numerical differentiation to estimate the derivatives (7) and (9).
3) Compute Ai, 0;, and Uy (as above).
4) Invert the matrix Uy and get B{XX)).
5) Substitute the resulting values of E(XX) into the formula (10) and thus compute o(y).
Comments.

L. In this algorithm, a time-consuming “back-calculation” part is also repeated only once.
Therefore, for time-consuming f, we can estimate § and o(y) with practically no increase
in total computation time.

2. If some parameters {; are already known with much better precision than our measure-
ments, then we can simplify our computations by asuming that they are absolutely precise
(At; = 0). In this case, it is sufficient to consider fewer than p + ¢ variables, and thus,
the computation will be even smaller. Another case when we can invert matrices of sizes
smaller than (p+ ¢) x (p + g) is when some of the parameters t; do not influence z; at
all, and are used only to compute y. For such parameters t;, E((At)?) = o(t;)?, and
E(AtiAze) =0 for all k.

5. Case study: pavement engineering

The problem. One of the main problems of pavement engineering is to predict the remaining
lifetime y of a pavement. It is impossible to measure y directly, so instead a Falling Weight
Deflectometer (FWD) is used: we drop a mass on the pavement, and measure the resulting
deviations I1,...,Z, in several (usually n = 7) locations on the surface of the pavement.

To estimate y from Z;, a 3-layer pavement model is used [9, 16]. According to this
model, the pavement consists of 3 layers: 1st asphaltic/concrete, 2nd base, 3rd subgrade layer.’
Each layer is characterized by 3 paremeters: its thickness &, its Poisson ratio 4, and its elastic
modulus E;.

Thickness h; does not change in time, so we can take h; from the documents that
described the design of this pavement. The values v; may somewhat change. However, v;
describe the horizontal strain, and the pavement is designed for vertical loads only. So, these
changes do not influence the lifetime, and we can neglect them,

So, in this problem, we have 7 parameters ¢; whose values are known from the previous
measurements: hy, hz, hs, 14, to, 3, and the weight w of the FWD mass. We have 3
parameters z; that have to be determined from the measurements: E;, E3, E3. Corresponding
algorithms F; and F are given in [9, 16] (here, F is also a two-stage algorithm: given z; and
t;, we first compute tensile and compressive strains €; and €,, and then use these strains to
predict y).

How errors were estimated before. In this problem, all the sensors are calibrated, so we
can assume that the errors are random. In {12, 17}, a Monte-Carlo method was used.

Computation time of the existing method. On a 386 IBM PC, forward computations (i.e.,
computing y and z; from the known parameters z; and t;) take about 20 seconds. A program
f that estimates y from Zi,...,%, takes about 3 minutes to run. The Monte-Carlo method
required up to 25 repetitions of this program, so its total computation time is about 80 min. If
we take into consideration that we must measure the value of y for every mile, it is too long.
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Our results. We applied the above algorithm to estimate o(y) (for details, see [3]). The
entire algorithm, including both computing § from #;, and estimating ¢(y), ran for about
3.5 minutes. This time is close to the time (3 min) required to compute y from Z;.

Conclusion

With practically no increase in the computation time, we not only compute y, but we also
estimate its precision.
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