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Abstract

We consider the control of an infinite capacity shuttle which
transports passengers between two terminals. The passengers arrive at
each terminal according to a compound Poisson process and the travel time
from one terminal to the other one is a random variable following an
arbitrary distribution. The following control limit policy is considered:
dispatch the shuttle at terminal i, at the instant that the total number of
passengers waiting at terminal i reaches or exceeds a predetermined
control limit m;. The objective of this paper is to obtain the mean waiting
time of an arbitrary passenger at each terminal for given control values m;
and mg. We also discuss a search procedure to obtain the optimal control
values which minimize the total expected cost per unit time under a linear

cost structure.



1. Introduction

We consider a transportation system in which a single shuttle
transports passengers between two terminals. All passengers who arrive
at a given terminal are to be transported to the other terminal. We will
term the passengers who arrive at terminal i as type i passengers. We
assume that type i passengers arrive at terminal i according to an
independent compound Poisson process with rate A; (i=1,2). The batch size
of each arrival of type i passengers is an independent random variable
X;21, following an arbitrary discrete distribution. The interterminal travel
time from terminal i to the other terminal is a random variable D; having
an arbitrary distribution, which is assumed to be independent of the
number of passengers carried by the shuttle. We assume that the time
needed to board the shuttle is negligible. The capacity of the shuttle is
assumed to be infinite so that all the waiting passengers at the terminal

can be carried all at once.

For this transportation system (see figure 1), we consider the
following operating policy, which is usually termed as a control limit
policy: dispatch the shuttle at terminal i at the instant that the total number
of passéngers waiting at terminal i reaches or has exceeded a
predetermined threshold value mj; (i=1,2); if the number of waiting
passengers is equal to or greater than m; when the shuttle arrives at
terminal i, the shuttle immediately leaves terminal i for the other terminal.
On the other hand, if the number of passengers at terminal i at that time is
below mj;, the shuttle is held until the number of waiting passengers

reaches or exceeds m;. The objective of this paper is to obtain an expression



for the mean waiting time of the passengers at each terminal under a

given control limit policy.
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Fig. 1. Dispatching of a shuttle with controls at two terminals.

A considerable amount of work has been done on the shuttle
dispatching problem with one or two terminals. Comprehensive surveys on
this problem can be found in the papers by Sim and Templeton(1983) and
Teghem(1986).

For a single terminal dispatching problem with Poisson arrivals,
Weiss(1979) developed an algorithm to find the optimal control value under
a linear cost structure assuming that the capacity of the shuttle is infinite.
Deb and Serfozo(1973) proved that a control limit policy is an optimal
operating policy under a linear cost structure for the case of a single
terminal with finite shuttle capacity. Recently, Powell(1985,1986) studied
more general strategies for dispatching a shuttle which includes both
holding and cancellation strategies. Under an assumption of compound
Poisson arrivals, he developed an algorithm to find the mean waiting time

of an arbitrary passenger for a given policy.

For the shuttle dispatching problem with two terminals, Ignall and
Kolesar(1974) and Weiss(1981) studied infinite capacity shuttle dispatching

problems assuming that the dispatcher can hold the shuttle for more



passengers at only one of the terminals. In their paper, Ignall and Kolesar
proved that the optimal policy is to dispatch the carrier if and only if the
total number of passengers waiting at both terminals is greater than a
threshold value. However, since a shuttle is held only at one terminal, this
problem is relatively simple compared to the problem with controls at two
terminals. For a shuttle dispatching problem with controls at two
terminals, Deb(1978) presented a significant result on the characteristics of
the optimal dispatching policy. Under a linear cost structure, he proved
that the optimal policy which minimizes the expected total discounted cost
over an infinite time horizon has the following form: suppose the shuttle is
at one of the terminals with x passengers waiting there and y passengers
waiting at the other terminal. Then the optimal policy is to dispatch the
shuttle if, and only if, x>G(y), where G(.) is a monotone decreasing control
function. Unfortunately, however, the explicit determination of the function

G(.) 1s still not known.

Although our operating policy appears to be similar to the policy
described by Deb, there is a fundumental difference between our model and

Deb's model as explained below:

First, our model assumes that arrival of the passengers follows a
compound Poisson process and the capacity of the shuttle is infinite while
Deb's model assumes that passengers arrive according to a Poisson process

and the capacity of the shuttle is finite.

Second, in Deb's model, it is assumed that the number of passengers at both
terminals is always known, so that the information at both terminals is

used to decide whether the shuttle is dispatched or not. Although this



assumption gives a natural structure for the dynamic programming
modeling, in many cases, the information on the number of passengers at
one terminal is not available at the other terminal. In our study, we
assume that the number of passengers at a terminal is known only when
the shuttle is present at that terminal. Consequently, in our model, only the
number of passengers who are waiting at the terminal where the shuttle is
present is used to decide whether the shuttle is dispatched to the other
terminal or not. Although we use the information only at one terminal in
deciding whether the shuttle is dispatched or not, the number of
passengers at the other terminal must be implicitly considered in the
analysis because the sojourn time of the shuttle at ‘one terminal affects the
sojourn time of the shuttle at the other terminal. Due to this consideration,

the analysis becomes fairly complicated.

One approach to solve the shuttle dispatching problem is to use a
semi-Markov decision process. Although this approach has been quite
successful in proving the optimality of the control limit policies in some
cases(Deb and Serfozo 1973, Deb 1978), it usually needs considerable
computational effort. In addition, the Markov decision process approach
does not provide some important performance statistics such as the mean
waiting time for each type of passenger. Since our objective in this study is
to obtain the mean waiting time for each type of passengers, hence in order
to solve the problem with controls at two terminals, we adopt a different
approach as follows. We decompose the system into two individual
terminals and then analyze each individual terminal separately as a single
terminal shuttle dispatching problem. Thus, in order to solve the problem

with two terminals, we must first be able to solve a single terminal



dispatching problem. Although the algorithms developed by
Powell(1985,1986) solve a very general single terminal problem, for the
infinite capacity shuttle dispatching problem described below, the

procedure presented in the next section is much more efficient.
2. The single terminal dispatching problem

We consider here a shuttle which services passengers who arrive at a
single terminal. Passengers arrive at this terminal according to a
compound Poisson process with rate A. The batch size of each arriving
passenger is a random variable X>1, following an arbitrary distribution. To
operate the system, we use the following control limit policy: when the
shuttle is at the terminal and the number of passengers waiting there is
less than the predetermined control limit m, the shuttle waits at the
terminal until the total number of waiting passengers reaches or exceeds
m. As soon as the number of waiting passengers reaches or exceeds m, the
shuttle leaves the terminal to transport the passengers to their destination
and then returns to‘ the terminal after a random amount of time V, which
we shall call the intervisit time. If the number of passengers waiting at the
terminal is equal to or greater than m at the instant the shuttle comes back
to the terminal, it leaveé ﬂt.:he terminal immediately carrying all the waiting
passengers. On the other hand, if the shuttle finds less than m passengers,
it waits at the terminal until the number of waiting passengers reaches or

exceeds m.



2.1. Notation

For analytical convenience, for any discrete random variable (r.v.), A,

that is used in the analysis, we adopt the following notation throughout the

paper:

aj

P{A=i},

A(z) = Eai zi,  the probability generating function (p.g.f.) of A,

i=0
al) = E(A),
a2 = E(A(A-1)).
Let
Q =number of batches that arrive during an intervisit time V, r.v.,

R =number of passengers that arrive during V, r.v.,
I =total number of passengers at the terminal when the shuttle leaves

the terminal, r.v.,

Jn =number of passengers who arrive during the sojourn time of the

shuttle at the terminal if the number of passengers at the shuttle
arrival instant is m-n, 0 <n<m, r.v,,

s
X; ) = P{i-fold convolution of X is j},

L =mean queue length of the waiting passengers at the terminal,

W = mean waiting time of an arbitrary passenger at the terminal.

2.2. The Analysis

It is shown in Lee and Srinivasan(1987) that if we know the first two
moments of I, which is the number of passengers when the shuttle leaves
the terminal, the mean waiting time of an arbitrary passenger experienced
at the terminal can be obtained as follows:
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1,i® @
W= —(1(—1)-?1—)-)/},}{(1) (21)
To obtain the first two moments of I, however, we must know both rj, which
is the probability that j passengers arrive during the intervisit time for

j=0,...,m-1, and the first two moments of R. Suppose we know the values of

qi. Then, 1j can be obtained by

I
=2 e, =012 22)
1=

*
where xo( 1.

To obtain the q; values, note that by definition,

[~ =]

G = JO“T?%-M dv(t). (2.3)
0

However, for the computation of q;, we use the following equivalent

expression:

Y
@ =SV, (24)

where V*0)(0) is the ith derivative of the Laplace Stieltjes Transform (LST) of
V with respect to 0.

The moments of R are obtained by using the following result, stated

as lemma 2.1. Since lemma 2.1 can be easily proved, we omit the proof here.

Lemma 2.1. The probability generating function of R is given by

R(z) = V¥(A-AX(z2)). (2.5)
[ |

From equation (2.5), we can obtain the first and second factorial moments of
R as
rD = ER) = AE(V)x(), (2.6.2)



r(2) = E(R(R-1)) = AxW))2E(V2) + Ax2E(V). (2.6.b)

We can now obtain an expression for the probability generating function of I

from the following result, stated as theorem 2.1.

Theorem 2.1
m-1
I(z) = R@) + Y, 12i{dIm.j(2) - 1}, @.7)
=0
where
n-1
In(2) =X(z) + Y, xj2{Jn.j(2) - 1}. (2.8)
=1 |

Proof By conditioning on the number of passengers who arrive during an
intervisit time, we can obtain a recursive equation that yields P{I=k} as

m-1
P(l=k) =1k + 2, rjidmj =k}, lom. (2.9)
j=0

From equation (2.9), the probability generating function of I can be obtained

as

I(z)= Y P{l=kjzk

k=m
had m-1 oo
= Y rezk+ D rjd D, PUm.j=k-j)zk
k=m J:O k=m
0 m-1
= 2 rkzK + 2 Tj 7 Jm-j(z)
k=m J:O
m-1
- R(Z) + 2 I‘j Zj{Jm_J(Z) - 1], (2‘10)
j=0

The term Jy(z), which is used in equation (2.10), can be obtained as follows.
Note that, since the number of passengers is m-n when the shuttle arrives

at the terminal, the shuttle must stay at the terminal until at least n more
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passengers arrive. By conditioning on the number of passengers who arrive

in the first batch, we can obtain a recursive equation for P{J, =k} as

n-1
P{J,=k} = ZxJP[Jn 5=k-j} + xx, k2n. (2.11)
=1

From (2.11), the p.g.f. of Jyis expressed by

In(z) = Y PUp=klzk = 2 { 2 %P {Jn J_k-3}+xk} zk
k=n

—n J_]_
n-1 0o
= Z x;z) 2 P{Jn J-—k'J}Zk I+ Z xkzK
J=1 k=n =n
n-1
= Y, xj2i{Jn j(2)-1}+X(2). | (212)
=t
|
From I(z), we can obtain the first and second factorial moments of I as
m-1
iO=ED =D+ ¥ rin, (213.2)
j=0
m-1 (2)
i@ = E(I1(1-1)) = @ + er (2 m-j)s (213.b)
j=0

where J; ) and Jfl ) are obtained from equation (2.8) as

n-1
1
an)=x(1)+ prgi , (2.14.3)
( ) ol (2)
in =x2+ zlxj(zJ ) (2.14.b)
i

By substituting i(l) and i) obtained in (2.13) into (2.1), we can find the mean

waiting time experienced by an arbitrary passenger at the terminal.



3. Analysis for a problem with two terminals

3.1 General Approach

Now using the result obtained for the shuttle dispatching problem with
a single terminal, we will analyze the problem with two terminals. As
shown in section 2, the mean waiting time of an arbitrary passenger at a
terminal can be obtained if we know the first two moments for the number
of passengers at the terminal at the instant that the shuttle leaves the
terminal. It was also observed that in order to obtain these two moments,
we must know the probabilities for the number of passengers (from 0 to m;-
1) present at the terminal when the shuttle arrives at the terminal as well
as the first two moments of the number of these passengers. In case of a
shuttle dispatching problem with two terminals, however, these values
cannot be obtained easily because the sojourn time of the shuttle at one
terminal and the travel time from that terminal to the other one affect the

sojourn time of the shuttle at the other terminal.

To obtain the probabilities for the number of passengers (from 0 to m;-
1) present at the terminal at the shuttle arrival instant, we will restrict our
attention to the followin;g ‘four types of epochs on the path of the shuttle. Let
the instant that the shuttle arrives at terminal 1 be an epoch of type 1 and
the instant that the shuttle leaves terminal 1 be an epoch of type 2.
Similarly, let the instant that the shuttle arrives at terminal 2 be an epoch
of type 3 and the instant that the shuttle leaves terminal 2 be an epoch of
type 4. Henceforth, we choose to call an epoch of type i as epoch i. Thus, the
shuttle moves on from epoch 1 to epoch 4 via epochs 2 and 3, and comes back
to epoch 1. At this point, the next cycle is initiated. Note that we must find

10



the steady state probabilities for the number of passengers (from 0 to m;-1)
at epochs 1 and 3. However, for this purpose, we will use epochs 2 and 4
instead of epochs 1 and 3 because by doing so we can reduce the number of
states, and hence the computational effort significantly. This advantage
comes from the observation that the number of type 1 passengers at epoch 2
and the number of type 2 passengers at epoch 4 are always zero. Once we
obtain the steady state probabilities for the queue lengths (from 0 to mj-1) at
epochs 2 and 4, we can easily obtain the steady state probabilities for the

queue lengths (from 0 to m;-1) at epochs 1 and 3.

Define the states at epochs 1 and 4 to be k if the number of type 1
passengers is k for k<m;. If the number of type 1 passengers at these
epochs is equal to or greater than mj, the state is defined to be m;.
Similarly, define the states at epochs 2 and 3 to be k if the number of type 2
passengers at these epochs is k for k<mg. If the number of type 2
passengers is equal to or greater than mg, the state is defined to be ma.
Thus, the state space at epochs 1 and 4 is {0,1,...,m;} and the state space at
epochs 2 and 3 1is {0,1,...mg}. Let us define Ig to be the state at epoch s at the

tth cycle and define q(i,j) to be

AU =5 R S

ql(la)=P{11+ =jlly =i}, (3.1.a)
. 1 . .

<12(14)=P{It2+ =J|IZ=1}, (3.1.b)
AN N

q3()=P{Ig =jlIy =i}, (3.1.c)

q,(if)=PT = 1Ty = ). (3.1.d)

11



So, for instance, q,(i,j) represents a transition probability that the state at

epoch 4 will be j given that the state at epoch 2 is i.

Let p,(i,j) to be the transition probability, P{Itz"-1 =jl Itz =i} and let p,(i,j) be

the transition probability, P{IE;I =jl IZ = 1i}. Then, these probabilities can be

obtained from the following equations:

mj
Py = 2, q,GKka,k,), (3.2.0)
k=0
mg
p i) = Y, q,4,k)q,k,). (3.2.b)
4 o o\LK)Gy

To represent these equations in a more compact form, we define matrices
Qs and Py such that
Qs=(qi)) fors=1to4,
Ps=(pij)) fors=2and4.
Then, equation (3.2) can be represented by
Py = Q4Qo, (3.3.2)
Py = QeQu. (3.3.b)

Suppose we know the matrices Qg for s=1 to 4. Then, we can find matrices
P2 and P4 from equation (3.3). Let 7jx be the steady state probability that the
state at epoch i is k and let w; be vectors such that

ﬂi=(ni0,7§i1 ,...,ﬂ;iml) for i=1 and 4,

ni=(7ti0,1ti1,...,7tim2) for i=2 and 3.
Since matrices P2 and P4 are ergodic, using the transition probabilities
p2(@i,j) and p4(i,j) obtained from (3.3), we can compute 7jk for i=2 and 4 by

solving the following equations:

12



i = TP,

em;=1, for i=2,4. (3.4)
Recall that we want to find the steady state probabilities ©; and ng using n,
and 4, which can be easily done from

m =1,Q1, (3.5.2)

T3 = ToQ3. (3.5.b)
Thus, if we know Qx for k=1 to 4, then 1ty and ©4 can be obtained from Q2 and
Q4, and given ny, m4, Q1 and Qg, then =n; and n3 can be obtained. Once n;

and ng3 are obtained, we can also compute the first two moments of the

intervisit times, which yield the first two moments of the number of
passengers at the shuttle arrival instant. With all this information, we can
finally compute the mean waiting time for each type of passenger for given

values of m; and mg. Each of these steps will be described below in detail.

3.2. Notation

The notation used for a discrete random variable in section 2 will
continue to be used in this section. In addition to that, in this section, for
any continuous random variable C used in the analysis, C*(.) will denote
the LST of C.

We define
I; = total number of passengers at terminal i when the shuttle leaves
terminal i, r.v.,
Vi = intervisit time of the shuttle for terminal i in steady state, r.v.,
U; = sojourn time of the shuttle at terminal i in steady state, r.v.,
Ui n = sojourn time of the shuttle at terminal i given that the state was

mj-n at the time the shuttle arrives to terminal i (i=1,2), r.v.,

13



Si; =Dj+Ugrv,
So  =Dg+ Uy, rv,

*(k)

X3 = P{k-fold convolution of X; is j},

W; = mean waiting time of an arbitrary passenger of type i.

3.3. The Analysis

In this section, we will derive an expression for Wj, the mean waiting
time for an arbitrary passenger of type i. As described in section 3.1, to
obtain Wj, the transition matrices Qx for k=1 to 4 must be computed. While
the matrices Q; and Q3 can be easily obtained, the matrices Q2 and Q4 are

not easy to obtain because of the interrelationships among the random

variables. We now describe how the matrix Q4, namely, each value of
q,(1,j), can be computed. We will not show how the matrix Q2 is obtained
because it can be computed in exactly the same way as Q4 is computed. Note
that q,(i,j) can be obtained if we can compute the probabilities for the
number of type 1 passengers that arrive during S; given that the state at
epoch 2 was i. To obtain this, let us define a random variable S; ; such that
P{S; i <t} = P{S1 < tlthe state at epoch 2 was i}.
Since the probability for the number of type 1 passengers that arrive during

S1,i can be obtained if we know the LST of S; i, we will first find an

expression for the LiST of S ;. To this end, we define g, | and a new random

variable D1 , as follows:

g,,, = Plnumber of batches of type 2 which arrive during D; is n},

P{Dj n<t} = P(D1<t | n batches of type 2 have arrived during D1}.



Then, by conditioning on the number of individual passengers of type 2 which
arrive during D1, we can express the LST of Si; as

my- -1-1 m2-1 -1 2-i -1

Sl 1(8) = zgln[ 2 X2(n) D1 (G)Uzm '(1+J)(6)}+(1 2 (n)

D; 1(6)]

. mo-i-1
+ {Dl(e)- Zgln 1n(e)} (3.6)

The explanation of equation (3.6) is as follows:

Suppose the number of batches which arrive during D; is n. Note that this
happens with probability g;, and the LST of the travel time D; in this case is

*
Dl’n(e). Since the state at epoch 2 is given as i, if n is greater than, or equal
to, my-i, the number of type 2 passengers at epoch 3 will reach or exceed the

control limit m, and hence there will be no sojourn time for the shuttle at

terminal 2. This is represented by the second line in equation (3.6).

Similarly, suppose the number of batches which arrive during D is less than

m,-i, i.e., n<m,-i. In this case, if the number of individual passengers, j, who

belong to these n batches is less than m,-i-1, the number of passengers of type

2 at epoch 3 will be i+j, and the shuttle must stay at terminal 2 for Uy 1, o-(i+)"

On the other hand, if j is equal to or greater than m,-i-1, since the state at

epoch 3 will be m,, the shuttle will not be delayed at terminal 2, which is

represented by the first line in equation (3.6).

%
From equation (3.6), we see that sl,i(e) can be obtained if we can

* *
compute Dl’n(e) and Uz’n(e). We now explain how these terms can be

15



computed. The following results, stated as lemma 3.1 and theorem 3.1 yield

* *
Dl’n(e) and U2,n(6) respectively.

Lemma 3.1 The LST of D1 p is expressed by
* (n)

A n * (n) 1 (6+?»2)
D, I1(9)- (g 21)1,D1 (0+A2) = ——*'(')— (3.7

(A2)

Proof Let d,(t) be a p.d.f. of D1 and d, (t) be a p.d.f. of D1 n. By applying

Bayes' formula, we can obtain the p.d.f. of Dy , as

t
= e7~2 (xzt) d (). (3.8)

oo

From equation (3.8) and using that DI‘“)(e) = J (-t)n e-6t d; () dt, the LST of

D1 n is expressed by

[=<]

D, ,(6) = O[ eftd, (t)dt= “‘2)1: D*l( o). (3.9)
’ €1n

. (-Ag)n _* (n) . . .
Since g, = Y D, (A2), by substituting this into equation (3.9), we

obtain lemma 3.1. [ |
ﬂ*m&.l
U, ,n(e) is expressed recursively as
n-1
2®=B; ) 2 x3i{U; nJ(e) 1) +B; - (0). (3.10)

j=1



where B*(O) = i

1T A+
Proof Let Yin be the number of batch arrivals of type i during the sojourn
time of the shuttle at terminal i given that the state is mj-n at the instant the

shuttle arrives at terminal i. Then, P{Y; n=k} can be expressed by

Yin=k} = 2 x1J for k=1,
n-l
= ) xiP{Yinj=k-1}  fork>1. (3.11)
j
Consequently, the p.g.f. of Yin can be expressed by
n n-l
Yin(z) = 2 Xjjz + 2 Z Xij P{Yl n- ]—k -1}zk
j=n k=2j=1
oo n-1 n
= 2 lez + 2 leZ 2 P{Y] nJ—k l}zk -1
j=n j=1 k=2
oo n-1
= z X]Jz + 2 XIJZYI n- J(Z)
j=n J=1
n-1
= Z 2 le Y] nJ(Z) 1} +Z. (3.12)
J=1

Let Bj be a random variable denoting the interarrival time of type i batch

arrivals. Since B; is assumed to follow an exponential distribution with mean

i— the LST of B; is expressed by
1

* A
B.()= ——, i=1,2. 1
1( ) Ai+6 ! (3.13)

*
The result now follows by substituting B; (8) in place of z in equation (3.12).

17



*
Since we have an expression for S1 ;(6), we can now obtain q,(i,j). Let hiin

denote the probability that the number of batches of type 1 which arrive

during Sy j is n.

Then, in the same manner in which q; was computed in equation (2.4),

hiin can be computed from (for n=O,...,m1-j-1),

A1) *
hiin = (—nl!)—sli(n)(ll), n=0,..mz-j-1, (3.14)

*
where Sl(ik)(h) can be obtained as follows:

By taking the kth derivative on both sides of equation (3.6) and setting 6=A;,

we have
mz'l'l m2'1'1

k
*(k) *(n) ky () *(k-r)
Sy ()= Zogln[ > xzj“{zo(r) Dy () Uy sy 30)
n= J=n r=

Mmy-i-1
*(k)

2
+(1- ¥ 5™ Dy, 0
j=n

" mo-i-1
o) + 0 %- e BP0, 615
n=0

where

*
D, r(lk)(kl) can be obtained from equation (3.7) as

*
*(k) (n+k)(7»1+?uz)
D, W) = ) , (3.16)
Dl (12)
*(K),y . ,
and U, '(A1) is obtained from equation (3.10) as
Mo, & ke, e
Upn W)= Y (Y, () B () Uy ()}
=1 r=0 T
n-1 ")
+1- Y x9) B, (M) (3.17)
~

18



Since we know hyin, we can finally obtain q,(i,j) as
J :
.. (k) . .
q,4J) = 2 h1ik %; »  i=0,..my, j=0,..,m;-1,
k=0

mj-1
qdm)=1- Y qGj),  i=0,.....m. (3.18)
=0

J:
We have now computed the transition matrix Q4. Since Q2 can be computed

in the same way as Q4  we can obtain P2 and P4 using equation (3.3), and

then, 1y and &, using equation (3.4).

We are now in a position to find n; and =g, and from them, W; and Wo.
Since 1, and Wg can be obtained in the same way as ©; and Wy, we will only
present how n; and W; can be computed. As shown in equation (3.5), to
compute 7, we need to know Qi, namely, each value of q,(i,j). Let f1; be the

probability that the number of individual passengers of type 1 who arrive
during Dg is j. Then, q,(i,j), can be computed as

q, 1) =0 if j<i
=11 j4 if ij, j<m,
my -i-1
=1- kéoflk if igj, j=my. (3.19)

Since Q; has now been obtained, by applying equation (3.5), we can obtain

. Once T has been obtained, the only other information needed to obtain

(1 (2
1§ )and 1§ ) are the first two moments of the number of type 1 passengers at

epoch 1. Note that these values can be obtained from equation (2.6) if we

know the first two moments of the intervisit time, V;. The first two
moments of Vi can be easily obtained because Vi =S;+D2 and S; and Dy

are independent. The independence holds here because in this vacation, Do
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follows S;. (Note, however, that Do affects the realization of the S; which

follows D9.) Thus, we have

E(V1) = E(S1) + E(Do), | (3.20.a)
(V) =E(S) + 2E(SpE®Dy) + EDY). (3.20.b)

Since E(Dg) and E(Dg) are given values, in order to obtain E(V1) and E(V 3),

we should determine E(S;) and E(S?). This is done as described below.

Since mqy is the steady state probability that the state at epoch 2 is k, the LST

of S; is expressed by
* mg *
Sl(e) = kzo nszI,k(O). (321)

*
By differentiating S; (6) with respect to 6, we obtain

m2 *(1)

ES)=- 3 7y S (0), (3.22.8)
k=0
msy *

BSD) = z Ty Sy (0), (3.22.b)

* *
where Sll({l )(O) and Sll(<2)(0) can be obtained using equation (3.15).

Since we now know the first two moments of the intervisit time as well as

(1 (2 .
nyk for k=0,..,m;-1, we can calculate 1(1 and 1(1) using the procedure
presented in section 2, and hence, can obtain W; using equation (2.1).

Finally, let us analyze the expected length of a cycle when m; and mg

are used as control limits. Obviously, the expected length of a cycle, %, can

be obtained by
x = E(V1) + E(Uy) = E(Vg) + E(U2). ' (3.23)
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However, since the expected number of type i passengers who arrive during

. .1 . . 1 .
one cycle is l(i ) and the arrival rate is kixg ), we can obtain the expected

length of a cycle more simply from

i(1) i(1)
1 2
x - = . (3.24)
ngl) 7\,2X(21)

4, The Optimization Procedure

The motivation for the analysis in this paper comes from studies of
the optimal control policies when a cost structure is imposed on our two-
terminal shuttle system. Suppose a linear holding cost of c¢; per unit time is
incurred for each passenger of type i (i=1,2) who waits at terminal i and a
cost ¢ is incurred each time the shuttle leaves a terminal and returns,
again, to that terminal. Since the expected length of a cycle is %, the

c
expected operating cost for the shuttle per unit time is expressed as ;Cs_

Similarly, from Little's rule, the mean number of passengers of type i

waiting at terminal i at an arbitrary time is lixg )Wi. Thus, the expected

waiting cost per unit time is c17\.1x(11)W1 + czlzx(zl)Wz. From this, the

expected total cost per unit time, C, is calculated as

)
M Cs @ (1)
C = i(l) +c1A1x; W1 + cohoxs ‘Wo. (4.1)
1

This expression enables us to search for the optimal control values which

minimize the expected cost per unit time in the long run.
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Due to the complex form of the equations, we could not prove any
properties (such as convexity) for the cost function which could be useful in
the search procedure. However, our computational experience suggests
that for a fixed value of one control variable, the cost function is unimodal
with respect to the other control variable. If we make use of this observation
and the recursive nature of the functions, we can find the optimal control
values with reasonable computational effort. In particular, we observed
that, for a symmetric system(in the sense that two queues are same in every
respect), the cost function shows a unimodality with respect to the control

value mj. The following example illustrates this:

<example>

A1=Ao=0.2,

x11=x91=0.4, X19=x99=0.3, x13=%x93=0.3,
D;1=D9=10, with probability1,

¢s=500,

c1=co=1.

The results of the policy comparisons for the example are presented
in table 1. In the table, the values of iy, W; and € are shown for each value
of m;. Note that in this example, €, which is the expected total cost

incurred per unit time, shows a unimodality with respect to m; as was

stated.
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Table 1.

Result of the Example
m; X W, C
11 36.105 14.307 24.722
12 38.597 15.083 24418
13 41129 15874 24.222
14 43,687 16.676 24119

15 46264 17484 24095

16 48.855 18297 24.140
17 51.455 19.113 24.243
18 54.062 19.931 24.397
19 56.674 20.751 24.593

(* means the optimal policy)

5. Conclusions

In this paper, a control limit policy is presented for the shuttle
dispatching problem with two terminals. Under the assumptions that
controls are made at both terminals and the number of passengers is
known only when the shuttle is staying at that terminal, a procedure to
calculate the mean waiting time for each type of passenger is presented for
given control values. This procedure can be directly extended to the system
with more than two terminals. However, since the number of states needed
to analyze the system increases with number of terminals, the procedure
developed in this paper is not practicable if the number of terminals is
greater than two. Thus, for this case, good approximation methods are

desired to be developed.
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