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Résumé La parallélisation d’un grand nombre d’algorithmes peut étre obtenue par
des transformations spatio-temporelles appliqués sur des boucles imbriquées ou sur des
¢quations récurrentes. Dans ce rapport, on analyse les systemes d’équations récurrentes
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taille de ’algorithme. Dans la seconde partie, on décrit une méthode puissante qui permet
de transformer des équations récurrentes linéaires en équations récurrentes uniformes.
Les résultats de ces deux parties reposent sur les propriétés des ensembles de points
entiers appartenant & des polyédres convexes. Nos résultats sont illustrés sur lalgorithme
délimination de Gauss et sur ’algorithme de diagonalisation de Gauss-Jordan.

Abstract The parallelization of many algorithms can be obtained using space-time
transformations which are applied on nested do-loops or on recurrence equations. In
this paper, we analyze systems of linear recurrence equations, a generalization of uniform
recurrence equations. The first part of the paper describes a method for finding automat-
ically whether such a system can be scheduled by an affine timing function, independent
of the size parameter of the algorithm. In the second part, we describe a powerful method
that makes it possible to transform linear recurrences into uniform recurrence equations.
Both parts rely on results on integral convex polyhedra. Our results are illustrated on
the Gauss elimination algorithm and on the Gauss-Jordan diagonalization algorithm.
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1 Introduction

Designing efficient algorithms for parallel architectures is one of the main difficulties of
the current research in computer science. As the architecture of super-computers evolves
towards massive parallelism, it becomes necessary to design smart compilers that not
only look for efficient vectorized programs, but also try to optimize the distribution of the
algorithm among the processors. In order to obtain good performance, the distributed
algorithm must minimize as much as possible the amount of communications between
remote processors, and balance the computational and the communication power of the
processing units. One very promising methodology involves describing the algorithm using
abstract specifications such as recurrence equations, as it was suggested by Karp et al.
[17] in 1967. The algorithm to be mapped is specified as a set of equations attached
to integral points, and mapped using a regular scheduling and allocation scheme on the
architecture. A similar approach was used later by Lamport [21] for the parallelization
of do-loops, and became the basis of many studies on the synthesis of systolic arrays
[1,2,86,20,23, 24, 25, 29, 32]. The main problems that were tackled were the scheduling of
the computations, the mapping of the computations on regular architectures, partitioning
schemes, and optimal organization of multistep algorithms.

In this paper, we address the analysis and mapping of linear recurrence equations
on parallel architectures. In section 2, we recall informally the principles of recurrence
mapping, on the example of the matrix multiplication. Section 3 is devoted to a formal
definition and presentation of linear recurrences and algorithms. After defining a “normal
form” of recurrence equations, we give a constructive necessary and sufficient condition
for the existence of a linear timing function for such equations. This result extends the
previously known results on uniform recurrence equations, and makes it possible to relax
the hypothesis that the target architecture is only locally connected. Our results are
illustrated by the analysis of Gauss and Gauss-Jordan algorithms. Section 4 tackles the
problem of transforming linear recurrence equations into uniform recurrence equations.
Such a transformation is mandatory when the target architecture is locally connected, for
example, a systolic array.

2 Principle of recurrence mapping

Consider the multiplication C = AB of N x N matrices. Denote a(z, 5), b(3, §), and c(i, §)
the elements of matrices A, B and C respectively. We can use the following system of
recurrence equations to describe this algorithm :

1SiSNISGSNISESN — C(ij,k) = Gk — 1)+ a(i, k) x bk, j) (1)
1SiSNISjSNE=0 — C(i,j,k)=0 (2)
1<i<N,ILKjSN — i, j)=C(ij4,N). (3)

Each one of these equations represents a set of unique assignement statements at-
tached to an integral point of the space. Equations (1) and (2) are attached to integral
points of a cube of size N in Z3, and define an iterative calculation of the expression
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v, a(i, k)b(k, 7), using an intermediate variable C. Equation (3) has indexes in Z2, and
simply “renames” the results of the recurrence as ¢. Of course, many other recurrence
forms would give the same result, and the choice which is made here, although reasonable,
is arbitrary.

The mapping procedure, as it was described in [25] or [30], amounts to perform an
index transformation, usually referred to as space-time transformation, that affects each
statement to an instant of time and a processor location. Such a transformation must
satisfy basically two conditions :

o first, if a statement depends on the result of another statement, it should be executed
after the result itself is available,

e secondly, two statements allocated to the same processor should not be scheduled
at the same instant of time.

If we restrict ourselves to the case when the index transformation is linear, it appears that
the above conditions can be equivalently expressed as a linear programming problem, when
one considers uniform recurrences. Linear transformations have proved to be very effective
in order to design locally connected architectures such as systolic arrays. These are the
main reasons why research in this domain has mainly focused on uniform recurrences,
and linear transformations.

Before discussing the limitations of uniform recurrences, let us recall informally the
principles of the mapping procedure, in the case of uniform recurrence equations, on
the matrix multiplication example. The following development is based on results that

appeared in many papers, among which {25, 30].

First, we transform the equations in order to obtain uniform recurrences. Equation (1)
is not uniform, as the indexes of variables a and b are not translations of (3, j, k). In this
particular case, the index mapping is a projection, and corresponds to the broadcasting of
data @ and b. Using a well known technique called pipelining, we can replace equation (1)

by :
1<i<N,1<j<N1<k<N
1<i<N,1<j<N,1<k<N
1<i<N,j=01<k<N
1<i<N,1<j<N1<k<N
i=01<j<N,1<k<N

C(i,j,k) = C(i,j,k = 1) + A(i,j, k) x B(i,j,k) (1)
AL, 5, k) = A3, j - 1,k) (5)
A(i j, k) = a(i, k) (6)
B(i,j, k) = B(i — 1,j,k) (7)
B(i, j, k) = b(k, j). (8)

L A

The detail of this transformation will be explained in section 4.4. The new system is
composed of equations (2) to (8). Equations (4), (5) and (7) are said to be uniform, since
the index functions of all the variables are translations of (i, j, k). The other cquations
of the system are not uniform, but as far as the timing analysis is concerned, they can
be ignored, because they only serve defining inputs (equations (2), (6), (8)) or outputs
of the system (3). The dependence graph that corresponds to this system is depicted in
figure 1a for N = 3. The nodes of this graph are the points of the cube of Z* of size 3,
and edges represent dependences between the variables.



The next step of the mapping procedure is to find an affine schedule for the system,
that is to say, a mapping

t:Vx2Z — Z : 9)
(5, 5,k) — t(V, 2)=Mt+ AJ + A3k +av (10)

where V denotes the set of variables of the system. The mapping ¢ must be such that
if computation of variable V (i, j, k) depends on variable V'(#, j*, k'), then t(V, (¢, 5, k)) >
t(V',(¢',5',k")) + 1, assuming that the execution of any statement takes exactly one step
of time. However, as the equations are uniform, this condition can be replaced by a finite
set of linear inequalities. Indeed, as C(z, j, k) depends on C(i,j,k — 1), we must have :

t(C7 (iaja k)) 2 t(Ca (Z,Jak - 1)) +1

which gives
Az > 1

Applying the same treatment to the other dependences, we obtain :

ac —as 2 l;ac —ag 21 from equation (4)
A2 >1 from equation (5)
M 2>1 from equation (7).

A solution to this system of linear constraints is A\; = Ay = A3 =1, a4 = ag = 0, and
ac = 1. Therefore, a valid schedule for the system is that C(z, j, k) be computed at time
t+j+k+1,and A(¢, 4, k) and B(3, j, k) transmitted at time i + j + k.

The final step of the mapping procedure is to allocate the computations on a locally
connected architecture. Basically, the method amounts to find a linear mapping a from
Z" to Z™1, called the processor allocation function, such that a(z) is the number of the
processor that executes the calculations attached to point z. The mapping ¢ must be
chosen in such a way that a processor has no more than one calculation to perform at a
given instant. If a is chosen to be a projection of the space, along a direction defined by
a vector u, the only constraint on the choice of u is that « must not be parallel to the
planes : +j + k = T defined by the timing-function. In other words, Aju; + Ayus + Azus3
must be non zero.

In the case of the matrix multiplication, the projection of the equations along the
direction (0, 0,1) produces the systolic architecture shown in figure 1b.

The interconnection pattern of the architecture is readily obtained by looking at the
way the edges of the dependence graph are projected. Here, the elements of A and B enter
the matrix, in a skewed fashion, respectively from the left and from the bottom of the
array, and the partial results remain in the cells. Other architectures can be derived. For
example, by projecting the dependence graph along (1,1,1), we obtain an array, similar
to the well-known systolic array first proposed by Kung and Leiserson ([19]), where both
data and partial results are moving. Moreover, the control of the cells of the systolic
array is simple and can be derived automatically. The only difficulty is that a given cell

3



may have to perform diflerent calculations at different, instant, of time, as the equations
are defined on subdomains. However, in his thesis, Rao ([32]) shows how one can replace
conditions involving lincar combinations of indexes by new boolean variables whicl are
tested by the cells in order to decide which equation is to be applicd. We will not, develoy,
furthermore this step (see [25, 26, 30] for example).

Uniform recurrence equations present several limitations which call for an extension,
at least to linear recurrences, as we shall see in the next section :

e it is recognized that specifying an algorithm using uniform recurrences is often a
difficult, and at least, a tedious task. This task becomes much simpler if lincar
recurrences are allowed;

e using uniform recurrences is somehow mandatory when one wants to implement an
algorithm on a locally connected architecture, such as a systolic array. The reason
is that it is not possible to implement non local communications in one instant of
time. However, a lot of parallel architecture provide communication facilities via
richer topologies : for example, hypercubes, shuffle-exchange networks, broadcast
by bus etc. Therefore, it is tempting to consider more complex recurrences, such as
linear ones (other index functions would also be interesting).

¢ In some cases, it is very difficult to replace linear dependences by uniform ones,
especially when the calculations done by the algorithm depend recursively on its
results. This is for example the case in the recursive convolution, or in the dynamic
programming algorithm. Most of the recent work on the subject tries to overcome
the problem, more or less formally. Therefore, it is interesting to try to solve this
difficulty in its full generality.

In the following section, we study the scheduling of linear recurrences. For the sake of
illustrating the paper, we will use, when necessary, results on allocation functions that
were presented informally in this section.

3 Linear recurrence equations and algorithms

3.1 Statement of the problem
Definition 1 A linear parameterized recurrence equation is an equation of the form
z€D, - U(z) = fIV(I(2)),..] (11)
where :
® z1s a point of Z", where Z denotes the set of integers,

® p = (p1,p2,...,Pm) is a point of Z™ named the size parameter of the equation. We
assume that p belongs to a convex polyhedron P C Z™ (in most cases, P = N™,
where N denotes the set of non negative integers).
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o D, is the set of integral points belonging to a convex polyhedron of Z", called the
domain of the equation’. We assume that D, is bounded? and is defined by a finite
set of linear inequalities involving 2 and p.

e I is an affine mapping from Z" to Z' called indez mapping; I has the form
I(z)=A.z+ Bp+C

where the constants A, B and C are integral matrices, A€ Z' x Z*, B € Z' x 2™,
and C € Z,

¢ U and V are variable names belonging to a finite set V. Each variable is indexed
with an integral index, whose dimension (called the index dimension of the variable
in the following) is constant for a given variable. The variable U(z) is called the
result of the equation and V(I(2)) is an argument.

e fis a single-valued function that depends strictly on its arguments; we assume that
the function f has complexity O(1).

e the ’..." means that there can be other arguments of the same form as V(I(z)).

o the domains of two equations having the same variable as result are disjoints. This
hypothesis ensures that a variable is not defined twice.

For a given p, equation (11) represents a finite set of equation instances, each one of
which is associated with a particular point z of D,.

A system of linear recurrence equations is a finite set of equations such as (11), having
the same parameter set. Note that all equations need not be indexed in the same subspace,
i.e., n is not necessarily the same for all equations.

We call variable instance of the system any term U(t) that appears in an equation
instance. The indexr domain of a variable is the set of indexes of the instances of the
variable. Note that the index domain of a variable is not necessarily a convex polyhedron,
but is however a finite union of convex polyhedra. A variable instance that appears only
in the left-hand side of an equation is called an output. Similarly, a variable instance
that appears only in the right-hand side of an equation is called an input. Variable
instances that are neither outputs nor inputs are called intermediate data. Variables
whose instances are all inputs (respectively, outputs or intermediate data) are called
input variables (respectively, output variables or intermediate variables).

A particular case of linear recurrence equations is when the index mapping reduces
simply to a translation. The equation is then said to be untform. The importance of
uniform recurrence equations for expressing parallel computations was first noticed by
Karp et al. [17]. Our definition of uniform equations is however less restrictive that the

The reader is referred to [35] for an introduction to convex polyhedra.

2This hypothesis is not compulsory, but simplifies the following presentation. In particular, it can be
useful to assume that the domain has one infinite direction, in order to represent algorithms such as the
convolution. All the results in this paper can be extended to cover such a case.



definition in [17] which makes the assumption that all the equations of a system have the
same domain.

3.2 Normal form of a system of equations

The purpose of this subsection is to show that one can replace a system of linear recurrence
equations by a new equivalent system, which is more convenient for the analysis of the
dependences. The goal is to separate clearly the inputs, the outputs and the intermediate
data, since only the dependences between intermediate data have to be considered for
studying the schedule of the equations. Moreover, it is necessary that all equations be
attached to integral points of the same space.

We say that the argument of an equation is fully indezed, if its index dimension is the
same as the index dimension of the result of the equation. An equation is fully indezed,
if all its arguments are fully indexed. For example,

1<:<n,1<j<n—-U(®,)5)=V(E5-1)

is fully indexed, but
1<:<n,1<;7<n—>U(,5) =V(5)

is not, because V'(z) is not fully indexed.

An equation is an input equation, if f is the identity function, and the only argument
of the equation is an input variable. Similarly, an equation is an output equation, if f is
the identity function, and U is an output variable. Finally, an equation is a computation
equation, if its result and arguments are all intermediate variables

Definition 2 A system of linear recurrence equations is said to be in normal form, iff :
e all the variables are either input, output or intermediate variables,
e all equations are either input, output or computation equations,
e all the computation equations are fully indexed, and have the same index dimension.
The following theorem holds :

Theorem 1 For any system of linear recurrence equations, there exists an equivalent
system which is in normal form.

A formal proof of the theorem can be found in [37]. Basically, it involves applying suc-
cessively three transformations to the initial system of equations. Rather than describing
formally these transformations, we illustrate them on examples.



Example 1 The first transformation, called variable normalization, modifies the system
in such a way that only input, output or intermediate variables remain. To illustrate this,
consider the equation :

1<i< N — A() = A - 1).

- The variable A has one input instance A(0), one output instance A(N), and intermediate
instances A(z), when 1 < ¢ < N — 1. Therefore, A is neither an input, an output or an
intermediate variable. We can rewrite this equation in the following way :

2<i<N—1 — A@i)=AG-1)
i=N — As(i)=A(—1).

The domain of A is partitioned into three new domains, each one of which corresponding
respectively to the intermediate, input and output instances of A, renamed respectively
Al, Az, and A3. a

Example 2 The purpose of the second transformation, called input and output separa-
tion, is to make input (respectively output) variables appear only in input (respectively
output) equations. Consider for example the system

1<i<N — A()= Al — 1) + B(3i) (12)
i=0 — A()=a(s
i=N — C@) =A%)

In this system, the input variable B appears in equation (12) which is not an input,
equation. However, the property holds when equation (12) is replaced by

1<i<N — A(@)=A(i-1)+ B'(x)

1<i<N — B'(i)= B(3).

O

Example 3 Finally, the last transformation, called full indezing, aims at obtaining a
fully indexed system. Consider the following system of equations, which is a somewhat
simplified version of the dynamic programming algorithm :

1<i<j<Nji<k<j — C@i,j k)= fICGjk+1),c(i k)] - (13)
1<i<j<Nk=j — C(ijk)=ulj) (14)
1<i<j+1<N — ¢i,j)=C(G,j5,i+1) (15)

—  c(4,5) = w(i, j). (16)

1<i<N,j=i+1

A straightforwafd method to obtain fully indexed computation equations is to change
the index dimension of ¢, by adding a 0 as a third component. We then obtain the new



system : .
1<i<j<N,i<k<j
1<i<j<Nk=j
1<i<j+1<Nk=0
1<i<N,j=i+1,k=0

C(i,j,k) = fIC(i, , k +1),¢(i, k,0)]
C(i, 3, k) = w(i, j)

e(i,j, k) = C(i,j,i+ 1)

o(i, j, k) = w(i, j)-

bl

However, this transformation is far from being optimal, in the sense that it amounts to
“place” variables (3, j) arbitrarily in the index space, which may have consequences on

the schedule of the equations.
In this particular example, a much better method is to substitute ¢(z, k) in (13) by its
definition. We obtain the new system :

1<i<j<Ni<k+l<j — C(i,jk) = fICG,j,k+1),C3, k k+1)] (17)
1<i<j<Nji=k+1<j — C(,j k)= fICG,j k+1),w(, k) (18)
1<i<j<nk=j — C(@i,jk)=0 (19)
1<i<j+1<N = c(i,j)=CG,j,i+1) (20)
1<i<N,j=i+1 — e(i,f) = w(i,j) (21)

where (17) is fully indexed.

The substitution method cannot always be used, in particular when the substituted
variable depends on itself. In this case, the substitution creates a number of equations
that depends on the parameter p. The problem of finding an index transformation which
merges optimally several index spaces is therefore still open. ]
In the remaining of this paper, we will consider normal form systems. We define the
domain D of a (normal form) system of equations as the convex hull of the union of the
domains of its computation equations (input and output equation domains excluded).

3.3 Dependence vectors

Assume that V(I(z)) is an intermediate variable instance. Then, V(I(z)) is defined by
another equation, attached to point I(z). In a normal form system, the intermediate
variable instances are fully indexed, and both z and I(z) belong to Z". Hence the vector
z — I(z) is defined and is called dependence vector. Dependences with results or data are
not considered, as they do not correspond to effective computations. Given an argument
V(I(2)) of an equation, we denote by Oy(y(,) (or simply © when there is no ambiguity)
the dependence vector z — I(z). More formally, Ov(1(z)) is a function from Z"*™ to Z"
which maps a pair (z,p) to z — I(z). In the following, we shall denote by Range(©v y)))
the range of ©y (y(,)) when p € P and z € D,.
The following proposition is a key result of our study :

Proposition 3.1 Range(Ovy((,))) is a convez polyhedron of Z".

Proof As [ is linear in z and p, the dependence vector is an affine mapping :
J:Zzrm™ o 2
(z,p) = z-1(z)=(Z~A)z-Bp-C

8



where 7 is the identity matrix.- Clearly, J is affine. Moreover, for all p, D, is a convex
polyhedron, which depends linearly on p, and p itself belongs to a convex polyhedron of
Z™. Therefore, the set {(z,p) |p € P,z € D,} is a convex polyhedron of Z™*™. It results
that Range(©v(1(,))), being the image of a convex polyhedron by an affine mapping, is
also a convex polyhedron of Z™. [

As a consequence of proposition 3.1, any dependence vector Oy (1(z)) can be expressed
as the sum of a convex combination of the vertices of the convex set Range(©vs(.))), of
a positive combination of its extremal rays, and of a linear combination of its linesS.

3.4 Computability and scheduling

The scheduling problem is to find a function that associates each variable instance U(z)
with a given instant of time ¢, in such a way that the arguments needed for the calculation
of U(z) are already calculated at time ¢. If such a mapping exists, the system is said to be
ezplicit or computable. This is not always the case, as shown by the following equations :

A(R)=1<i<n — A(C-1)+B(G-1)
B(1))=1<i<n — A(i+1).

Here, A(%) depends on itself. .

The property of computability has been investigated by Karp et al. [17], Rao [32],
Yaacoby and Capello [43], and Delosme and Ipsen [6]. Karp et al. have shown that this
property can be checked, when all the equations are uniform, have the same (possibly
infinite) domain, and use only strict functions. These assumptions exclude the case when
equations are defined on subdomains, as described here. In his thesis, Rao [32] gives a
procedure to check the computability of recurrence equations defined on different domains,
but his procedure is based on the fact that all equations are extended to the same domain.

Depending on the assumptions that are made, different results which are summarized
here can be obtained :

e if the domains of the equations are bounded, and not parameterized, it is obvious
that this property can be checked by testing whether the dependence graph is acyclic
or not. .

¢ if the domains of the equations are not bounded, and all equations are defined on the
same domain, and the function f are strict, then the computability can be checked
(result of Karp et al.).

¢ concerning equations defined on unbounded domains, when the domains are not the
same for all equations®, it has been shown by Joinnault [12] that the computability

3Recall that a vertex of a convex polyhedron is an extremal point of the polyhedron, a ray is the
direction of an infinite half-line of the polyhedron, and a line is the direction of a line of the polyhedron.
Any convex polyhedron can be generated by a finite set of vertices, of rays and of lines. Again, the reader
is referred to [35] for definitions.

4This is the assumption we have made in this paper.
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of a system of uniform recurrence equation is undecidable. The proof amounts
to show that any Turing machine can be encoded as a uniform recurrence system
of equations and to show that the computability of uniform recurrence equations
reduces to the termination of a Turing machine.

¢ an interesting question is to find out whether a parameterized system of recurrence
equation is computable. In other words, when the domains of the equations depend
on an integral size parameter, is it possible to check the computability of all instances
of the system ? Recently, Saouter and Quinton ([34]) have shown that this property
is also undecidable.

The last result shows that it is hopeless in general to find out if there exists an ordering
of the calculations compatible with the dependences. However, as we shall see in the
next section, results can be obtained in the special case of a linear ordering, which is of
practical interest.

3.5 Linear timing functions

A particular case of ordering on the calculations is called a affine timing function [25, 29).
If such a function can be found, of course, the system is computable. As we shall see, we
can determine automatically whether there exists such a timing-function, all at once for
a parameterized system of equations.

Consider a variable instance U(z), and define for each variable a function ¢(U, z) from
V x Z" to Z of the form :

t(U,2) = 21+ o + Anzn + ap

where Ay, ..., A, are integers independent of U. Denote A’z = A2y + ... + A, 2,..
Assume that the evaluation of each function of the system takes at least one unit of
time. The following result gives a constructive means for obtaining the function ¢ :

Theorem 2 The number )y, ... , A, ay,U € V define a timing function for all piff:
o (i) for all vertez o of all the dependence sets Range(Ov (1(z))) Ao+ ay —ay >0,
e (ii) for all extremal ray p of the dependence sets Range(Oy(1(;))), A'p >0

o (iii) for all line v of the dependence sets Range(Oy(y(z))), Mv = 0.

Proof
o We have to prove that for all p and all z € D,, (U, 2) - ¢(V,I(z)) > 1, i.e.

Miz=I(z))+ay—ay <1

10



As 8 = z—I(z) belongs to Range(Ov(y())), it can be decomposed using the vertices,
rays and lines of Range(©v y(.))) as

0=Zaa+2ﬁp+26u

Using the hypotheses, we obtain :
tU,2) —t(V,I(2)) 2 XY _asc+ay —ay

and as ) a = 1, we have

t(U,2) —t(V,1(z)) =2 Y ea[Mo+ay—av]
> 1.
° Conversely, assume that Ay, ... , A, ay,U € V define a timing function for
all p. Consider a vertex o of Range(©y(i(;))). There exist p and z € D, and an

equation

2 € D, - U(z) = fIV(I(2)), -]

such that z — I(z) = 0. Therefore we must have :
No+ay—ay <1

which proves (i).

Let p be the ray of some Range(©y1(,))). Assuming that (ii) is not true, it is simple
to show that there exists an equation such that t(U,z) < ¢(V,I(z)). A similar
reasoning applies for (%ii). |

Note that Theorem (2) is a generalization of a result given by Rajopadhye and Fujimoto
[31] to the case of paremeterized recurrence equations. A similar condition was also
presented, independently of ours, by Irigoin and Triolet [16], in the framework of Nested
Loops analysis.

3.6 Gaussian elimination and Gauss-Jordan diagonalization

In the following, we shall use the Gaussian elimination, and the Gauss-Jordan diagonaliza-
tion as examples. We first present the Gauss-Jordan algorithm, from which the Gaussian

elimination can be deduced immediately by removing one equation.

Let A be a N x N matrix, and b be a N x 1 vector. The problem is to solve the linear
system Az = b, by the Gauss-Jordan elimination algorithm. For the sake of commodity,
we assume that A is a N x (N + 1) matrix whose last column is b. Elements of A are
denoted a(%, 7). The basic step of the algorithm is as follows: at step k, element a(k, k) is
taken as the pivot, and is used to zero out elements a(7,k), 1 <i < N, i # k. At the end
of the algorithm, i.e. when k¥ = N, matrix A is the identity matrix, and b is the solution
x of the system. Let A(z, 7, k? denotes the value of element (7, j) of matrix A at step k.
The algorithm can be precisely specified by the following equations :
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Input Equations :
E=01<i<N1<j<N — A(G,jk) =a(ij) (22)
k=0,1<i<N,j=N+1 — A(,j k)= b(i) (23)

Computation Equations :

1<k<SNE<SjSN4Lliz=k — A(i,j, k)= A(,j, k—1)/A(k, k k- 1) (24)
1<k<NE<jSN+1L,1<i<k — A(i,j k)= AG,jk—1)
— A,k k — 1)/A(k, k, k — 1) x A(k,j, k—1) (25)
1<kSNE<SFSN+LE<i<N — A®i,j k)= A(, j k—1)
— A(i, k k= 1)/A(k, k, k — 1) x A(k,j, k—1) (26)

Output Equations :
1<i<N — z(i)=A(EN+1,N) (27)

It can be readily seen that the system is in normal form. The Gauss-Jordan domain is
shown in figure 2 and is :

D={(4,5,k)[1<i<N,k<j<N+1,1<k< N}

The Gaussian elimination differs from the Gauss-Jordan diagonalization in that elements
above the pivot are not zeroed. Therefore, equation (25) has to be removed. At the end of
the algorithm, matrix A is upper triangular, and it remains to perform a back substitution
in order to solve the system.

Consider the Gauss-Jordan algorithm. Table 3 summarizes the dependences of the
algorithm. Let us apply Theorem 2. Consider for example the dependence vector (0,j —
k,1) from equation (24). When N ranges over N, this vector belongs to the half-line ©
whose origin is (0,0, 1) and direction is (0,1,0). In other words, © is a convex polyhedron
with vertex (0,0,1) and (extremal) ray (0,1,0). Therefore, we must have :

Az3>1and A\ 2> 0.

Applying the same analysis to the other dependence vector gives the final set of con-
straints :

At 20,4 0,43 20,23 > 1.

Therefore, a possible timing function is ¢(A, (i, j, k)) = k. Notice that t(A, (i, 7,k)) = j+k
is also valid, but the coefficient of  has to be 0. This is because the domain for the possible
values of A contains the line j = k = 0. :

On the other hand, if we analyze the Gaussian elimination algorithm, the constraints
are

A1 20,4 20,13 >1

and ¢(A(z,5,k)) = i + j + k is now a valid schedule, as 7 is not constrained to be 0. This
comes directly from the fact that equation (25) has been removed, and therefore, the
constraint A; < 0 is not necessary.
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4 TUniformization

Unless it is uniform, a system of recurrence equations cannot be mapped directly on a
systolic array. Indeed, as the dependence vectors are not constants, processors may have to
communicate with an arbitrary large number of other processors, and this is not possible
in a systolic array, where the processors are only connected to their neighborhood.

This section is concerned with uniformization, that is to say, the transformation of
linear recurrences into uniform ones. The uniformization problem has not yet received
a full answer. It is tackled by Fortes and Moldovan [11], Wong and Delosme [42], Kuhn
(18], Gachet et al. [13], Van Dongen and Quinton [36], Joinnault [12], Rajopadhye [31],
and others (see section 5). We begin by explaining informally the principle of our method
(subsection 4.1). Then we describe precisely the uniformization method (subsection 4.2).
In subsection 4.3, we sketch how the method can be applied in the case of the Gauss-
Jordan algorithm.

4.1 Informal description of the uniformization method

Let us briefly illustrate the uniformization process with the Gaussian elimination al-
gorithm. Consider the non-uniform dependence (i — k,0,1) between A(z,j,k) and
A(k,j,k — 1) in equation (26) (figure 4). As explained in section 3.6, the associated
domain Oy ;) is infinite; it has one vertex (1,0,1) and a ray (1,0,0). To solve the uni-
formization problem, we express the dependence vector as a non-negative integral linear
combination of these vectors, called uniformization vectors. A solution is:

(i — k,0,1) = (i — k — 1).(1,0,0) + (1,0, 1). (28)

The uniformization method involves rewriting the variable instance A(k, j,k —1) using a
new variable A’, which is defined by a (uniform) equation of the form A'(s, j, k) = A'(: —
1,7,k), where the dependence vector is (1,0,0). The same transformation is repeated for
all vectors of the decomposition, until the non-uniformity is removed. In our example,
this transformation gives the uniform dependence graph of figure 4b.

The main difficulty of the method is to choose the uniformization vectors in such a way
that the resulting uniform system of equations has a linear timing-function. As we shall
see, the choice of the uniformization vectors depends on several factors, among which the
dimension of the domain of the initial equation, the dimension of its image by the index
mapping I, and the value of the vectors of the decomposition.

4.2 Automatic synthesis of the uniformization vectors

Given a set of linear recurrences in its normal form, we only consider here the uniformiza-
tion of dependences resulting from the computation equations. The case of input equations
will be solved in section 4.4.

The organisation of this section is the following. In subsection 4.2.1, we consider the
case when pipelining vectors are needed, that is to say, when the null space of I and
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the linear space generated by the domain D of the equation where I appears have a non
empty intersection. Then, in subsection 4.2.2, we consider the case when no pipelining is
needed. Finally, we summarize the method in subsection 4.2.3.

4.2.1 Pipelining vectors

Consider an equation :

2€D - U(z) = f(.., V(I(2)), ...). (29)

Definition 3 Given a convex polyhedron D, we note Vect(D) the linear space parallel
to D, that is to say the direction of the affine hull of D®. We say that a vector A is
parallel to D iff A € Vect(D). We note dim(D) the dimension of Vect(D). Given an
affine mapping I, we note Null(I) the null space of the linear part of I. 0

In the remaining of this section, we will assume that the system of linear recurrence equa-
tions where equation (29) appears has a timing-function, and moreover that the ranges
of all dependence vectors do not contain the vector 0 and are enclosed in a pointed cone,
named ©*. This excludes in particular the case when the range of one of the dependence
vector contains a line.

Definition 4 A vector ¢ # 0 is said to be a pipelining vector iff ¢ € Null(I)N Vect(D).

Proposition 4.1 If ¢ is a pipelining vector, then the following system is equivalent to
equation (29):

ze€D — U(z)= f(..,V'(2),...) (30)
zeDy — V'(z)=V'(z-¢) (31)
z€D, — V'(2)=V(I(2)) (32)

where V' is a new variable and

D, = {zeD|z~-¢¢€ D}
D2 = D\.D1
Moreover, the domain Dy can be partitioned into a finite number of convez polyhedra of

dimension dim(D) — 1, and for all point z € Dy, z — I(z) belongs to the dependence set
Ov(1(z)) of equation (29).

SGiven a set D, the affine hull of D is the smallest affine space which contains D. The direction of an
affine space A is the unique linear space L such that 4 is a translation of L[9].
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Proof For all z € D, by repeated use of (31), there exists k € N such that:
Uz) = f(rVi(z - kd),..)
and z — k¢ € D;. Then, using (32), '

U(z) = flonVI(z—kg)),...).

However, as ¢ is a pipelining vector, I(z — k¢) = I(z). Therefore,

U(z) = f(y VUI(2)),...)

which proves the equivalence between (29) and the above system of equations. Since
Dy ={z€ D|z— ¢ ¢ D}, it can be partitioned into a finite number (independent on p)
of convex domains of dimension dim(D)—1. Finally, as D; C D, the set {Ovy(.;)|z € Dy}
is included in {@v(y(,)) | z € D}. ]

Example 4 In the case of the Gaussian elimination, equation (28) gives an integral

decomposition of the dependence vector (i — k,0,1) on the vectors (1,0,0) and (1,0, 1).

In fact, vector (1,0,0) belongs both to the null space of I and to Vect(D) and is therefore

a pipeline vector. The pipelining transformation, when applied to equation (26), yields:
I1SESNESJSN+LE<i<N — A(ijk)= A(,5,k-1)

- A(lak)k - l)/A'(lvjr k) x A(k,], k— 1) (33)

1<kSNESJSN+LE+1<i<N — A(i,jk)=A(i—1,jk) (34)

1SESNESGSN+li=k+1 — A, jk)= Ak, j,k-1). (35)

One can check that the domain of equation (35) has dimension 2, one less than domain

of (33). O
When Null(I) N Vect(D) # {0}, it is necessary to propagate the data along pipelin-
ing vectors first, using Proposition 4.1. However, the pipelining vectors do not always
belong to ©*, as shown by the following example.

Example 5 Consider the following system of equations, whose dependence graph is
shown in figure 5, for p = 3.

In this case, the domain of the dependence vector is the cone whose extremal rays are
(1,1) and (0,1). On the other hand the vector (1,0) is a pipelining vector, and does not
belong to the cone generated by the dependence vectors. o

The following proposition shows that one can choose the pipelining vectors in such a
way that the dependence vectors of the system after transformation still belong to a
pointed cone. As a consequence, we will be guaranteed that a timing-function still exist
after transformation.

Lemma 1 Given a pointed cone C, and a linear space V, there ezists a pointed cone C'
which contains C and a basis of V.
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Proof Let {v;}lsqs,; be a basis of V. We shall prove that there exists a set of values
{e; = £1}1¢o<n such that {€vi}i<,<n and C generate a pointed cone C'. Let {ct}1<k<k
be the set of extremal rays of C. Suppose first that the basis has one single vector v.
Denote C, the cone generated by C and v. If C, is pointed, the problem is solved, with
e = 1. Suppose that C, is not pointed. Let us call separating hyperplane of C any
hyperplane h*z = 0 such that h’cx > 0 for all extremal ray ¢; of C. As C is pointed, such
an hyperplane exists. Moreover, as C, is not pointed, for all separating hyperplane of C,
htv < 0. If there exists such an hyperplane for which h'v < 0, then —A*v > 0, and C_,
is a pointed cone, and the proposition holds. If not, then h'v = —h'v =0, and —v € C,.
Therefore, —v can be written as a positive combination of the extremal rays of C' and of
v, l.e:

K
-V = Z HicCk + vv
k=1
where v > 0. A simple calculation shows then that

K
o MkCk
vcEl-{-V

k=1

and therefore, —v is a positive combination of the extremal rays of C, which implies that
—~v € C. Again, C_, is a pointed cone. The case when ¢ > 1 is solved by applying the
same idea successively to all the vectors of the basis. |

Using Lemma 1, we have directly the following proposition :

Proposition 4.2 If ©* is a pointed cone, and if Null(I) N Vect(D) # {0}, there exists
a basis of Null(I) N Vect(D) which, together with ©*, generates a pointed cone.

As a direct result of the above development, when Null(I)N Vect(D) # {0}, we can
replace equation (29) by an equivalent system of equations, where none of the remaining
non-uniformities involve pipelining vectors anymore, the dependence vectors still belong
to ©*, and the dimensions of D and of I(D) are the same.

4.2.2 Routing vectors

We now consider the case when no pipelining vector exist. In the following, we shall
say that a dependence vector Ov(1(z)) has an integral decomposition on a set of vectors
{Aihi<icq in the domain D, if there exist ¢ linear mappings a;(z, p) such that for every
p€ P, and every z € D,

q
Oviw) = Y aj(z,p).4; (36)
=1

and «;(z,p) € N. Vectors A; will be called routing vectors in the following.

To obtain such a decomposition, the idea is to use the extremal rays of the cone ©* as
uniformization vectors. The following result, which is due to Delsarte ([8]), ensures that
we can always find and compute such an integral decomposition :
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Proposition 4.3 Given a rational convez polyhedral pointed cone C of dimension n, there
always ezist a pointed cone ' whose extremal rays Ry, ... , R, form a unimodular basts,
and such that C C T.

Proof We assume that the number of rays of C is m > n (If m < n, one can transform
the problem into one in Z™.) The polar cone C° of C, is the pointed cone defined as

C°={yeZ"|z.y<0,Vz € C}.

We must find a pointed cone I'® of extremal rays R}, ... RO such that I'® C C°. Indeed, if
such a cone exists, the polar cone I of I'® solves the problem, as C C I, and the extremal
rays Ry, ..., R, of T are such that

(Ray oy Ra) = ~((R, ey ROV

Let M be the non-singular matrix (M, ..., M,) of the extremal rays of C°. It can be
shown that there always exists a rational positive upper triangular matrix P such that

MP=U (37)

where U is unimodular. Because of (37) and because P is positive, the unimodular U
defines the extremal rays of I'?, i.e., U = (RY, ..., R?). . |

The direct consequence of Proposition 4.3 is that the pointed cone ©* which contains
the ranges of all the dependence vectors can be enclosed in another pointed cone I, whose
extremal rays form a unimodular basis. Therefore, all the dependence vectors have an
integral decomposition on the rays of I', which is simply their (unique) linear decomposi-
tion on the vectors of the unimodular basis. A simple change of basis provides the linear
mappings a;(z, p) which are sought.

It remains to show that we can remove the non-uniformities of the system of equations,
using elementary transformations involving the routing vectors. We consider successively
two cases depending on whether the routing vector belong to Vect(D) or not.

Proposition 4.4 If A; is a routing vector which does not belong to Vect(D), there exists
an affine mapping I' such that the following system of equations is equivalent to equation

(29)

z€D — U(z) = f(...,V'(2),...) (38)
zeDy —» V'(z)=V'(z- A)) (39)
2€D - Vi(z) = V(I'(2)) (40)

where V' is a new variable and

D, = {z€D|z€ DA0<k < aiz,p)}
D, = {z€D|z€ DAk=aiz,p)}
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Proof Clearly, if A; is not parallel to D, then for all pair of points z and 2" of 1), and for
all pair of integers k and k', 2 —kA; # 2' =K A, Therefore, Dy Dy - @, and cach variale
V' is defined only once. Morcover, the (linear) function which maps z to 2z - w,(z, p) A, is
one-one, and there exists therefore an affine mapping J such that z = J(z — o(z, p)A,).
By taking I'(z) = I(J(z)) in equation (40), we obtain an cquivalent system, ||

It remains to solve the case when a routing vector A is parallel to D. Before giving
the solution, we show on an example why the above method fails.

Example 5 Figure 6 illustrates what happens when the routing vector is parallel to /).
The equations are:

0<i<p — U@)=U(+p).

When p ranges over N, the dependence vector —p belongs to the half-line generated By -1.
The transformation described by Proposition 4.4 gives the following system of equations:

0<i<p — U@E)=U()
0<i<2%-1 — UE)=UGE+1)
p+1<:i<2p — U'(z)=U(d).
It is clear that U’(¢) is defined twicefor p+1<i < 2p — 1. 0

To solve the problem, we will show that we can augment the pointed cone ©* so that A
is replaced by two other vectors which, together with ©®*, generate a pointed cone.

Proposition 4.5 If A is a routing vector which belongs to Vect(D), and if dim(D) < n,
then there exist vectors u and v such that :

e neither u nor v belong to Vect(D)

e O%, u and v generate a pointed cone.

Proof We assumethat A is an extremal ray of ©* (If it is not the case, we can beforehand
replace A by a positive combination of extremal rays of ©*). As we have supposed that
there are no pipelining vectors, dim(D) = dim(I(D)) < n. Therefore, the supplementary
linear space S of Vect(D) N Vect(I(D)) is not reduced to 0. Let v be a non zero vector
of S. By Lemma 1, either ©* and v or ©* and —v generate a pointed cone. Assume that
this is true for v. We claim that ©*, v and A — v still generate a pointed cone. Indeed,
as ©" and v generate a pointed cone, and as v and A are not collinear, there exists a
separating hyperplane A'z = 0 of © such that h‘A > h'v. Therefore, h{(A — v) > 0, and
h'z = 0 is also a supporting hyperplane of the cone generated by ©*, v and A — v. The
vectors v and A — v are the new vectors we seek in order to replace A, as none of these
vectors belongs to Vect(D). n

The consequence of Proposition 4.5 is that one can replace a routing vector by two new
vectors, in such a way that the transformation of Proposition 4.4 is possible, and that the

new system still has a timing-function. The following example illustrates this situation.
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Example 6 Consider the following system of equations (see figure 7):
i=0,0<j<n0<k<n — AG,jk)=A'kj+n,0). (41)

In this example, the cone ©* has the extremal rays (0,1,0) and (1,1,—1). The depen-
dence vector is (~k, —n,k) = (—n — k)(0,1,0) — k(1,1,—1). However, as the first ray is
parallel to D, the transformation using the routing vector (0,1,0) is incorrect. One can
avoid the problem by replacing the first vector by a combination of the second one and
the first one. Here, we rewrite (0,1,0) = (1,1,-1) + (—1,0,1). The new routing (see
figure 7b) is done by (—k, —n, k) = —(n + k)(—1,0,1) — (n + 2k)(1,1,—1). a

4.2.3 Summary of the Uniformization method

In summary, the uniformization method works as follows:
o First case: Null(I)N Vect(D) = {0}.

— Assume first that dim(D) < n. We do not need pipeline vectors. Using Propo-
sition 4.3, we find out a set of at most n vectors A; which form a unimodular
basis generating a pointed cone enclosing ©*. Then, we process successively
all the vectors A;. If A; is not parallel to D, then we apply the transformation
defined in Proposition 4.4, which gives a new domain D. If A; is parallel to D,
using Proposition 4.5, we replace A; by two new vectors, in such a way that
these vectors still generate a pointed cone.

— If &im(D) = n, our method does not make it possible to obtain a uniform sys-
tem in Z". However, it is always possible to reindex the variables in Z**!, and
to apply the above theory. Indeed, the new system will need more processors,
as the allocation function will map the system to Z™ instead of Z*!. This is
however not surprising: the case when dim(D) = dim(I(D)) = n represents a
bad situation when the dependence vectors are “dense” in Z".

o If Null(I)nVect(D) # {0}, then we can find an integral basis ® = {#i}1<ico<n
of Null(I) N Vect(D) such that ¢ and ©* still generate a pointed cone ©*. Then,
by applying Proposition 4.1 successively to each vector of ®, we eventually obtain
a finite set of equations, whose domain have dimension dim(D) — ¢, and whosc
dependence vectors are still in ©F. We are back to the previous case.

All this discussion is summarized by the following theorem :

Theorem 3 Given a set of linear paramelerized recurrence equations whose dependence
vectors are non null and belong to a pointed cone, there exists an equivalent system of
uniform recurrence equations which has a liming-function. :
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It should be noted that although the above transformations involve solving some prob-
lems for which no efficient algorithms exist (such as for example, the computation of the
generating system of a convex polyhedral domain), our experience has shown that in
practice, the systems we handle lead to small size problems which can be solved in a
reasonable amount of time.

We also emphasize that our method has no pretention to be optimal. Clearly, at
several steps, some choices may result in more or less efficient transformation. At least,
however, we know that the resulting system can be scheduled.

4.3 Multistep algorithms

The method described in the preceding section applies when ©* is pointed. We illustrate
here what may be done when ©* is not pointed.

Consider the uniformization of the dependence (: — k,0,1) (as above) in the Gauss-
Jordan elimination algorithm. The set of dependences is defined by the line £ = 1 (see
3.6). Hence, ©* is a cone defined by k > 0,5 = 0 (a half-plane). This cone, shown in
figure 8, is degenerated since it contains the line k¥ = 0; one may verify that (1,0,0),
(-1,0,0) and (0,0,1) form an integral unimodular basis for this cone. The resulting
uniform dependence graph is shown on figure 9. However, after uniformization, this
algorithm has no timing-function, as there are opposite dependence vectors.

We now present an ad-hoc method for solving this problem. The opposite vectors
were used in the uniformization of A(k,k,k — 1) and of A(k,j,k —1). By looking at the
recurrence equations, one observes that these two partial results are computed in the part
of the domain where : — k > 0. Hence, the Gauss-Jordan algorithm can be considered as a
two-step algorithm. In the first step, when ¢ —k > 0, both A(k, k,k—1) and A(k,j,k—1)
are computed. In the second one, both variables are used only as inputs.

Both steps can be uniformized independently with the above uniformization method.
Then, the two steps can be put together as described in [6] and [40]. By looking at the
time cones of the two algorithms, one can compute a reindexing transformation which
gives a maximal global time cone. Finally, the translation of the second step can be
computed by expressing the fact that all external dependences must be positive along
the time. Figure 10 shows the resulting uniform dependence graph; the two steps of the
algorithm are shown; one of them was translated from 7 to 7 + N.

This uniform dependence graph being defined, one can now map it on various systolic
arrays. Let us choose for example the mapping a(3, 7, k) = (¢, k), i.e., a projection along
axis j. This allocation function is authorized, as the direction (0, 1,0) of the projection
is not orthogonal to the vector ), therefore ensuring that two computations allocated
to the same processor are not executed at the same instant of time (see [29]). The
resulting architecture is shown in figure 11, and was described independently by Robert
and Trystram [33] and Lewis and Kung [22]6. The movement of the A coefficients is the
following : they enter the architecture in the bottom row, then they are reflected by the

Both papers deal with the Algebraic Path Problem, which covers as a particular case the Gauss-
Jordan elimination.
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left diagonal, move rightwards to the right diagonal, where there are reflected again to
the top. This movement is the projection of the path of the coefficients in the domain of
figure 10.

4.4 Uniformization of the input equations

We now consider the uniformization of the input equations. The difference with what we
saw previously is that there is a priori no location associated to the data: initially, a data
can be anywhere. It can be considered as the transformation of data broadcasting into
pipelining. Such a problem has been tackled already by several authors [11, 12, 31, 42].
We hereafter briefly present a method that uses some of the theory developed before. The
way we solve the problem is illustrated on the input equation

A(i, 5, k) = a(i, k) (42)

of the matrix multiplication algorithm. The first step consists in defining the set of point
(4,7, k) that will use a particular data a(io, ko). This is done by computing the kernel
of the affine transformation that maps (z, 7, k) on (i, ko), and by intersecting this kernel
with the domain of the index points (z, 7, k). The kernel is the solution of the system

(50)-(1)-(%) g

Hence, the kernel is (2, j, k) = (%o, jo, ko) + £.(0,1,0). The intersection with the domain of
the indices gives

(2,7, k) = (70,0, ko) + k.(0,1,0) with k € [1, N]. (44)
The resulting domain is a convex polyhedron, whose vertices are (iq, 1, ko) and (%, N, ko).
The second step is to choose an initial location in this convex, which defines where the
data is first. In the systolic model, this location must be a vertex of the domain (otherwise,
there would be no affine schedule). On the two possibilities, we arbitrary chose (i, 1, ko).
Equation (42) can now be rewritten, with the use of a new variable U,, as

A(iO,j, kO) = Ua(iﬂ’ 1, kO) (45)
Ua(iO, 13 kO) = a‘(iOa kO) (46)

Equation (45) being fully indexed, it can be transformed into a set of uniform recurrences
with the method described before. Equation (46) is a new input equation. Yet, its kernel
only contains one point; hence, nothing needs to be broadcasted and uniformized.

5 Related work

In [43], Yaacoby and Capello are interested by the scheduling of affine recurrences. They
give a sufficient condition for an affine recurrence to be computable, a necessary and
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sufficient condition for the existence of an affine schedule and a constructive means for
finding the affine schedule.

In [27], Mongenet and Perrin present a methodology for the mapping of inductive
problems on systolic arrays. In these problems, routing need to be performed for the
partial results that are further used as data. Work in this direction was recently made by
Clauss [5]. In their approach, they decompose non-uniform dependences into two sets of
vectors, namely the generating vectors (in our terminology, the pipelining vectors) and the
dependency vectors (some of which are the routing vectors). These vectors are automat-
ically computed by looking at the domain of the dependences. Their approach, however,
is restricted to inductive problems, a sub-class of linear recurrences. Also, because they
do not consider the size parameters in the construction of their dependence domain, their
resulting architecture may be non-modular.

In [10], Guerra and Melhem consider the synthesis of another class of affine recurrences,
where the non-uniform dependences are of the form 9 = (ay, ...,a:_1,% — j,as41, ..., @s), @;
are constants, and ¢ and j are indices of the problem. Their synthesis is in two steps.
First, they determine a coarse timing function by analyzing the set of dependence vectors
(note that size parameters are not taken into account). In the second step, they perform
a time-space index transformation, compatible with the coarse timing. They illustrate
their methodology on the dynamic programming algorithm.

In [3], Chen presents a methodology for the derivation of systolic algorithms and archi-
tectures in a unified framework based on the language Crystal. First, the naive algorithm
is transformed into a bounded order and bounded degree program (with bounded fan-in
and fan-out degree). Then, it is further transformed by means of a space-time mapping.
The method is illustrated with the dynamic programming algorithm. Clearly, the aim
of fan-in and fan-out reductions is to uniformize the algorithm. The fan-in reduction is
something we have not considered here. This problem occurs when a naive algorithm
makes use of a census function (i.e. which are applied on a set of data). In a linear
recurrence equation, this cannot be the case. The fan-out reduction is achieved by means
of additional recurrence equations whose constant dependence vectors are, what we call,
the uniformization vectors. For the dynamic programming algorithm, this reduction is
quite simple.

In [11], Fortes and Moldovan discuss how and whether data broadcasts in an array
processor with a given interconnection structure can either be eliminated or reduced
by choosing an adequate linear schedule. They consider the class of linear recurrences
whose variable instances V(Az + B) are such that A is rank deficient. In order to have
broadcast, the rank of A must be strictly less than n, the dimension of the index z. Also,
the associated computations must be scheduled at the same time. For a given schedulc,
necessary conditions are given on the processor allocation so that no broadcast is required
and the array interconnections support the necessary data communications. Finally, they
discuss how linear schedules can explore the limited broadcasting capability offered by
the array interconnections to implement large broadcasts. In the approach of Fortes and
Moldovan, the interconnection structure of the array is fixed. In this paper, we do not
consider this because the resulting array is more likely to be designed on a VLSI chip.
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It would be useful for us to extend the presented methodology Lo the case where Lhe
interconnection structure is fixed. It seems that such a problem can be solved by adding
additional constraints related to this structure, as explained in [11].

In [42], Wong and Delosmie also consider the elimination of broadeasting. Henee, s
in {11], they consider dependences whose index madrix is rank deficient. Similar to our
approach, they arc interested by the synthesis of systolic arrays and they do not make
a priori restriction on ils interconnection structure. heir problem is similar to ours,
non-uniform dependences must be expressed as a linear combination of a finite set of
uniformization vectors. Their approach is different in the sense that no affine schedule
is required on the resulting dependence graph. Thus, dependences can be opposite as
in the graph of figure 9. First, the canonical vectors are chosen as candidates for the
uniformization. ‘They give a necessary and suflicient condition for the acceptance of
such a canonical propagation. Secondly, it is gencralized 1o allow the inclusion of non-
canonical vectors. They show that all broadcasts are transformable when using these
general propagations. This approach is different since the schedule is not a priori taken
into account. In the method that we present, the uniformization vectors are minimal in
terms of the associated set of constraints on the affine schedule.

In [31], Rajopadhye and Fujimoto also consider the transformation of broadcasting
into pipelining; hence, the index matrix A of the linear dependence is rank deficient. The
pipelining vectors are also found by computing the null space of A. They show how to
transform the linear recurrence into a set of conditional uniform recurrences, and how
to propagate the control signals in the resulting architecture. They also illustrate their
methodology on the dynamic programming algorithm (for optimal string parenthesiza-
tion).

In [12], Joinnault considers both the pipelining problem and the routing problem. The
first is solved by looking at the null space of the index matrix (as in [11, 31]). To solve
the second problem, the non-uniform dependence is written in terms of n transvections
and one translation. Yet, no systematic method is provided to find them.

In conclusion, several papers deal with the mapping of linear recurrences on regular
arrays. Yet, they differ in the form of the linear recurrence equations, and on the re-
quirements imposed on the uniformization vectors (existence or not of an affine schedule).
Thus, comparing the results must be done with great care!

6 Conclusion

We have described the basics for the analysis of systems of linear recurrence equations
and the principles of the mapping of such equations on parallel architectures. We also
pointed out few problems that still need to be solved. Once overcome, it will be possible to
implement such methods into software packages that will produce efficient code. Some of
the techniques presented here are already bemg used in prototype tools for systolic array
design ([14, 39]). The presented approach is very promising as it makes it possible to apply
safe transformations on the recurrence equations that would otherwise be very difficult
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to use. A complete methodology should probably include the results of several other
methods, such as the ones presented in section 5. For example, a complete uniformization
method should include automatic reindexing transformations as the folding operation,
which can be used for some particular types of affine function.

The material that we have presented in this paper has some commonalities with the
work that has been done on restructuring compilers for super-computers. Merging both
fields will probably provide new fruitful research ideas.

Acknowledgements The authors would like to thank referee 3 for his very detailed
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Figure 1: The matrix multiplication dependence graph, and the systolic array obtained
by a projection along the k axis
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Figure 2: Domain of the Gauss-Jordan elimination algorithm
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Figure 3: Dependences in Jordan-Gauss elimination

29




/e
=
W

? b).

Figure 4: The dependence (i — k,0, 1) before and after uniformization

30



Y

Figure 5: Case when a pipeline vector does not belong to ©*

e S

0 p 2p

Figure 6: An example where the routing transformation is not valid

31



N
A B
] ]
1 \
] \
\ \
D \‘ \\ C’ J
1 1)
\ D¢
1} )
] 1]
A’ B’
a)

Figure 7: Case when a uniformization vector is parallel to D

32

v )
D C
\
) | Y ’
L Y L Y ’
| Y LY !
] \ !
] ' L
NIV
] , ) ’
] ’ \ ’
i\ V7
| NG
D" Cll

b)



- _———
a-

(0,0,1)

(_1’0’0) (1,0,0) ?

TTITrr 1rrrrrii
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Figure 9: A uniform dependence graph for Gauss-Jordan which cannot be mapped on a
systolic array.
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algorithm. The edges of the domains of each step are in dashed lines
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