
Scheduling a System of

Nonsingular Affine Recurrence Equations

onto a Processor Array

Yoav Yaacoby

Department of Electrical & Computer Engineering

University of California

Santa Barbara, CA 93106

Peter R. Cappello1

Department of Computer Science

University of California

Santa Barbara, CA 93106

1This material is based upon work supported by the Office of Naval Research under contract nos. N00014-

84-K-0664 and N00014-85-K-0553.



Abstract

Most work on the problem of scheduling computations onto a systolic array is restricted to systems

of uniform recurrence equations. In this paper, this restriction is relaxed to include systems of affine

recurrence equations. In this broader class, a sufficient condition is given for the system to be com-

putable. Necessary and sufficient conditions are given for the existence of an affine schedule, along

with a procedure that constructs the schedule vector, when one exists.

Key Words: affine recurrence equation, computability, concurrent computation, data dependence,

parallel computation, processor array, scheduling, systolic array, uniform recurrence equation.



1 Introduction

1.1 Statement of the problem

A system of uniform recurrence equations, as defined by Karp, Miller, and Winograd [8, 9], maps

especially well onto a systolic/wavefront array. Many researchers have either linearly mapped sys-

tems of uniform recurrence equations into spacetime, or translated them to systolic/wavefront arrays

[14, 1, 15, 2, 19, 13, 5, 3, 21, 16, 20, 10].

One aspect of scheduling is to find an affine schedule, a vector π ∈ Zn and a set of constants

{ci ∈ Z}, one for each array, such that for all problem sizes, if a variable aj(x2) depends on a

variable ai(x1) (not necessarily directly), then πT x1 + ci < πT x2 + cj . The existence of an affine

schedule implies a valid execution ordering. The case of uniform recurrences has been considered

by several authors (see, e.g., [6], [21], [4, § 7], [17], [22]). We are concerned with a generalization

of uniform recurrence equations, called affine recurrence equations. Three related problems are

considered:

1. Which systems of affine recurrence equations are computable?

2. Which systems of affine recurrence equations have an affine schedule?

3. When a system of affine recurrence equations has an affine schedule, how can it be computed?

1.2 Summary of the main results

Given a system of affine recurrence equations, we provide:

1. Sufficient conditions for it to be computable (Thms. 3.6 and 3.7).

2. Necessary and sufficient conditions for the existence of an affine schedule (Thms. 3.1, 3.2, 3.4,

and 3.5).

3. A procedure which constructs a schedule vector, if one exists (§3.2, relying on Thms. 3.2 and

3.3).

1.3 Significance to processor arrays

Some affine recurrence equations may be formulated such that a variable needs to be ‘broadcast’. In

such cases, the recurrence equations may be reformulated so that the ‘broadcast’ variable becomes

1



a ‘propagating’ variable. Broadcast removal is not discussed in this paper (see, e.g., Leiserson

and Saxe [12, 11], Miranker and Winkler [13], and Wong and Delosme [23] for details concerning

broadcast removal).

Not all systems of affine recurrence equations can be converted to systems of uniform recurrence

equations [24]. In these cases, they must be dealt with directly. We follow, in spirit, the work

of Karp, et al. [8]; detecting computability, and computing an affine schedule, are crucial to the

automatic implementation of systems of affine recurrence equations on processor arrays. Although

not discussed in this paper, processors can be allocated using the same method as that for systems

of uniform recurrence equations described in [21]. In case the system of affine recurrence equations

cannot be converted to a system of [quasi-]uniform recurrence equations (see explanation below),

Rao’s projection-based method for processor allocation results in either wire lengths or local memory

sizes that depend on the problem size. This case thus may benefit from more research.

Both the computability condition, and the procedure that computes an affine schedule, depend

only on the affine dependence maps. Their computational complexity thus is independent of the

problem size.

We also consider the case when the system 1) has an affine schedule, and 2) can be converted

to an equivalent system of quasi-uniform recurrence equations [24]. In this case, one can eliminate

the time dimension, simplifying the conversion of the system of affine recurrence equations into a

system of quasi-uniform recurrence equations [25].

After broadcast removal, some existing algorithms for solving Toeplitz systems [7] are SAREs.

2 Preliminary Definitions

Example 1

The system of recurrence equations (SRE) below factors a symmetric Toeplitz matrix and its inverse

into LDLT :

1 ≤ i ≤ N, a1(i, 0) ≡ ti−1 (1)

2 ≤ i ≤ N, a2(i, 0) ≡ ti−1 (2)

1 ≤ j ≤ N − 1, a3(j, j) = a2(j + 1, j − 1)/a1(j, j − 1) (3)

j + 1 ≤ i ≤ N, a3(i, j) = a3(i− 1, j) (4)

j + 1 ≤ i ≤ N, a1(i, j) = a1(i− 1, j − 1)− a3(i− 1, j)a2(i, j − 1) (5)

j + 2 ≤ i ≤ N, a2(i, j) = −a3(i− 1, j)a1(i− 1, j − 1) + a2(i, j − 1) (6)

2



a2(1, 0) = 1 (7)

1 ≤ j ≤ N − 1,

1 ≤ i ≤ j − 1, a3(i, j) = a3(i + 1, j) (8)

1 ≤ i ≤ j + 1, a2(i, j) = −a3(i + 1, j)a2(j + 2− i, j − 1) + a2(i, j − 1) (9)

These recurrence equations are used to illustrate some of the following definitions, which are related

to an SRE.

Index set: The set of points where an array is computed or used.

Domain of computation: The set of points Ci where an array ai is computed

(e.g., C2 = {(i, j)|1 ≤ j ≤ N − 1, 1 ≤ i ≤ j + 1} in Eq. (9)).

Dependence map: A function δij from the domain of computation of array aj to the index set of ai,

on which the computation of aj depends (e.g., δ32(p) = p + ( 1 0 )T in Eq. (9)).

Affine dependence: A dependence map of the form: δij(p) = Dijp + dij where Dij ∈ Zn×n, and

dij ∈ Zn (e.g., δ22(p) =


 −1 1

0 1


 p +


 2

−1


 in Eq. (9)).

In the remainder of this paper, we assume that Dij is nonsingular and integer, unless specified

otherwise1.

Uniform dependence: An affine dependence of the form: δij(p) = p + dij (i.e., Dij = I).

A system of affine [uniform] recurrence equations (SARE [SURE]): An SRE where the dependence

maps are affine [uniform]. Moreover, in this paper, each array is computed in one recurrence

equation for its entire domain of computation (e.g., Eqs. (8,9) are an SARE).

A system of quasi-uniform recurrence equations: An SRE which is uniform except for boundary

points (see [24] for more details).

Convertible SARE: An SRE that can be converted to a system of quasi-uniform recurrence equations

(Eqs. (8,9) are convertible, as is shown in [24]).

1Although nonsingularity is not required to prove Thms. 3.1 — 3.3, it is not useful to apply these theorems to

affine dependences with singular linear parts.

3



Reduced dependence graph (RDG): A directed multigraph2 with a node for each array in the SRE,

and an arc from ai to aj for each dependence map δji in the SRE [21, 8]. For example, the

RDG of Ex. 1 is shown in Fig. 1.

s s

s
¡

¡
¡

¡¡ª @
@

@
@@I

¾¾

£
££B

BBN

²¯

B
BB

£
££±

±°
B

BBM£££
±°

¹ P̧PPi³³³1P
PP ³³³

$

?

'-

-

¯
°

²
± a3 a2

a1

Figure 1: The RDG for the system of recurrence equations of Ex. 1.

Cycle dependence map: A composition of dependence maps associated with the arcs of a directed

cycle in the RDG (not necessarily simple3). In most cases, we denote by δi a cycle dependence

map which starts at ai, and by δij a direct dependence map of aj on ai (e.g., δ21 and δ12 in

Ex. 1 constitute a cycle dependence map denoted δ1).

3 Affine Schedule for an SARE

We establish necessary and sufficient conditions for the existence of an ‘affine schedule’ for an SARE.

By affine schedule we mean the existence of a vector π ∈ Zn and a set of constants {ci ∈ Z},
one for each array, such that for all problem sizes4, if a variable aj(x2) depends on a variable

ai(x1) (not necessarily directly), then πT x1 + ci < πT x2 + cj . This condition ensures that there

exists a valid execution ordering. Array variable ai(x) is computed at time5 πT x + ci. Vector

s = (c1, c2, . . . , cr, π
T )T is called the schedule vector, where the SARE has r array variables. The

above conditions are important, since not every SARE can be converted to an SURE. For example,
2A directed multigraph, G = (N, A), is a directed graph that may have more than one arc directed from node v to

node u, for any v, u ∈ N .

3A cycle is simple when it cannot be decomposed into smaller cycles.
4Rao [21], for example, has considered affine schedules that depend on the problem size. Since this leads to a serial

execution ordering (in the direction where the problem size is used), we do not consider this case.

5By ‘time’ we really mean an ordering of the steps.

4



using the theorems proved in [24], it follows that the binary tree summation, a(i) = a(2i)+a(2i+1),

cannot be converted to an SURE. A discussion concerning the scheduling of uniform dependences

has been considered by several authors (see, e.g., [6], [21], [4, § 7], [17], [22]).

3.1 A sufficient condition for the existence of an affine schedule

The following theorem characterizes the existence of an affine schedule for an SARE.

Theorem 3.1 There exists an affine schedule for an SARE if and only if there exist π ∈ Zn and a

set {ci ∈ Z} such that for all problem sizes, and for all direct dependences δij,

∀x ∈ Cj , πT (Dij − I)x + πT dij + ci − cj < 0. (1)

Proof. Property (1) can be rewritten as

∀x ∈ Cj , πT δij(x) + ci < πT x + cj . (2)

Let π ∈ Zn and a set {ci ∈ Z} be such that for all problem sizes, and for all direct dependences δij ,

property (1) is true. Let aj(x2) depend on ai(x1) via k + 1 direct dependences δlkj , . . . , δl1l2 , δil1 .

Then x1 = δil1(δl1l2(. . . δlkj(x2) . . .)). Multiplying both sides on the left by πT , and using (2), we

conclude that πT x1 + ci < πT x2 + cj . Thus, π and {ci} constitute an affine schedule.

The other direction is simple. We are given that an affine schedule exists. That is, there exist

π, {ci}, such that for every variable aj(x2) depending on ai(x1), πT x1 + ci < πT x2 + cj . Let the

variable aj(x2) depend directly on ai(x1): x1 = δij(x2). The π and {ci} of the affine schedule satisfy

property (2), and thus (1) also is satisfied.

The proof of the previous theorem is not constructive. Finding a constructive characterization

for the existence an affine schedule is an open problem. The following theorem provides a sufficient

condition for the existence of an affine schedule which can be used to construct a schedule.

Theorem 3.2 Let S be an SARE. If ∃ π ∈ Zn and {ci ∈ Z} such that 1) DT
ijπ = π, for Dij, the

linear part of any direct dependence map, and 2) πT dij + ci− cj < 0, for dij, the translation part of

any direct dependence map, then s = (c1, c2, . . . , cr, π
T )T is a schedule vector for S.

Proof. If π satisfies the premises, then

πT (Dij − I)x + πT dij + ci − cj = (πT Dij − πT )x + πT dij + ci − cj = πT dij + ci − cj < 0.

5



Therefore, π and {ci} satisfy property (1) in Thm. 3.1: s = (c1, c2, . . . , cr, π
T )T is a schedule vector.

The above condition (or criterion) is not necessary as is shown by the following example (a binary

tree) 1 ≤ i ≤ N , a1(i) = a1(2i)+a1(2i+1). In this SARE, D11 = [2], and there is no π that satisfies

πT D11 = πT , however, the schedule π = [−1] is valid. The problem of finding a weaker sufficient

condition that will include this case is open.

The following lemmata and theorem give a property that is equivalent to property (2) of Thm. 3.2.

Let C be the connection matrix of the RDG6, such that there is a column for every arc (rep-

resenting a direct dependence), and a row for each node (representing an array). There is a +1 in

C(ij) if arc j is not a self loop and is directed into node i, a −1 if arc j is not a self loop and is

directed out of node i, and zero otherwise.

In what follows we denote by N the set of natural numbers (i.e., 0, 1, 2, . . .).

Lemma 3.3.1 Given vectors d ∈ Zn, b ∈ Zm, and a connection matrix C, the following primal

integer linear programming problem

min dT x subject to CT x ≥ b and x ∈ Zn

has an optimal solution if and only if its dual

max tT b subject to Ct = d and t ∈ Nm

has an optimal solution.

Proof. In general, the primal linear program has an optimal solution if and only if the dual has

one. Since the matrix CT is totally unimodular [18, § 13.2], any optimal solution is integer. Thus,

if the primal integer linear program has an optimal solution, it is also an optimal solution to the

linear program without the integer restriction. The dual thus has an optimal solution. The latter

solution is integer, since C is totally unimodular. The other direction follows from the fact that the

dual of the dual is the primal.

Let S be a matrix associated with a directed graph, that has a row for each simple cycle, and a

column for each arc, such that there is a 1 in S(ij) if arc j participates in the simple cycle i, and

zero otherwise.

6Matrix C is not to be confused with set Ci, the domain of computation of array ai.

6



Lemma 3.3.2 The connection matrix Cr×k of a directed graph G, and the matrix Sm×k defined

above satisfy

Ct = 0, t ∈ Nk if and only if t = ST l, l ∈ Nm.

Proof. If t = ST l then Ct = CST l. But CST = 0 because summing the columns of C corre-

sponding to a cycle is zero. So, Ct = 0. Since S and l have only natural components, so does

t.

Now, if Ct = 0, then we want to show that t defines a multiset of cycles in the directed graph

(i.e., there is a set of cycles whose arcs consist of ti times arc i for all i). Suppose this is false.

Interpreting the components of vector t as units of flow, this means that there is some node whose

in-flow does not equal its out-flow. Thus, the corresponding components of C cannot sum to zero.

Therefore, t defines a set of simple cycles which can be formulated as t = ST l.

The following theorem is mentioned without proof in [21] for SUREs. It appears in [4], although

only the ‘if’ part is proved. Also in [4], a different approach is taken that causes the condition to be

somewhat stronger (i.e., πT di ≤ −vi · g, where g is the greatest common divisor of the components

of π).

Theorem 3.3 Let S be an SARE, and π ∈ Zn be such that DT
ijπ = π, for Dij, the linear part of

any direct dependence map. There exist {ci ∈ Z} such that the translation part dij of any direct

dependence map satisfies πT dij + ci − cj < 0 if and only if for all simple cycles, the translation part

di of a cycle dependence map that starts in one of the nodes in that cycle, and the number of arcs

in that cycle, vi, satisfy πT di ≤ −vi.

Proof. Since we are given πT Dij = πT , we have

∑

cycle w

πT dij = πT dw, (3)

where dw is the translation part of a cycle dependence map starting in any node in cycle w. Notice

that there may be several distinct dw, but πT dw will be the same for all of them (this follows from

the fact that πT Dl1l2 ·Dl2l3 · · ·Dlkidij = πT dij).

Suppose πT dij + ci − cj < 0, for dij , the translation part of any direct dependence map. Since

all terms above are integers, we have for all direct dependence maps πT dij + ci − cj ≤ −1. Let vi

denote the number of arcs in simple cycle w (which starts in node i), and di denote the translation

7



part of the dependence map of this cycle. Then,

∑

cycle w

πT dij + ci − cj ≤
∑

cycle w

−1 ⇔ πT
∑

cycle w

dij +
∑

cycle w

ci − cj ≤ −vi ⇔ πT di ≤ −vi.

Now suppose that πT di ≤ −vi, where the vectors di are the translation parts of simple cycle

dependence maps picked arbitrarily, one for each simple cycle, and vi is the number of arcs in that

cycle. We use the following notation:

Cr×k: The connection matrix of the RDG as defined above.

Fm×n: A matrix whose rows are the vectors dT
i , the translation parts of cycle dependence maps,

one picked for each simple cycle.

Bk×n: A matrix whose rows are the vectors dT
ij , the translation parts of all direct dependence maps.

Sm×k: A matrix composed of a row for each simple cycle, and a column for each arc, as defined

above.

vm×1: A vector whose ith component is vi, the number of arcs in the simple cycle i.

hk×1: (−1,−1, . . . ,−1)T .

We now can restate the supposition as Fπ ≤ −v. Also, Fπ = SBπ (which follows from Eq. (3)

above), and v = −Sh. Thus, SBπ ≤ Sh, i.e., S(Bπ − h) ≤ 0.

Consider the following dual integer linear program:

max tT (Bπ − h) subject to Ct = 0 and t ∈ Nk.

According to Lemma 3.3.2, Ct = 0 if and only if t = ST l for some l ∈ Nm. Thus, the above integer

linear program can be restated as

max lT S(Bπ − h) subject to l ∈ Nm.

But as mentioned above, S(Bπ− h) ≤ 0, so the maximum is zero (e.g., for l = 0), a finite optimum.

According to Lemma 3.3.1, the corresponding primal linear program,

min 0T x subject to CT x ≥ Bπ − h and x ∈ Zr,

also must have an optimal solution. This primal linear program can be restated as finding a feasible

integer solution to CT x ≥ Bπ − h. Replacing x by −(c1, c2, . . . , cr)T gives the following inequality

8



for every row of CT (which corresponds to an arc in the RDG):

cj − ci ≥ dT
ijπ + 1.

This is equivalent to

πT dij + ci − cj ≤ −1.

Since all terms are integers, this is equivalent to

πT dij + ci − cj < 0,

the desired inequality.

3.2 Computing a schedule vector

Choosing the schedule vector is an important issue.7 The case of SUREs is discussed by Rao [21],

Delosme and Ipsen [4], and Shang and Fortes [22]. Here we use the same methodology as Rao [21],

generalizing it to the case of SAREs. The schedule vector s = (c1, c2, . . . , cr, π
T )T ∈ Zr+n should

satisfy the sufficient conditions of Thm. 3.2. Let the direct dependence maps have linear parts

Dl1,j1 , Dl2,j2 , . . . , Dlk,jk
∈ Zn×n, with corresponding translations dli,ji . Since DT

ljπ = π, we have

Aπ = 0, where

A =




DT
l1,j1

− I

DT
l2,j2

− I
...

DT
lk,jk

− I




kn×n

.

We perform Gauss-Jordan reduction on the above matrix. If the system has a nontrivial solution,

then after 1) Gauss-Jordan reduction, 2) a possible row and column permutation8, and 3) deletion

of zero rows, it is of the form: [
Im×m E

]
m×n

π = 0.

The last n−m components of π thus are free. Let π̂ be the last n−m components of π. We obtain

π =


 −E

I


 π̂. (4)

7If the SARE will not subsequently undergo a nonlinear conversion, then the choice of affine schedule also can be

optimized with respect to a cost function.

8For notational simplicity, we assume that no column permutation is needed.

9



The submatrix E is rational, since Dli,ji ∈ Zn×n, and Gauss-Jordan reduction does not introduce

irrational numbers. As defined earlier, let B be a matrix whose rows are the vectors dT
li,ji

, and C be

the connection matrix of the RDG.

The sufficient condition for an affine schedule, requires that [CT B]s < 0, where s =

(c1, c2, . . . , cr, π
T )T . Using Eq. 4, we have


CT B ·


 −E

I





 ŝ < 0 where ŝ = (c1, c2, . . . , cr, π̂

T )T .

A feasible solution for this system of strict inequalities can be obtained with the ellipsoid

algorithm[18]. Since C, B, and s have only integer entries, we can solve equivalently for:

CT B ·


 −E

I





 ŝ ≤ h, where h = (−1,−1, . . . ,−1)T .

The desired vector π is

π =


 −E

I


 π̂.

The resulting s is rational. By scaling, we obtain an integer primitive vector s (i.e., its components

have greatest common divisor 1). This procedure, of course, can be used to compute an integer

schedule vector for an SURE.

If we use Thm. 3.3, there is another way to compute an affine schedule: compute the matrix E

as mentioned above, and then instead of solving simultaneously for

CT B ·


 −E

I





 ŝ ≤ h,

find all simple cycles in the RDG (this number can be exponential with respect to the number of

nodes, but in practice is small), and then solve

F


 −E

I


 π̂ ≤ −v

where vi is the number of arcs in the simple cycle i in the RDG, and F has a row [F ]i = di for a

translation part di picked for any simple cycle. The desired vector π is

π =


 −E

I


 π̂.

10



The solution π, can be made integer (by scaling it by a positive integer). We then can solve for the

constants {ci ∈ Z} by solving

CT (c1, c2, . . . , cr)T ≤ h−Bπ.

Thm. 3.3 assures us that there is an integer set {ci} satisfying the above inequalities.

Example 2

Consider the following SARE9:

1 ≤ j ≤ N − 1,

1 ≤ i ≤ j − 1, a3(i, j) = a3(i + 1, j − 1) (1)

1 ≤ i ≤ j + 1, a2(i, j) = −a3(i + 1, j)a2(j + 2− i, j − 1) + a2(i, j − 1) (2)

The dependence maps are:

δ1
22(i, j) =


 −1 1

0 1


 ·


 i

j


 +


 2

−1


 δ2

22(i, j) =


 1 0

0 1


 ·


 i

j


 +


 0

−1




δ32(i, j) =


 1 0

0 1


 ·


 i

j


 +


 1

0


 δ33(i, j) =


 1 0

0 1


 ·


 i

j


 +


 1

−1




The corresponding matrix A =


 −2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0




T

. After Gauss-Jordan reduction

and deleting zero rows we get: ( 1 0 )π = 0. The last component is free, and the first component

must be 0. The connection matrix C, and the matrix B in this case are:

C =


 0 0 0 −1

0 0 0 1


 , B =




2 −1

0 −1

1 −1

1 0




.

The system of inequalities we have to solve is thus:



0 0 −1

0 0 −1

0 0 −1

−1 1 0




ŝ ≤




−1

−1

−1

−1




.

9Note that Eq. (1) is not the same as Eq. (8) of Example 1.

11



A solution to this set of inequalities is: ŝ = ( 1 0 1 )T . The affine schedule is thus the vector

π = ( 0 1 )T and the set {c2, c3} = {1, 0}.

3.3 A necessary condition for the existence of an affine schedule

The premises of Thm. 3.2, in general, are not necessary. Some other criterion is needed to decide if

an affine schedule does not exist. The following definitions are used.

Domain size parameters: Those parameters in the SRE which instantiate the domains of computa-

tion (e.g., N in Ex. 1).

Dependence length of an index point p with respect to a cycle dependence map δi, is the number

of cycle compositions which can be made starting with ai(p) until (and including) a cycle on

which an index of one of the arrays (not necessarily ai) is outside its domain of computation.

This dependence length is denoted by γi(p). For a set S of index points, the notation γi(S)

is used to denote the minimum dependence length of points in S. If H ⊂ Rn, then γi(H) =

min
p∈H∩Ln

i

{γi(p)}10.

n-dimensional system of recurrence equations: An SARE which satisfies the following property: For

every cycle dependence map δi, ∀k ∈ N, there exist domain size parameters such that the

domain of computation Ci contains H, a kn hypercube, and γi(H) > 1 (e.g., the SARE in

Ex. 2 is 2-dimensional).

In the definition above, and throughout the paper, when we say “the domain of computation Ci

contains hypercube H,” we mean every point in H
⋂

Ln
i is in Ci.

We now focus the discussion to SAREs that can be converted to equivalent SREs which are quasi-

uniform (i.e., they are uniform except for boundary points). These are called convertible SAREs.

It is proved in [24] that, an SARE is convertible if and only if every cycle dependence map has

a linear part which is a root of I (thus the linear part of every dependence map is nonsingular).

The following lemmata and theorem establish a necessary condition for the existence of an affine

schedule.

Lemma 3.4.1 An n-dimensional SARE has the following property: For every nonzero vector v,

and every constant c ∈ R+, and every domain of computation Ci, and every cycle dependence map

δi, there exist domain size parameters and x ∈ Ci such that |vT x| > c, and γi(x) > 1.

10Ln
i is the lattice on which array ai is defined.

12



Proof. In the following proof we assume that Ln
i = Zn. The generalization to any lattice is straight

forward.

Since the SARE is n-dimensional, there exist domain size parameters such that there exists in

Ci a hypersphere Rn, where R = c+‖v‖·√n
‖v‖ , and γi(R) > 1. Suppose the center of the sphere is r,

and vT r > 0. Then choose

x = r +
c + 1

2

√
n‖v‖

‖v‖2 · v + u,

where u is a vector that is used to reach the nearest lattice point. Since the distance of any point

to the nearest lattice point is at most 1
2

√
n, x is in the hypersphere. Therefore,

|vT x| = |vT r + c + 1
2

√
n‖v‖+ vT u| > c + 1

2

√
n‖v‖ − ‖v‖1

2

√
n = c.

The inequality above follows from three facts: 1) vT r > 0, 2) ‖u‖ ≤ 1
2

√
n, and 3) u, in the worst

case, has the opposite direction of v.

If vT r < 0, then choose

x = r − c + 1
2

√
n‖v‖

‖v‖2 · v + u.

According to the argument above, |vT x| > c. If vT r = 0, then choose the same x as the case for

vT r > 0. But if vT u = −‖v‖ 1
2

√
n, then change u to −u (i.e., choose the lattice point in the opposite

direction). Again x is in the sphere, and |vT x| > c.

Lemma 3.4.2 If an SARE has a schedule vector s = (c1, c2, . . . , cr, π
T )T ∈ Zr+n, then for all cycle

dependence maps δi,

∀x ∈ Ci, πT (Di − I)x + πT di ≤ −vi,

where vi is the number of arcs in the RDG for cycle i.

Proof. Using Eq. 2 in Thm. 3.1 and the fact that all terms are integers, we have:

πT (Di − I)x + πT di = πT δi(x)− πT x = πT δil1(δl1l2(. . . (δlki(x)) . . .))− πT x

≤ cl1 − ci − 1 + πT δl1l2(. . . (δlki(x)) . . .)− πT x ≤

cl2 − ci − 2 + πT (. . . (δlki(x)) . . .)− πT x ≤ · · · ≤ −vi + πT (x)− πT (x) = −vi.

Theorem 3.4 Let S be an n-dimensional and convertible SARE. If there exists an affine schedule

for S, with a schedule vector s = (c1, c2, . . . , cr, π
T )T ∈ Zr+n, then DT

i π = π, for every Di that is

the linear part of a cycle dependence map, and πT di ≤ −vi, for every di that is the translation part

of a cycle dependence map, where vi is the number of arcs in the RDG in that cycle.

13



Proof. Let L be an integer such that DL
i = I. (Since every cycle is a strongly-connected compo-

nent, and the SARE is convertible, such an L must exist — see [24]). Let Mi = max{|πT (D1
i +D2

i +

. . .+DL−1
i )di|, |πT di|}. Suppose that the theorem is false. If ∃ Di, DT

i π 6= π, then πT (Di− I) 6= 0.

By Lemma 3.4.1, ∃ x ∈ Ci that satisfies either πT (Di − I)x > Mi, or πT (Di − I)x < −Mi. If there

exists a schedule vector s, then its linear part π satisfies one of the following:

(i) ∀ Di, D
T
i π = π but ∃ dj , π

T dj > −vi

(ii) ∃ Di, D
T
i π 6= π, and ∃ x ∈ Ci such that πT (Di − I)x > Mi

(iii) ∃ Di, D
T
i π 6= π, and ∃ x ∈ Ci such that πT (Di − I)x < −Mi.

We prove that any π which satisfies one of the above cases contradicts the existence of an affine

schedule, which according to Lemma 3.4.2 implies that for any cycle dependence map δi,

∀x ∈ Ci, πT (Di − I)x + πT di ≤ −vi. (5)

In case (i), we have πT (Dj − I) = 0. So πT (Dj − I)x + πT dj = πT dj > −vi. Therefore, (5) is

not satisfied.

In case (ii), we have an x in the domain of computation Ci such that πT (Di−I)x > Mi ≥ −πT di.

Therefore, (5) is not satisfied.

In case (iii), we have

πT (Di − I)x < −Mi ≤ πT (D1
i + D2

i + . . . + DL−1
i )di. (6)

According to Lemma 3.4.1, γi(x) > L (taking δL
i in Lemma 3.4.1 to be the cycle dependence). For

the remainder of the proof, we drop the subscript i. Let δi denote the i-fold composition of δ. Then

L−1∑

i=0

(πT (D − I)δi(x) + πT d) = LπT d + πT
L−1∑

i=0

(Dδi(x)− δi(x))

= LπT d + πT
L−1∑

i=0

(δi+1(x)− d− δi(x)) = πT (δL(x)− δ0(x))

= πT (DL−1 + DL−2 + · · ·+ I)d > πT (D − I)x + πT d

(The inequality above follows from inequality 6). Subtracting the right hand side of the inequality

from both sides,
L−1∑

i=1

(πT (D − I)δi(x) + πT d) > 0

14



At least one term in the above sum must be positive, implying that (5) is not satisfied.

As an example, consider the convertible SARE in Ex. 1 Eqs. (8,9). If there exists an affine

schedule, then DT
2 π = π, where D2 =

[
−1 1

0 1

]
. Thus πT = ( 0 1 ) or a multiple of it. There is

no other possibility. But, dT
3 = ( 1 0 ), so πT d3 = 0, which implies that the necessary conditions

are not met. This SARE thus does not have an affine schedule. (Interestingly, the index sets of this

SARE can be manipulated such that it has an affine schedule [24].)

3.4 Characterizing the existence of an affine schedule for a con-

vertible SARE

Let A be an SARE with a strongly-connected RDG11. This kind of SARE is called a strongly-

connected SARE. Affine transformations can be applied to the index sets of A’s arrays such that

the resulting RDG has a spanning tree whose arcs have uniform dependence maps associated with

them. Such a transformation has been suggested in [4]. A similar procedure is as follows. Choose a

spanning tree of the RDG12. Start from the root of the tree, and proceed down level by level, applying

the affine transformation δ−1
ij on the index set of the array ai (i.e., p → D−1

ij p−D−1
ij dij), where aj

is its parent13. All the appropriate dependence maps are updated after each transformation. This

procedure is called a tree conversion. The tree is not unique.

Such a tree conversion is shown in Fig. 2. The linear parts of the dependence maps are shown

s s s s

s s

s

- -¡
¡

¡
¡¡µ¡

¡
¡

¡¡ª ?

@
@

@
@@R

@
@

@
@@R

¡
¡

¡
¡¡ª

@
@

@
@@R

³³³1P
PP²

±

¾ $

a4 a5 a6 a7

a2
a3

a1

D54 D65

D42 D52

D62
D36

D17D22

D73

D21 D31

s s s s

s s

s

- -¡
¡

¡
¡¡µ¡

¡
¡

¡¡ª ?

@
@

@
@@R

@
@

@
@@R

¡
¡

¡
¡¡ª

@
@

@
@@R

³³³1P
PP²

±

¾ $

a4 a5 a6 a7

a2
a3

a1

D′
54 D′

65

I I
I

D′
36

D′
17D′

22

I

I I

Figure 2: The RDG before (on the left) and after (on the right) the tree conversion.

near each arc. The array a1 was chosen to be the root, and then the index set of the array a2 is

11That is, an RDG where there is a directed path from every node to every other node.

12That is, a subgraph of the RDG that is a directed tree which contains all the RDG’s nodes.

13The transformation δ−1
ij is used instead of D−1

ij , ensuring that integer lattice points map to integer lattice points.

15



mapped by δ−1
21 . By doing so, the dependence map δ21 becomes uniform: its linear part becomes I as

shown in the figure. The updating that should be done after this transformation is: δ22 → δ−1
21 δ22δ21,

δ42 → δ42δ21, δ52 → δ52δ21, δ62 → δ62δ21. The index set of a2 also is updated. The next step is to

change δ31 into a uniform dependence map. This is done by mapping the index set of a3 by δ−1
31 .

The same process is applied; this continues until the whole tree has uniform dependences associated

with its arcs. The result also is shown in Fig. 2. The new linear parts which do not correspond to

tree arcs are:

D′
22 = D−1

21 D22D21 D′
54 = D−1

21 D−1
52 D54D42D21

D′
65 = D−1

21 D−1
62 D65D52D21 D′

36 = D−1
31 D36D62D21 D′

17 = D17D73D31

The translation parts are updated accordingly.

We now focus the discussion on a strongly-connected SARE that is convertible (i.e., every cycle

dependence map has a linear part that is a root of I). We also assume that a tree conversion

has been done on the SARE, as defined above. The following theorem establishes necessary and

sufficient conditions for the existence of an affine schedule. This condition ensures that the SARE

can be embedded in spacetime such that time is decoupled from space [25]. That is, there exists

matrix M , such that for every linear part Dij of direct dependence map δij , MDijM
−1 is of the

form


 1 0

0 D′
ij


, where D′

ij ∈ Z(n−1)×(n−1). Conversion of the SARE to one with quasi-uniform

recurrence equations thus can be simplified.

Theorem 3.5 Let S be a convertible strongly-connected SARE after a tree conversion. The follow-

ing three statements are equivalent: 1) There exists an affine schedule for S, with a schedule vector

s = (c1, c2, . . . , cr, π
T )T ∈ Zr+n; 2) DT

i π = π, and dT
i π ≤ −vi for all simple cycles dependence

maps, where Di is the linear part and di is the translation part and vi is the number of arcs in the

RDG for that cycle dependence map; 3) DT
ijπ = π, for Dij, the linear part of any direct dependence

map, and πT dij + ci − cj < 0, for dij, the translation part of any direct dependence map.

Proof. The proof that 1 implies 2 appears in Thm. 3.4. The proof that 3 implies 1 appears in

Thm. 3.2. We now prove that 2 implies 3. Since the SARE is convertible, and has undergone a tree

conversion, the set of distinct compositions of linear parts of dependence maps equals the set of the

distinct linear parts of all cycle dependence maps (proved in [24]). Thus, for every linear part Dij of

a direct dependence map, there exists an equal linear part of a cycle dependence map, and therefore

there exist a finite number of linear parts D1, D2, . . . , Dk of simple cycle dependence maps, such

16



that Dij = D1D2 · · ·Dk. Thus,

DT
ijπ = DT

k · · ·DT
2 DT

1 π = π.

The other property follows directly by using Thm. 3.3.

The above theorem proves that the sufficient condition of Thm. 3.2 and the necessary condition of

Thm. 3.4 are equivalent in the case of a convertible strongly-connected SARE after a tree conversion.

3.5 Computability in SAREs

The following theorem relates computability to the existence of an affine schedule. It establishes the

set of SAREs with an affine schedule as a subset of the set of computable SAREs.

Theorem 3.6 If an SARE has an affine schedule, then it is computable.

Proof. If the SARE is not computable then there exists a point x in the domain of computation Ci,

such that ai(x) depends on itself (not necessarily directly). This requires πT x < πT x, contradicting

the definition of an affine schedule.

Computability is not equivalent to the existence of an affine schedule, as shown by the following

examples:

δ21(p) =


 1 0

0 −1


 p +


 0

−1




δ12(p) =


 1 0

0 −1


 p +


 0

1




(7)

An SARE with the above dependence maps has no affine schedule, but is computable. After applying

a tree conversion, there is an affine schedule.

Now consider an SARE S with the following two dependence maps.

δ11(p) = p +


 0

−1




δ11(p) =


 1 0

0 −1


 p +


 1

0




(8)

This SARE also lacks an affine schedule, but is computable. Here unlike the first example, there is

no affine schedule even after conversion to an SRE with quasi-uniform dependences. There however

17



is a serial schedule. Fig. 3 depicts a dependence graph for an instance of this SRE. The numbers on

the figure are the only valid schedule.

s s s s

s s s s

s s s s

s s s s

s s s s

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

C
C
C
C
C
C
C
C
C
C
C
C
CCW

C
C
C
C
C
C
C
C
C
C
C
C
CCW

C
C
C
C
C
C
C
C
C
C
C
C
CCW

A
A
A
A
A
A
AU

A
A
A
A
A
A
AU

A
A
A
A
A
A
AU

- - -

¢
¢
¢
¢
¢
¢
¢̧

¢
¢
¢
¢
¢
¢
¢̧

¢
¢
¢
¢
¢
¢
¢̧

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤¤º

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤¤º

¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤
¤¤º

16

17

18

19

20

11

12

13

14

15

6

7

8

9

10

1

2

3

4

5

Figure 3: The dependence graph for SARE S. The numbers indicate a serial schedule.

The last example is an SURE which does not have an affine schedule, though is computable.

Given by Rao, it is an algorithm for a two dimensional filter (for details — see [21]).

1 ≤ i ≤ N, a1(i, 0, 0) = a1(i,−1, , 0) = a1(i, 0,−1) ≡ 0 (1)

1 ≤ j ≤ M,

1 ≤ k ≤ M, a2(N, j, k) ≡ 0, a3(1, j, k) given (2)

1 ≤ i ≤ N,

1 ≤ j ≤ M,

1 ≤ k ≤ M, a1(i, j + 1, k + 1) = f(a1(i, j, k), a2(i, j, k), a3(i, j, k)) (3)

a2(i− 1, j, k) = g(a1(i, j, k), a2(i, j, k)) (4)

a3(i + 1, j, k) = h(a1(i, j, k), a2(i, j, k), a3(i, j, k)) (5)

The last two examples have schedules that depend on the problem size. (For the example

in Fig. 3, we can use πT = [−5, 1], and πT = [−N, 1], in general. For the last example, Rao [21]

provides a schedule that depends on the problem size.)

Another interesting theorem is that a condition, weaker than the necessary condition for the

existence of an affine schedule in convertible SAREs (see Thm. 3.4), also implies that the SARE is

computable.

Theorem 3.7 An SARE is computable if there exists a vector π ∈ Zn such that DT
i π = π, for

every Di that is the linear part of a cycle dependence map, and πT di < 0, for every di that is the

18



translation part of a cycle dependence map.

Proof. Suppose the SARE is not computable, then Dix + di = x for some linear part Di, and

translation part di of a cycle dependence map in the SARE, and x ∈ Ci. Multiplying by πT from

the left on both sides gives:

πT (Dix + di) = πT x ⇒ πT x + πT di = πT x ⇒ πT di = 0,

which is a contradiction.

As can be shown by the three examples above, the sufficient condition of Thm. 3.7 is not necessary.

It is open as to whether or not there is a characterization of computable SAREs, which is simple to

compute.

The following theorem, a variation on a theorem by Delosme and Ipsen [4], identifies a prop-

erty of computable SAREs. The property is weaker than the one established in Thm. 3.4, since

computability is a weaker property than the existence of an affine schedule (Thm. 3.6).

Theorem 3.8 If an n-dimensional SARE is computable and convertible, then the linear part D of

any cycle dependence map is a root of I with at least one eigenvalue λ = 1.

Proof. The essence of the short proof of this is given by Delosme and Ipsen [4].

An SARE is not necessarily computable if 1 is an eigenvalue of all the linear parts D, and for

all the linear parts we have DL = I. For example, the dependence map δ(p) = Ip + 0 has these

properties, but clearly is not computable.

19



References

[1] Peter R. Cappello. VLSI Architectures for Digital Signal Processing. PhD thesis, Princeton

University, Princeton, NJ, Oct 1982.

[2] Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI array design with linear transforma-

tions of space-time. In F. P. Preparata, editor, Advances in Computing Research, pages 23–65,

JAI Press, Inc., 1984.

[3] Jean-Marc Delosme and Ilse C. F. Ipsen. An illustration of a methodology for the construction

of efficient systolic architectures in VLSI. In Proc. 2nd Int. Symp. on VLSI Technology, Systems

and Applications, pages 268–273, Taipei, 1985.

[4] Jean-Marc Delosme and Ilse C. F. Ipsen. Systolic Array Synthesis: Computability and Time

Cones. Technical Report Yale/DCS/RR-474, Yale, May 1986.

[5] José A. B. Fortes and Dan I. Moldovan. Parallelism detection and algorithm transformation

techniques useful for VLSI architecture design. J. Parallel Distrib. Comput, 2:277–301, Aug.

1985.

[6] José A. B. Fortes and F. Parisi-Presicce. Optimal linear schedules for the parallel execution of

algorithms. In Int. Conf. on Parallel Processing, pages 322–328, Aug. 1984.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The John Hopkins University

Press, 1983.

[8] Richard M. Karp, Richard E. Miller, and Shmuel Winograd. The organization of computations

for uniform recurrence equations. J. ACM, 14:563–590, 1967.

[9] Richard M. Karp, Richard E. Miller, and Shmuel Winograd. Properties of a model for parallel

computations: determinacy, termination, queueing. SIAM J. Appl. Math, 14:1390–1411, 1966.

[10] Sun-Yuan Kung. VLSI Array Processors. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[11] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe. Optimizing synchronous circuitry

by retiming. In Proc. Third Caltech Conf. on VLSI, Computer Science Press, Rockville, MD,

1983.

20



[12] Charles E. Leiserson and James B. Saxe. Optimizing synchronous systems. In Proc. IEEE 22nd

Annual Symp. Foundations of Computer Science, Oct 1981.

[13] Willard L. Miranker and Andrew Winkler. Spacetime representations of computational struc-

tures. Computing, 32:93–114, 1984.

[14] Dan I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE Trans. Comput.,

C-31:1121–1126, Nov. 1982.

[15] Dan I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proc. IEEE, 71(1):113–

120, Jan. 1983.

[16] Dan I. Moldovan and José A. B. Fortes. Partitioning and mapping algorithms into fixed systolic

arrays. IEEE Trans. on Computers, C-35(1):1–12, Jan. 1986.

[17] Mathew T. O’Keefe and José A. B. Fortes. A comparative study of two systematic design

methodologies for systolic arrays. Proc. Int. Conf. Parallel Processing, 672–675, Aug. 1986.

[18] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, Inc, Englewood Cliffs, NJ, 1982.

[19] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In

Proc. 11th Ann. Symp. on Computer Architecture, pages 208–214, 1984.

[20] I. V. Ramakrishnan, D. S. Fussell, and A. Silberschatz. Mapping homogeneous graphs on linear

arrays. IEEE Trans. Computers, C-35(3):189–209, Mar. 1986.

[21] Sailash K. Rao. Regular Iterative Algorithms and Their Implementation on Processor Arrays.

PhD thesis, Stanford University, October 1985.

[22] Weija Shang and José A. B. Fortes. Time optimal linear schedules for algorithms with uniform

dependencies. In Int. Conf. on Systolic Arrays, pages 393–402, San Diego, May 1988.

[23] Yiwan Wong and Jean-Marc Delosme. Broadcast removal in systolic algorithms. In Int. Conf.

on Systolic Arrays, pages 403–412, San Diego, May 1988.

[24] Yoav Yaacoby and Peter R. Cappello. Converting Affine Recurrence Equations to Quasi-

Uniform Recurrence Equations. Technical Report 18, Dept. Computer Science, UCSB, Santa

Barbara, CA 93106, Feb. 1988.

21



[25] Yoav Yaacoby and Peter R. Cappello. Decoupling the Dimensions of a System of Affine Re-

currence Equations. Technical Report 12, Dept. Computer Science, UCSB, Santa Barbara, CA

93106, Apr. 1988.

22


