
Finding and counting given length cycles ∗

Noga Alon † Raphael Yuster † Uri Zwick †

Abstract

We present an assortment of methods for finding and counting simple cycles of a given length in
directed and undirected graphs. Most of the bounds obtained depend solely on the number of
edges in the graph in question, and not on the number of vertices. The bounds obtained improve
upon various previously known results.

1 Introduction

The main contribution of this paper is a collection of new bounds on the complexity of finding
simple cycles of length exactly k, where k ≥ 3 is a fixed integer, in a directed or an undirected graph
G = (V, E). These bounds are of the form O(Eαk) or of the form O(Eβk ·d(G)γk), where d(G) is the
degeneracy of the graph (see below). The bounds improve upon previously known bounds when the
graph in question is relatively sparse or relatively degenerate.

We let Ck stand for a simple cycle of length k. When considering directed graphs, a Ck is assumed
to be directed. We show that a Ck in a directed or undirected graph G = (V, E), if one exists, can

be found in O(E2− 2
k ) time, if k is even, and in O(E2− 2

k+1 ) time, if k is odd. For finding triangles

(C3’s), we get the slightly better bound of O(E
2ω

ω+1 ) = O(E1.41), where ω < 2.376 is the exponent of
matrix multiplication.

Even cycles in undirected graphs can be found even faster. A C4k−2 in an undirected graph G =

(V, E), if one exists, can be found in O(E2− 1
2k

(1+ 1
k
)) time. A C4k, if one exists, can be found in

O(E2−( 1
k
− 1

2k+1
)) time. In particular, we can find an undirected C4 in O(E4/3) time and an undirected

C6 in O(E13/8) time.

The degeneracy d(G) of an undirected graph G = (V, E) is the largest minimal degree among the
minimal degrees of all the subgraphs G′ of G (see Bollobás [Bol78], p. 222). The degeneracy d(G) of
a graph G is linearly related to the arboricity a(G) of the graph, i.e., a(G) = Θ(d(G)), where a(G)
is the minimal number of forests needed to cover all the edges of G. The degeneracy of a directed
graph G = (V, E) is defined to be the degeneracy of the undirected version of G. The degeneracy
of a graph is an important parameter of the graph that appears in many combinatorial results. It
is easy to see that for any graph G = (V, E) we have d(G) ≤ 2E1/2. For graphs with relatively low

∗Work supported in part by THE BASIC RESEARCH FOUNDATION administrated by THE ISRAEL ACADEMY

OF SCIENCES AND HUMANITIES.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv 69978, ISRAEL.

1



cycle complexity cycle complexity

C3 E1.41 E ·d(G) C7 E1.75 E3/2 ·d(G)

C4 E1.5 E ·d(G) C8 E1.75 E3/2 ·d(G)

C5 E1.67 E ·d(G)2 C9 E1.8 E3/2 ·d(G)3/2

C6 E1.67 E3/2 ·d(G)1/2 C10 E1.8 E5/3 ·d(G)2/3

Table 1: Finding small cycles in directed graphs – some of the new results

cycle complexity cycle complexity

C4 E1.34 C8 E1.7

C6 E1.63 C10 E1.78

Table 2: Finding small cycles in undirected graphs – some of the new results

degeneracy we can improve upon the previously stated results. A C4k in a directed or undirected
graph G = (V, E) that contains one can be found in O(E2− 1

k ·d(G)) time. A C4k+1, if one exists, can

be found in O(E2− 1
k ·d(G)1+

1
k ) time. Similar results are obtained for finding C4k−2’s and C4k−1’s. In

particular, C3’s and C4’s can be found in O(E ·d(G)) time and C5’s in O(E ·d(G)2) time. Some of
the results mentioned are summarized in Tables 1 and 2.

As any planar graph has a vertex whose degree is at most 5, the degeneracy of any planar graph is
at most 5. As a consequence of the above bounds we get, in particular, that C3’s, C4’s and C5’s in
planar graphs can be found in O(V ) time. This in fact holds not only for planar graphs but for any
non-trivial minor-closed family of graphs.

Another contribution of this paper is an O(V ω) algorithm for counting the number of Ck’s, for k ≤ 7,
in a graph G = (V, E).

2 Comparison with previous works

Monien [Mon85] obtained, for any fixed k ≥ 3, an O(VE) algorithm for finding Ck’s in a directed
or undirected graph G = (V, E). In a previous work [AYZ94] we showed, using the color-coding
method, that a Ck, for any fixed k ≥ 3, if one exists, can also be found in O(V ω) expected time or
in O(V ω log V ) worst-case time, where ω < 2.376 is the exponent of matrix multiplication.

Our new O(E2− 2
k ) algorithm is better than both the O(VE) and the O(V ω) algorithms when the

input graph G = (V, E) is sufficiently sparse. It is interesting to note that for k ≤ 6, Monien’s O(VE)

bound is superseded by either the O(V ω) algorithm, when the graph is dense, or by the O(E2−1/⌈ k
2
⌉)

algorithm, when the graph is sparse. For every k ≥ 7, each one of the four bounds (including the
bound that involves the degeneracy) beats the others on an appropriate family of graphs.

In a previous work [YZ94] we have also showed that cycles of an even length in undirected graphs can
be found even faster. Namely, for any even k ≥ 4, if an undirected graph G = (V, E) contains a Ck

then such a Ck can be found in O(V 2) time. Our O(E2− 1
2k

(1+ 1
k
)) bound for C4k−2 and O(E2−( 1

k
− 1

2k+1
))

2



bound for C4k are again better when the graph is sparse enough.

Itai and Rodeh [IR78] showed that a triangle (a C3) in a graph G = (V, E) that contains one can be
found in O(V ω) or O(E3/2) time. We improve their second result and show that the same can be

done, in directed or undirected graphs, in O(E
2ω

ω+1 ) = O(E1.41) time.

Chiba and Nishizeki [CN85] showed that triangles (C3’s) and quadrilaterals (C4’s) in graphs that
contain them can be found in O(E·d(G)) time. As d(G) = O(E1/2) for any graph G, this extends the
result of Itai and Rodeh. We extend the result of Chiba and Nishizeki and show that C4k−1’s and C4k’s

can be found in O(E2− 1
k ·d(G)) time. We also show that C4k+1’s can be found in O(E2− 1

k ·d(G)1+
1
k )

time. This gives, in particular, an O(E ·d(G)2) algorithm for finding pentagons (C5’s). Our results
apply to both directed and undirected graphs.

Itai and Rodeh [IR78] and also Papadimitriou and Yannakakis [PY81] showed that C3’s in planar
graphs can be found in O(V ) time. Chiba and Nishizeki [CN85] showed that C3’s as well as C4’s
in planar graphs can be found in O(V ) time. Richards [Ric86] showed that C5’s and C6’s in planar
graphs can be found in O(V log V ) time. We improve upon the result of Richards and show that
C5’s in planar graphs can be found in O(V ) time. In a previous work [AYZ94] we showed, using
color-coding, that for any k ≥ 3, a Ck in a planar graph, if one exists, can be found in either O(V )
expected time or O(V log V ) worst case time.

Finally, the fact that the number of triangles in a graph can be counted in O(V ω) time is trivial.
In [AYZ94] we showed, using color-coding, that for any k ≥ 3, a Ck, if one exists, can be found in
either O(V ω) expected time or in O(V ω log V ) worst case time. Here we show that for any k ≤ 7 the
number of Ck’s in a graph can be counted in O(V ω) time. The counting method used here yields, in
particular, a way of finding Ck’s for k ≤ 7, in O(V ω) worst case time.

3 Finding cycles in sparse graphs

Monien [Mon85] obtained his O(VE) algorithm by the use of representative collections. Such
collections are also used by our algorithms. In the sequel, a p-set is a set of size p.

Definition 3.1 ([Mon85]) Let F be a collection of p-sets. A sub-collection F̂ ⊆ F is q-
representative for F , if for every q-set B, there exists a set A ∈ F such that A ∩ B = ∅ if and
only if there exists a set A ∈ F̂ with this property.

It follows from a combinatorial lemma of Bollobás [Bol65] that any collection F of p-sets, no matter
how large, has a q-representative sub-collection of size at most

(p+q
p

)

. Monien [Mon85] describes an

O(pq ·
∑q

i=0 pi ·|F|) time algorithm for finding a q-representative sub-collection of F whose size is at
most

∑q
i=0 pi. Relying on Monien’s result we obtain the following lemma:

Lemma 3.2 Let F be a collection of p-sets and let G be a collection of q-sets. Consider p and q to
be fixed. In O(|F|+ |G|) time, we can either find two sets A ∈ F and B ∈ G such that A ∩B = ∅ or
decide that no two such sets exist.

Proof : We use Monien’s algorithm to find a q-representative sub-collection F̂ of F whose size is
at most pq and a p-representative sub-collection Ĝ of G whose size is at most qp. This takes only
O(|F| + |G|) time (as p and q are constants).

3



It is easy to see that if there exist A ∈ F and B ∈ G such that A ∩ B = ∅, then there also exist
A′ ∈ F̂ and B′ ∈ Ĝ such that A′ ∩ B′ = ∅. To see this note that if A ∩ B = ∅ then by the definition
of q-representatives, there must exist a set A′ ∈ F̂ such that A′ ∩ B = ∅ and then, there must exist
a set B′ ∈ Ĝ such that A′ ∩ B′ = ∅ as required.

After finding the representative collections F̂ and Ĝ it is therefore enough to check whether they
contain two disjoint sets. This can be easily done in constant time (as p and q are constants). 2

We also need the following lemma obtained by Monien [Mon85].

Lemma 3.3 ([Mon85]) Let G = (V, E) be a directed or undirected graph, let v ∈ V and let k ≥ 3.
A Ck that passes through v, if one exists, can be found in O(E) time.

We are finally able to present our improved algorithm.

Theorem 3.4 Deciding whether a directed or undirected graph G = (V, E) contains simple cycles
of length exactly 2k − 1 and of length exactly 2k, and finding such cycles if it does, can be done in
O(E2− 1

k ) time.

Proof : We describe an O(E2− 1
k ) time algorithm for finding a C2k in a directed graph G = (V, E).

The details of all the other cases are similar. Let ∆ = E
1
k . A vertex in G whose degree is at

least ∆ is said to be of high degree. The graph G = (V, E) contains at most 2E/∆ = O(E1− 1
k ) high

degree vertices. We check, using Monien’s algorithm (Lemma 3.3), whether any of these high degree
vertices lies on a simple cycle of length 2k. For each vertex this costs O(E) operations and the total

cost is O(E2/∆) = O(E2− 1
k ). If one of these vertices does lie on a cycle of length 2k we are done.

Otherwise, we remove all the high degree vertices and all the edges adjacent to them from G and
obtain a subgraph G′ that contains a C2k if and only if G does. The maximum degree of G′ is at most
∆ = E

1
k and there are therefore at most E·∆k−1 = E2− 1

k simple directed paths of length k in G′. We
can find all these simple path in O(E2− 1

k ) time. We divide these paths into groups according to their

endpoints. This can be done using radix sort in O(E2− 1
k ) time and space. We get a list of all the

pairs of vertices connected by simple directed paths of length exactly k. For each such pair u, v, we
get a collection Fu,v of k−1-sets. Each k−1-set in Fu,v corresponds to the k−1 intermediate vertices
that appear on simple directed paths of length k from u to v. For each pair u, v that appears on the
list, we check whether there exist two directed paths of length k, one from u to v and the other from
v to u, that meet only at their endpoints. Such two paths exist if there exist A ∈ Fu,v and B ∈ Fv,u

such that A ∩ B = ∅. This can be checked, as shown in Lemma 3.2, in O(|Fu,v| + |Fv,u|) time. As

the sum of the sizes of all these collections is O(E2− 1
k ), the total complexity is again O(E2− 1

k ). This
completes the proof. 2

In the case of triangles, we can get a better result by using fast matrix multiplication.

Theorem 3.5 Deciding whether a directed or an undirected graph G = (V, E) contains a triangle,

and finding one if it does, can be done is O(E
2ω

ω+1 ) = O(E1.41) time.

Proof : Let ∆ = E
ω−1
ω+1 . A vertex is said to be of high degree if its degree is more than ∆ and of

low degree otherwise. Consider all directed paths of length two in G whose intermediate vertex is of

4



low degree. There are at most E ·∆ such paths and they can be found in O(E ·∆) time. For each
such path, check whether its endpoints are connected by an edge in the appropriate direction. If no
triangle is found in this way, then any triangle in G must be composed of three high degree vertices.
As there are at most 2E/∆ high degree vertices, we can check whether there exists such a triangle
using matrix multiplication in O((E/∆)ω) time. The total complexity of the algorithm is therefore

O(E ·∆ + (E/∆)ω) = O(E
2ω

ω+1 ).

This completes the proof. 2

We have not been able to utilize matrix multiplication to improve upon the result of Theorem 3.4
for k ≥ 4. This constitutes an interesting open problem.

4 Finding cycles in graphs with low degeneracy

An undirected graph G = (V, E) is d-degenerate (see Bollobás [Bol78], p. 222) if there exists an
acyclic orientation of it in which dout(v) ≤ d for every v ∈ V . The smallest d for which G is d-
degenerate is called the degeneracy or the max-min degree of G and is denoted by d(G). It can be
easily seen (see again [Bol78]) that d(G) is the maximum of the minimum degrees taken over all
the subgraphs of G. The degeneracy d(G) of a graph G is linearly related to the arboricity a(G) of
the graph, i.e., a(G) = Θ(d(G)), where a(G) is the minimal number of forests needed to cover all
the edges of G. The degeneracy of a directed graph G = (V, E) is defined to be the degeneracy of
the undirected version of G. It is easy to see that the degeneracy of any planar graph is at most 5.
Clearly, if G is d-degenerate then |E| ≤ d·|V |. The following simple lemma, whose proof is omitted,
is part of the folklore (see, e.g., [MB83]).

Lemma 4.1 Let G = (V, E) be a connected undirected graph G = (V, E). An acyclic orientation
of G such that for every v ∈ V we have dout(v) ≤ d(G) can be found in O(E) time.

Theorem 4.2 Let G = (V, E) be a directed or an undirected graph.

(i) Deciding whether G contains a simple cycle of length exactly 4k − 2, and finding such a cycle if

it does, can be done in O(E2− 1
k ·d(G)1−

1
k ) time.

(ii) Deciding whether G contains simple cycles of length exactly 4k− 1 and of length exactly 4k, and

finding such cycles if it does, can be done in O(E2− 1
k ·d(G)) time.

(iii) Deciding whether G contains a simple cycle of length exactly 4k + 1, and finding such a cycle if

it does, can be done in O(E2− 1
k ·d(G)1+

1
k ) time.

Proof : We show how to find a C4k+1 in a directed graph G = (V, E), if one exists, in

O(E2− 1
k · d(G)1+

1
k ) time. The proofs of the other claims are easier. If d(G) ≥ E

1
2k+1 , we can

use the algorithm of Theorem 3.4 whose complexity is O(E2− 1
2k+1 ) ≤ O(E2− 1

k ·d(G)1+
1
k ). Assume

therefore that d(G) ≤ E
1

2k+1 .

Let ∆ = E
1
k /d(G)1+

1
k . As d(G) ≤ E

1
2k+1 , we have that d(G) ≤ ∆. A vertex is said to be of high

degree if its degree is more than ∆ and of low degree otherwise. As in the proof of Theorem 3.4,

5



we can check in O(E2/∆) time whether any of the high degree vertices lies on a C4k+1. If none of
them lies on a C4k+1, we can remove all the high degree vertices along with the edges adjacent to
them from G and obtain a graph whose maximal degree is at most ∆. The degeneracy of a graph
can only decrease when vertices and edges are deleted and d(G) is therefore an upper bound on the
degeneracy of the graph obtained.

Suppose therefore that G is a graph with maximal degree ∆ and degeneracy d(G). To find a C4k+1

in G, it is enough to find all directed simple paths of length 2k and 2k+1 in G and then check, using
the algorithm described in the proof of Lemma 3.2, whether there exist a path of length 2k and a
path of length 2k + 1 that meet only at their endpoints.

In O(E) time we can get an acyclically oriented version G′ of G in which the out-degree of each vertex
is at most d(G′) ≤ d(G). The orientations of the edges in G and G′ may be completely different.

The number of paths, not necessarily directed, of length 2k + 1 in G, is at most

2·2E ·
k
∑

i=0

(

2k

i

)

∆id(G)2k−i = O(E∆kd(G)k).

To see this, consider the orientations, in G′, of the edges on a 2k + 1-path in G. In at least one
direction, at most k of the edges are counter directed. The number of paths of length 2k+1 in which
exactly i among the last 2k edges are counter directed is at most 2E ·

(2k
i

)

∆id(G)2k−i. The binomial

coefficient
(2k

i

)

stands for the possible choices for the position of the counter directed edges in the
path. Similarly, the number of paths of length 2k in G is O(E∆kd(G)k−1).

We can lower the number of paths of length 2k + 1 and 2k we have to consider by utilizing the
fact that a C4k+1 can be broken into two paths of length 2k + 1 and 2k in many different ways. In
particular, let C be a directed C4k+1 in G and consider the orientations of its edges in G′. As 4k + 1
is odd and as G′ is acyclic, C must contain three consecutive edges e2k, e2k+1 and e2k+2, the first two
of which have the same orientation while the third one has an opposite orientation. It is therefore
enough to consider all 2k + 1-paths that start with at least two backward oriented edges and all
2k-paths that start with at least one backward oriented edge. The orientations referred to here are
in G′.

The number of paths of length 2k + 1 in G whose first two edges are backward oriented in G′ is
O(E∆k−1d(G)k+1). To see this, note that any such path is composed of a directed path {e2k, e2k+1}
of length two, attached to an arbitrarily oriented path {e1, . . . , e2k−1} of length 2k − 1. The number
of paths of length 2k− 1 is, as shown earlier, at most O(E∆k−1d(G)k−1) and the number of directed
path of length two with a specified starting point is at most d(G)2. Similarly, there are at most
O(E∆k−1d(G)k) 2k-paths that start with a backward oriented edge.

It should be clear from the above discussion that all the required 2k + 1- and 2k-paths, whose total
number is O(E∆k−1d(G)k+1), can be found in O(E∆k−1d(G)k+1) time. Paths which are not properly
directed, in G, are thrown away. Properly directed paths are sorted, using radix sort, according to
their endpoints. Using Lemma 3.2 we then check whether there exist a directed 2k + 1-path and a
directed 2k-path that close a directed simple cycle. All these operations can again be performed in
O(E∆k−1d(G)k+1) time.

6



Recalling that ∆ = E
1
k /d(G)1+

1
k , we get that the over all complexity of the algorithm is

O(
E2

∆
+ E ·∆k−1d(G)k+1) = O(E2− 1

k d(G)1+
1
k ) .

This completes the proof of the Theorem. 2

As an immediate corollary we get:

Corollary 4.3 If a directed or undirected planar graph G = (V, E) contains a pentagon (a C5), then
such a pentagon can be found in O(V ) worst-case time.

By combining the ideas of this section, the O(E
2ω

ω+1 ) algorithm of Theorem 3.5 and the color-coding
method [AYZ94] we can also obtain the following result.

Theorem 4.4 Let G = (V, E) be a directed or undirected graph. A C6 in G, if one exists, can

be found in either O((E ·d(G))
2ω

ω+1 ) = O((E ·d(G))1.41) expected time or O((E ·d(G))
2ω

ω+1 · log V ) =
O((E ·d(G))1.41 ·log V ) worst case time.

Proof : We show how to find a C6 in an undirected graph G = (V, E), if one exists, in

O((Ed(G))
2ω

ω+1 ) expected time, or O((Ed(G))
2ω

ω+1 log V ) worst case time. The proof of the directed
case is similar.

In O(E) time we can get an acyclically oriented version G′ of G in which the out-degree of each
vertex is at most d(G). There are exactly six possible non-isomorphic orientations of a C6 of G in
G′ as shown in Figure 1. We refer to these orientations as A1, . . . , A6. Our algorithm outputs, for
each i = 1, . . . 6, whether G′ contains an Ai, thereby having an algorithm for detecting a C6 in G.

We show how to detect an A1 in G′, if it exists. The other cases are easier. As in [AYZ94], we color
the vertices of G′ randomly using 6 colors (i.e. every vertex receives a number between 1 and 6, all
numbers equally likely). Let c(v) denote the color of vertex v. Let A be a specific copy of an A1 in
G′. We say that A is well-colored if its vertices are consecutively colored by 1 through 6, and the
color 1 is assigned to one of the three vertices having only outgoing edges in A. (By ”consecutively
colored” we mean that each v ∈ A with c(v) < 6 has a neighbor u ∈ A with c(u) = c(v) + 1). The
probability that A is well-colored is 1

66 6 = 1
65 . We now show how to detect a well-colored copy of an

A1 deterministically, if it exists. Create a new undirected graph G∗ = (V ∗, E∗) defined as follows:

V ∗ = {v ∈ G′ : c(v) ∈ {2, 4, 6}}

E∗ = {(u, v) : c(u) = 2, c(v) = 6 ∃ w ∈ G′ c(w) = 1, (w, u), (w, v) ∈ G′}

∪ {(u, v) : c(u) = 2, c(v) = 4 ∃ w ∈ G′ c(w) = 3, (w, u), (w, v) ∈ G′}

∪ {(u, v) : c(u) = 4, c(v) = 6 ∃ w ∈ G′ c(w) = 5, (w, u), (w, v) ∈ G′}.

Clearly, V ∗ ≤ V . To create G∗, we examine each edge (w, u) ∈ G′ with c(w) odd. Suppose c(w) = 1
and c(u) = 2. We create edges in G∗ between u and all vertices v such that (w, v) ∈ G′ and c(v) = 6.
There are at most d(G)−1 such vertices. We therefore have E∗ < Ed(G) and G∗ can be constructed

7



A1 A2 A3 A5 A6A4

Figure 1: The possible orientations of C6 in G′.

in O(Ed(G)) time from G′. Clearly, there exists an undirected triangle in G∗ iff there exists a well-

colored A1 in G′. We can detect such a triangle in G∗ in O((E∗)
2ω

ω+1 ) = O((Ed(G))
2ω

ω+1 ) time using
the algorithm of Theorem 3.5. Notice that we have shown how to detect an A1 in G′, if it exists, in

expected time O(65(Ed(G))
2ω

ω+1 ) = O((Ed(G))
2ω

ω+1 ). As shown in [AYZ94], such a coloring scheme
can be derandomized at the price of an O(log V ) factor. 2

5 Finding cycles in sparse undirected graphs

To obtain the results of this section we rely on the following combinatorial lemma of Bondy and
Simonovits [BS74].

Lemma 5.1 ([BS74]) Let G = (V, E) be an undirected graph. If |E| ≥ 100k·|V |1+
1
k then G contains

a C2ℓ for every integer ℓ ∈ [k, n1/k].

By combining the algorithm described in the proof of Theorem 4.2 with an algorithm given in [YZ94]
we obtain the following theorem.

Theorem 5.2 Let G = (V, E) be an undirected graph.

(i) A C4k−2 in G, if one exists, can be found in O(E2− 1
2k

(1+ 1
k
)) time.

(ii) A C4k in G, if one exists, can be found in O(E2−( 1
k
− 1

2k+1
)) time.

Proof : We prove the second claim. The proof of the first claim is similar. Let d = 200k·E
1

2k+1 . If
d(G) ≥ d then, by the definition of degeneracy, there is a subgraph G′ = (V ′, E′) of G in which the
minimal degree is at least d. Such a subgraph can be easily found in O(E) time (see, e.g., [MB83]).

Clearly E′ ≥ dV ′/2 ≥ 100k ·V ′ ·E′ 1
2k+1 and therefore E′ ≥ (100k ·V ′)1+

1
2k ≥ 100k · (V ′)1+

1
2k . By

Lemma 5.1 we get that G′ contains a C4k and such a C4k can be found in O(V ′2) = O(E2− 2
2k+1 )

time using the algorithm given in [YZ94]. If, on the other hand, d(G) ≤ d, then a C4k in G, if one

exists, can be found in O(E2− 1
k ·d) = O(E2−( 1

k
− 1

2k+1
)) time using the algorithm of Theorem 4.2. It

is easy to check that E2− 2
2k+1 ≤ E2−( 1

k
− 1

2k+1
) with equality holding only if k = 1. In both cases, the

complexity is therefore O(E2−( 1
k
− 1

2k+1
)) as required. 2

8



6 Counting small cycles

A graph H = (VH , EH) is called k-cyclic for k ≥ 3, if it contains a sequence of vertices (v1, . . . vk, vk+1)
where (vi, vi+1) ∈ EH for i = 1 . . . k, vk+1 = v1 and ∪k

i=1{(vi, vi+1)} = EH . The number of such
sequences is denoted by ck(H). For example, an undirected triangle is k-cyclic for all k ≥ 3 except
for k = 4. Clearly, c3(C3) = 6. It is also not difficult to see that c5(C3) = 30. In fact, ck(Ck) = 2k
and for a directed Ck we have ck(Ck) = k.

Let A = AG be the adjacency matrix of a graph G = (V, E). Assume for simplicity that

V = {1, . . . , n}. Denote by a
(k)
ij = (Ak)ij the elements of the k-th power of A. The trace tr(Ak)

of Ak, which is the sum of the entries along the diagonal of Ak, gives us the number of closed walks
of length k in G. For a graph H, let nG(H) be the number of subgraphs of G isomorphic to H.
Clearly,

tr(Ak) =
∑

H

nG(H)ck(H).

If ck(H) 6= 0 then H is connected and has at most k edges. Also, H cannot be a tree on k + 1
vertices since each bridge must appear twice in a sequence. Hence, |VH | ≤ k. In fact, |VH | < k unless
H = Ck. We therefore obtain, for an undirected graph G = (V, E) :

nG(Ck) =
1

2k
[tr(Ak) −

∑

|VH |<k

nG(H)ck(H)]. (1)

(For a directed graph, replace the 1
2k factor by 1

k .) It follows that, for fixed k, if we can compute
nG(H) in O(f(n)) time for all k-cyclic graphs H with less than k vertices, and we can also compute
tr(Ak) in O(f(n)) time, then nG(Ck) can also be computed in O(f(n)) time.

We will show that for all k-cyclic graphs H, where 3 ≤ k ≤ 7, we can compute nG(H) in O(nω) time,
and hence we obtain:

Theorem 6.1 The number of Ck’s, for 3 ≤ k ≤ 7 in a directed or undirected graph G = (V, E) can
be found in O(V ω) time.

Proof : We prove the Theorem for the undirected case. The proof of the directed case is simpler.
Clearly, tr(Ak) can be computed in O(V ω) time using fast matrix multiplication. It remains to show
how to compute nG(H) for all k-cyclic graphs H, where 3 ≤ k ≤ 7 in O(V ω) time, where H is not a
Ck. Figure 2 lists all these graphs, ordered by their number of vertices. We have named these graphs
H1, . . . , H15 as reference. The only 3-cyclic graph is C3. The 4-cyclic graphs are H1, H2 and C4. The
5-cyclic graphs are C3, H5 and C5. The 6-cyclic graphs are H1, H2, C3, H3, H4, C4, H6, H9, H11 and
C6. The 7-cyclic graphs are C3, H5, H6, C5, H7, H8, H10, H12, H13, H14, H15 and C7. The following

list shows how to obtain nG(Hi). In all cases, the formulae reference at most O(V 2) values of a
(p)
ij for

some 1 ≤ p ≤ k and hence can be computed in O(V ω) time. We put di = a
(2)
ii to denote the degree

of vertex i.

1.

nG(C3) =
1

6
tr(A3).

9



2.
nG(H1) = |E| =

∑

1≤i<j≤n

a
(1)
ij .

3.

nG(H2) =
n
∑

i=1

(

di

2

)

.

4.

nG(C4) =
1

8
[tr(A4) − 4nG(H2) − 2nG(H1)].

5.
nG(H3) =

∑

(i,j)∈E

(di − 1)(dj − 1) − 3nG(C3).

6.

nG(H4) =
n
∑

i=1

(

di

3

)

.

7.

nG(H5) =
1

2
[

n
∑

i=1

a
(3)
ii (di − 2)].

Note that a
(3)
ii is twice the number of triangles that pass through vertex i.

8.

nG(C5) =
1

10
[tr(A5) − 10nG(H5) − 30nG(C3)].

9.

nG(H6) =
∑

(i,j)∈E

(

a
(2)
ij

2

)

.

Note that a
(2)
ij is the number of common neighbors of i and j.

10.

nG(H7) =
1

2
[

n
∑

i=1

a
(3)
ii

(

di − 2

2

)

].

11.
nG(H8) =

∑

(i,j)∈E

a
(2)
ij (di − 2)(dj − 2) − 2nG(H6).

Note that we must subtract 2nG(H6) to avoid the case when the two degree-one vertices of H8

are, actually, the same vertex.

12.

nG(H9) =
n
∑

i=1

(di − 2)
∑

j 6=i

(

a
(2)
ij

2

)

.

Note that
∑

j 6=i

(a
(2)
ij

2

)

is exactly the number of quadrilaterals in which i participates.

10



13.

nG(H10) =
n
∑

i=1

(
1

2
a

(3)
ii )(

∑

j 6=i

a
(2)
ij ) − 6nG(C3) − 2nG(H5) − 4nG(H6).

Note that (1
2a

(3)
ii )(

∑

j 6=i a
(2)
ij ) is simply the number of triangles through i times the number of

paths of length two that begin with i. However, we must only count such a triangle and such
a path if they are disjoint, so we must subtract appropriate occurrences of C3, H5 and H6.

14.

nG(H11) =
n
∑

i=1

(

1
2a

(3)
ii

2

)

− 2nG(H6).

15. Since we have already shown how to compute nG(H) for all 6-cyclic graphs, H, that are not
C6, we can use equation (1) to compute nG(C6).

16.
nG(H12) =

∑

(i,j)∈E

a
(2)
ij · a

(3)
ij − 9nG(C3) − 2nG(H5) − 4nG(H6).

Here we count the number of triangles through (i, j) and multiply each triangle by the number
of walks of length 3 between i and j. Since these walks need not be simple, or may intersect the
triangle, we may be actually counting C3, H5 or H6. Therefore, we subtract the appropriate
values.

17.

nG(H13) =
∑

(i,j)∈E

(

a
(2)
ij

3

)

.

18.

nG(H14) =
n
∑

i=1

(di − 2) · Bi − 2nG(H12)

where Bi is the number of C5 passing through i. The expression for Bi is:

Bi =
1

2
[a

(5)
ii − 5a

(3)
ii − 2a

(3)
ii (di − 2) − 2

∑

(i,j)∈E

a
(2)
ij (dj − 2) − 2

∑

(i,j)∈E

(
1

2
a

(3)
jj − a

(2)
ij )].

19.

nG(H15) =
n
∑

i=1

(
1

2
a

(3)
ii )(

∑

j 6=i

(

a
(2)
ij

2

)

) − 6nG(H6) − 2nG(H12) − 6nG(H13).

2

Similar formulae can be obtained, of course, for the number of octagons (C8’s) and even larger cycles.
To compute the number of octagons, however, we have to compute first the number of K4’s in the
graph, since a K4 is 8-cyclic. We do not know how to do this is less than O(V ω+1) time.

11



H4 H5

H7 H8

H14 H15

H1 H2 H3 H6

H9 H11

H13H12

H10

Figure 2: The k-cyclic graphs for 3 ≤ k ≤ 7.

References

[AYZ94] N. Alon, R. Yuster, and U. Zwick. Color-coding: a new method for finding simple paths,
cycles and other small subgraphs within large graphs. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, Montréal, Canada, 1994. To appear.

[Bol65] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar., 16:447–452, 1965.

[Bol78] B. Bollobás. Extremal graph theory. Academic Press, 1978.

[BS74] J.A. Bondy and M. Simonovits. Cycles of even length in graphs. Journal of Combinatorial
Theory, Series B, 16:97–105, 1974.

[CN85] N. Chiba and L. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on
Computing, 14:210–223, 1985.

[IR78] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,
7:413–423, 1978.

[MB83] D.W. Matula and L.L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM, 30:417–427, 1983.

[Mon85] B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics, 25:239–254,
1985.

12



[PY81] C.H. Papadimitriou and M. Yannakakis. The clique problem for planar graphs. Information
Processing Letters, 13:131–133, 1981.

[Ric86] D. Richards. Finding short cycles in a planar graph using separators. Journal of Algorithms,
7:382–394, 1986.

[YZ94] R. Yuster and U. Zwick. Finding even cycles even faster. In Proceedings of the 21st
International Colloquium on Automata, Languages and Programming, Jerusalem, Israel,
1994. To appear.

13


