Skip to main content
Log in

Error bounds for the method of alternating projections

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

Given a collection of closed subspaces of a Hilbert space, the method of alternating projections produces a sequence which converges to the orthogonal projection onto the intersection of the subspaces. A large class of problems in medical and geophysical image reconstruction can be solved using this method. A sharp error bound will enable the userto estimate accurately the number of iterations necessary to achieve a desired relative error. We obtain the sharpest possible upper bound for the case of two subspaces, and the sharpest known upper bound for more than two subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. [AA] V. M. Adamyan and D. Z. Arov, A general solution of a problem in linear prediction of stationary processes,Theory Probab. Appl.,13 (1968), 394–407.

    Article  MATH  Google Scholar 

  2. [A] N. Aronszain, Theory of reproducing kernels,Trans. Amer. Math. Soc.,68 (1950), 337–404.

    Article  MathSciNet  Google Scholar 

  3. [C] Y. Censor, Finite series-expansion reconstruction methods,Proc. IEEE,71 (1983), 409–419.

    Article  Google Scholar 

  4. F. Deutsch, Applications of von Neumann's alternating projections algorithm, inMathematical Methods in Operations Research (P. Kendrov, ed.), pp. 44–51, Sofia, 1983.

  5. [D2] F. Deutsch, Rate of convergence of the method of alternating projections, inParametric Optimization and Approximation (B. Brosowski and F. Deutsch, eds.), pp. 96–107, Birkhauser, Basel, 1985.

    Google Scholar 

  6. C. Franchetti and W. Light, On the von Neumann Alternating Algorithm in Hilbert Space, Report 28, Center for Approximation Theory, Texas A&M University, 1982.

  7. [F] K. Friedrichs, On certain inequalities and characteristic value problems for analytic functions and for functions of two variables,Trans. Amer. Math. Soc.,41 (1937), 321–364.

    Article  MathSciNet  MATH  Google Scholar 

  8. [H] I. Halperin, The product of projection operators,Acta Sci. Math.,23 (1962), 96–99.

    MathSciNet  MATH  Google Scholar 

  9. [HS] C. Hamaker and D. C. Solmon, The angles between the null spaces of X-rays,J. Math. Anal. Appl.,62 (1978), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  10. [I] S. Ivansson, Seismic borehole tomography—theory and computational methods,Proc. IEEE,74 (1986), 328–338.

    Google Scholar 

  11. [J] C. Jordan, Essay on the geometry ofn dimensions,Bull. Soc. Math. France,3 (1875), 103–174.

    Google Scholar 

  12. S. Kaczmarz, Angenaherte auflosung von systemen linearer gleichungen,Bull. Acad. Polon. Sci. Lett.,A (1937), 355–357.

    Google Scholar 

  13. [K2] T. Kato,A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  14. [N1] H. Nakano,Spectral Theory in Hilbert Space, Japanese Society for the Promotion of Science, Tokyo, 1953.

    MATH  Google Scholar 

  15. [N2] J. von Neumann, On rings of operators. Reduction theory,Ann. of Math.,50 (1949), 401–485.

    Article  MathSciNet  Google Scholar 

  16. [N3] J. von Neumann,Functional Operators, Vol. II, Princeton University Press, Princeton, NJ, 1950.

    Google Scholar 

  17. [P] M. Pavon, New results on the interpolation problem for continuous-time stationary-increments processes,SIAM J. Control Optim.,22 (1984), 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  18. [S1] H. Salehi, On the alternating projections theorem and bivariate stationary stochastic processes,Trans. Amer. Math. Soc.,128 (1967), 121–134.

    Article  MathSciNet  MATH  Google Scholar 

  19. [S2] R. R. Stoll,Set Theory and Logic, Dover, New York, 1961.

    Google Scholar 

  20. [T] K. Tanabe, Projection method for solving a singular system of linear equations and its applications,Numer. Math.,17 (1971), 203–214.

    Article  MathSciNet  MATH  Google Scholar 

  21. [W] N. Wiener, On the factorization of matrices,Comment. Math. Helv.,29 (1955), 97–111.

    MathSciNet  MATH  Google Scholar 

  22. [Y] D. C. Youla, Generalized image restoration by the method of alternating projections,IEEE Trans. Circuits and Systems,25 (1978), 694–702.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Office of Naval Research under Contract N00014-85-K-0255.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayalar, S., Weinert, H.L. Error bounds for the method of alternating projections. Math. Control Signal Systems 1, 43–59 (1988). https://doi.org/10.1007/BF02551235

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551235

Key words

Navigation