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State Representations of Linear Systems 
with Output Constraints* 

J. 1\1.Schumachert 

Abstract. We derive state space representations for linear systems that are 
described by input/state/output equations and that are subjected to a number of 
constant linear constraints on the outputs. In the case of a general linear system, 
the state representation of the constrained system is shown to be essentially 
nonunique. For linear Hamiltonian systems satisfying a nondegeneracy condition, 
there is a natural and unique choice of the representation which preserves the 
Hamiltonian structure. In the linear systems setting we give an algebraic proof that 
a system with n degrees of freedom under k constraints becomes a system with 
n - k degree of freedom. Similar results are obtained for linear gradient systems. 

Key words. Constrained linear system, Gradient systems, Hamiltonian systems, 
State representation. 

1. Introduction and Preliminaries 

The purpose of this paper is to contribute to the understanding of the relation 
between realization theory and physical modeling. Here, we understand "realiza
tion theory" in a broad sense, as the theory of equivalent system representations. 
"Physical modeling" is understood as the construction of dynamical models for 
physical systems using constitutive equations and element connections. 

l\1ethods for physical modeling, in the above sense, are basic ingredients in every 
engineering curriculum. Although this is not always made very explicit, the central 
issue addressed by these techniques is the transformation of a given system of 
differential and algebraic relations to another, more suitable, form. For instance, 
we may obtain a system description for an electrical network by writing down the 
equations that follow from the laws of Kirchhoff, Ohm, and Faraday. The resulting 
system of equations will in general involve algebraic as well as differential relations. 
The modeling problem is to obtain an equivalent description in standardized (for 
instance, input/state/output) form. The setting up of Lagrangian equations for 
constrained mechanical systems follows essentially the same route. 

The problem of transforming a system of algebraic and differential equations to 
a standardized form has also been considered in system theory, for instance, by 
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Rosenbrock [R2] and Luenberger [L2], and more recently by Willems [W2] and 
the author [S4]. However, it appears that these methods, which ~ere devel~ped for 
the class of general linear systems, are not able to bring out certam properties than 
we expect to see in the context of physical modeling. A sir_nple example :nay help 
to clarify this point. Consider two masses attached to sprmgs, ea~h. subject to. an 
external force, and assume that the motion is constrained by a ng:id connection 
between the two masses. Equations may be written down as follows: 

m1.Yi (t) + k1Yi (t) = U1 (t), 

m2Y2(t) + kzYz(t) = U2(t), 

Y1 (t) = Yz(t). 

(1.1) 

(1.2) 

(1.3) 

In the framework of Willems [W2], the "behavior" defined by these equations is 
simply the set of all trajectories (y 1("),y2 (·), u1(·), u2(·W that satisfy (l.1)-(1.3). 
Among these trajectories, there are harmonic solutions, for instance, 

y1 (t) = ri(t) =sin wt, 

u1 (t) = (k 1 - m1 w2 ) sin wt, 

u2 (t) = (k2 - m2 w2 ) sin wt. 

(1.4) 

(1.5) 

(1.6) 

These solutions show no value of w having a special significance. The situation 
changes, however, if we associate with each trajectory the function 

(1.7) 

which expresses the work done on the system. For the harmonic solutions above, 
we get 

(1.8) 

From this, we see that there is one particular value of w that leads to a nontrivial 
harmonic solution in which no work is done on the system: 

con= (kl+ k1 )1/2 
m1 + m2 

(1.9) 

Of course, wn is, according to common terminology, the natural frequency of the 
connected system. 

Our example is sufficiently general to warrant the conclusion that the natural 
frequencies of a connected system will in general not be recognized if we follow the 
viewpoint of [W2]. This is no surprise since the framework of [W2] is developed 
for the class of general linear systems, and, at this level, there is no notion of energy 
which serves to distinguish the "natural" frequencies from other frequencies. The 
same phenomenon occurs in any other setting for transformations of general 
systems oflinear equations, such as the one provided by [R2]. 

The present paper aims to explain the seeming discrepancy between modeling 
with the techniques of [W2] and [S4] on the one hand, and "physical modeling" 
on the other hand. We shall show that a link between the two can be formulated in 
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geometric terms, i.e., using particular structures of vector spaces, in the spirit of 
modern treatments of classical mechanics (see [AM]). Since our primary purpose 
is to establish the existence of this link, full generality will not be pursued; in 
particular, the treatment here is restricted to linear systems, and, even more in 
particular, to systems of algebraic and differential equations that can be written as 
standard input/state/output systems together with a number of static constraints 
on the outputs. Furthermore, we feel free to use additional assumptions (although 
not unreasonable ones) when this is convenient. Although we concentrate on 
the connection between the general linear case and the more specific cases of 
Hamiltonian linear systems and gradient linear systems, we can reasonably expect 
that the links established in the linear situation can be extended to the nonlinear 
case (see [S2] and [S3]). 

We now quickly review a number of definitions and results from linear algebra 
and from linear system theory that will be needed below. Consider first a linear 
system in input/state/output representation 

x(t) = Ax(t) + Bu(t), 

y(t) = Cx(t) + Du(t), 

( l.10) 

(1.11) 

where x(t), u(t), and y(t) take values in finite-dimensional linear spaces X, U, and 
Y, and where A, B, C, and Dare linear mappings between the appropriate spaces. 
To alleviate the notational burden, the time argument is often suppressed below. 
With the system (1.10)-(1.11), we associate the transfer matrix 

G(s) = C(sl - Ar 1 B + D. ( 1.12) 

The transfer matrix G(s) can be considered as a matrix over the field ~(s) of rational 
functions with real coefficients. The system (1.10)-(1.11) is said to be invertible if 
G(s) is invertible as a matrix over ~(s); similar definitions are used for left and right 
invertibility. Because G(s) as defined by (l.12) is regular at infinity, we can also 
consider G(s) as a matrix over the ring ~00 (s) of proper rational functions with real 
coefficients. The ring ~00 (s) is a principal ideal domain with a unique maximal ideal 
generated by the function s- 1; we can therefore obtain a Smith normal form of G(s) 
(see, for instance, p. 42 of [M 1]) in which all nonzero elements are of the form s-k;, 
ki ::=::: 0 (see [H 1] ). The indices ki are called the orders of the zeros at infinity of G(s). 

The orders of the zeros at infinity can also be expressed more directly in terms 
of the mappings A, B, C, and D. For this, we need the "V*-algorithm" (given on 
p. 91 of [W3] for the case D = 0, and in [Al] for the more general case in which 
D may be nonzero). Given A, B, C, and Das mappings between the state space X, 
the output space Y, and the input space U, define 

yo= X, ( 1.13) 

Vk+ 1 = {x E Vk!3u EU such that Ax+ Bu E Vk and Cx +Du= 0}. (l.14) 

This defines a decreasing sequence of subspaces of X. Because dim X is finite, there 
must be some value of k for which Vk+ 1 equals Vk, and then Vk+i will be equal to 
Vk for all j ::=::: 0. This limit subspace is denoted by V*(A, B, C, D) or simply by V* 
if the reference is clear. Now, it has been shown in [M2] (see also [NS]) that the 
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number of zeros at infinity of order 2 k of the system (1.10)-(1.11) is, for k 2 1, 
equal to 

Pk = dim(vk-l n B[ker DJ) - dim(V* n B[ker D]). (1.15) 

When D = 0, there are no zeros at infinity of order zero so that p1 is equal to the 
rank of the transfer matrix: 

rank G(s) = dim im B - dim(im B n V*). (1.16) 

This formula was first proved, by a different method, in [CM]. For the "D #- O" 
case, we have 

dim ker G(s) = dim{u E UIBu E V* and Du= O}. (l.17) 

The subspace V* is the maximal subspace V of X having the property that there 
exists a feedback mapping F: X-+ U such that 

(A+ BF)V c V (1.18) 

and 

V c ker(C + DF) (1.19) 

(see [W3] and [Al]). 
The system (l.10)-(1.11) is said to have uniformly kth order zeros at infinity if it 

is invertible and all its zeros at infinity are of order k. If k = 0, this simply means 
that D must be invertible. For larger values of k, it is easily verified that (1.10)-(1.11) 
has uniformly kth-order zeros at infinity if and only if D = 0, CAi B = 0 for j = 0, 
... , k - 2, and CAk-l Bis invertible. Also, in this case, it is seen from the defining 
algorithm (l.13)-(1.14) that 

V*= Vk=kerCnkerCAn···nkerCAk-i_ (1.20) 

Now, let us recall some definitions from linear algebra that will be needed below 
(see, for instance, Chapter XIII of [Ll]). Let X be a vector space over a field K of 
characteristic =I- 2. A symmetric form on X is a bilinear mapping f: X x X -+ K that 
satisfies f(x 1 , x 2 ) = f(x 2 , x 1 ) for all x1 and x2 in X. The form is said to be non
degenerate if f(x 1 , x2 ) = 0 for all x 2 in X only if x1 = 0. We use square brackets 
below as a notation for symmetric forms, so we write [x 1 , x 2 ] rather than f(x 1 , x 2 ). 

Note that positively is not required in the definition of a symmetric form. A linear 
mapping A: X-+ X is said to be symmetric with respect to [ ·, ·] if 

(1.21) 

for all x 1 and x 2 in X. 
A bilinear mapping g: X x X--+ K is said to be an alternating form if g(x 1 , x 2 ) = 

-g(x2 , x 1) for all x 1 and x 2 in X. The form is said to be nondegenerate under the 
same condition as in the symmetric case. We use round brackets to denote alter
nating forms, writing (x 1 , x 2 ) rather than g(x 1, x 2 ). A vector space equipped with a 
nondegenerate alternating form is called a symplectic space; such spaces are always 
even-dimensional [Ll, p. 371]. For a symplectic space, we can always find a 
symplectic basis, i.e., a basis in which the alternating form (x 1 , x 2 ) can be written as 
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xf Jx2 with 

l=C -/) 0 . 

Given a subspace V of a symplectic space X, its symplectic orthoplement is 

V(J_) = {x E XJ(v, x) = 0 for all v E V}. 

65 

(1.22) 

(1.23) 

Simple rules such as dim v<J_> = codim V and (V n W)<J_l = v<J_> + w<J_l are freely 
used. 

Now, let U and Y be vector spaces over a field K. A bilinear mapping h: U x Y-K 
is called a duality between U and Y ifit is nondegenerate in the sense that h(u, y) = 0 
for all u E U implies y = 0, and h(u, y) = 0 for ally E Y implies u = 0. Dualities are 
denoted below by sharp brackets: we write (u, y) rather than h(x, y). Spaces that 
are connected by a duality must have equal dimension. If Y1 is a subspace of Y, its 
orthogonal space is the subspace of U that is defined by 

Y/ = {u E UJ(u, y) = 0 for ally E Yi}. (l.24) 

Again, simple rules concerning dimensions and concerning sums and intersections 
are used without comment. 

If X is a space equipped with a symmetric form, then every subspace of X can 
also be equipped with a symmetric form in a natural way; we simply take the 
restriction of the form to the given subspace. The same is not true for symplectic 
spaces, as is already evident from the fact that symplectic spaces must have even 
dimension. However, we do have the following result. 

Lemma 1.1. Let X be a symplectic space and let V be a subspace of X. Let W be a 
complement of V n v<J_l in V. Under these conditions, W is a symplectic space with 
respect to the restriction of the alternating form on X to W 

Proof. There is a natural isomorphism between W and the factor space 
V/(V n V(J_l), and this isomorphism makes the restricted alternating form on W 
correspond to the induced alternating form on the factor space. It is easily seen that 
V/(V n V(J_>) is symplectic with respect to the induced form. • 

In a similar fashion, we can prove that if U and Y are dual spaces and Y1 is a 
subspace of Y, then there is a natural induced duality between Y1 and any comple
ment of Y/ in U. 

2. The General Linear System Case 

Consider a linear system in input/state/output form: 

x(t) = Ax(t) + Bu(t), 

y(t) = Cx(t) + Du(t). 

(2.1) 

(2.2) 

Now assume that we constrain the outputs to lie in a certain subspace of the output 
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space Y: 

(2.3) 

The three equations (2.1)-(2.3) still describe a linear system in the sense of [Wl] 
(the set of input/output functions (u( · ), y( ·)) for which there exists a state function 
x( ·)such that (2.1), (2.2), and (2.3) are satisfied forms a linear subspace of the vector 
space of all input/output functions), but it is, of course, not a description in state 
space form. So we may ask how to obtain minimal state representations for the 
system described by (2.1)-(2.3). We have to specify a notion of equivalence of course; 
we use external equivalence (see [Wl], [BY] and [S4]). As a matter of fact, the 
question just posed is a particular instance of a problem for which a solution 
algorithm was given in [S4]. So we only have to see what the procedure in that 
paper leads to for the special case at hand. 

Let H be a linear mapping acting on Y such that ker H = Y1 • Let V* ( Y1 ) denote 
the subspace V*(A, B, HC, HD) of X. In other words, V*(Y1) is the limit of the 
sequence of subspaces defined by 

~=~ ~~ 

Vk+l = {x e Vkl3u e U such that Ax+ Bue Vk and Cx +Due Yi}. (2.5) 

Decompose X as X = X1 E9 X 2 where X1 = V*(Y1). Let the mapping F: X - Ube 
such that V*(Y1) is (A+ BF)-invariant and (C + DF)V*(Yi) c: Y1 ; we can always 
arrange that ker F contains X2 (this simplifies the notation somewhat, but is 
otherwise inessential). Equations (2.1) and (2.2) may now be rewritten in the form 

X1 = (A11 + B1Fi)x 1 + A 12x 2 + B1 (u - F1 x 1 ), 

x2 = A22 x 2 + B2 (u - F1 x 1 ), 

y = (C1 + DFi)x 1 + C2 x 2 + D(u - F1 xi). 

(2.6) 

(2.7) 

(2.8) 

By construction, we have H(C1 + DF1) = 0, so that the restriction (2.3) can be 
written as 

HC2 x 2 + HD(u - F1x 1) = 0. (2.9) 

We temporarily introduce new inputs by defining 

u - F1x1 = [G1 G2J (~:). (2.10) 

where G = [G1 G2 ] is an invertible mapping satisfying 

im G1 = {u e UIBu e V*(Yi) and Due Y1 }. (2.11) 

This gives us the equations B2 G1 = 0 and HDG1 = 0. We can now rewrite (2.7) as 

x2 = A22 x2 + B2 G2v2 , 

whereas the constraints can be formulated as 

(2.12) 

(2.13) 

It is shown in [S4] that the only solution of the set of differential and algebraic 
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equations given by (2.12) and (2.13) is the zero solution x2 (t) = 0, v2 (t) = 0. So, the 
input/output trajectories of the system (2.1)-(2.2) that satisfy the constraint (2.3) are 
described by 

x1 = (A 11 + B1F1)X1 + B1 G1 V1, 

y = (C1 + DFi)x 1 + DG1 vt> 

u = GiV1 + F1X1. 

(2.14) 

(2.15) 

(2.16) 

Now, we want to eliminate the auxiliary input v1 in order to arrive at a description 
in standard state space form. This can be done from (2.16) since G1 is injective. Write 

[G1 G2r 1 = (~:) 
so that v1 = K 1 u - K 1 F1 x1 . Equations (2.14) and (2.15) can be written as 

x1 = (A 11 + B1(1 - G1K 1)F1 )x1 + B1 G1K 1u, 

y = (C1 + D(I - G1Ki)Fi)x 1 + DG1 K 1 u, 

K 2u = K 2 F1x 1 • 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

This is the state space form derived in [S4]. Note that the original inputs u(t) have 
been split up into certain combinations K 1 u(t) which still function as inputs, and 
other combinations K 2 u(t) whose values are determined by the constraints. The 
latter variables are, therefore, described as outputs. 

The state space equations above can be rewritten to give them a slightly nicer 
appearance. By construction, we have K 1 G1 = I so that I - G1 K 1 is a projection 
with kernel 

ker(J - G1K 1) = im G1 = {u E UIBu E V*(Yi) and Du E Y1}. (2.21) 

The image of the projection is im G2 , which may be any complement in im G1 in 
U. Note that if F: X ~ U is any mapping which acts on X 1 like (I - G1 K 1 )F1, then 
F has the properties 

(2.22) 

and 
(2.23) 

and satisfies im F c im G2 ; and conversely, every F that fulfills these requirements 
agrees on X 1 with some mapping of the form (I - G1K 1 )F1 . Therefore, if we 
coordinatize U as V1 E8 U2 where 

V 1 = {u E UIBu E V*(Y1) and Du E Yi} (2.24) 

and U2 is an arbitrary complement of U1 , then equations (2.18)-(2.20) can be written 
in the form 

x1 =(A+ BF) 11 x 1 + B11 u1, 

Y = (C1 + D2F2dx1 + D1u1, 

(2.25) 

(2.26) 

(2.27) 
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where: 

(i) F satisfies (2.22) and (2.23), and 

(ii) F21 is the restriction of F to V*(Yi) considered as a mapping into V2 ; 

(iii) (A+ BF)11 is the restriction of A +BF to V*(Yi); 
(iv) B11 is the restriction of B to Vi taken as a mapping into V*(Yi); 
(v) Ci is the restriction of C to V*(Yi). 

So, we can summarize our conclusions as follows. 

(2.28) 

Theorem 2.1. Consider the system (2.1)-(2.3). Let V*(Y1 ) be the limit of the sequence 
(2.4)-(2.5), and let U1 be defined by (2.24). For any complement U2 of U1 in U, there 
exists a mapping F: X -t U with im F c V2 that satisfies (2.22) and (2.23), and the 
associated system (2.25)-(2.27) is externally equivalent to (2.1)-(2.3). Moreover, the 
action of Fon V*(Y1) (and hence, the system (2.25)-(2.27)) is determined uniquely by 
the requirements (2.22), (2.23), and im F c V2 • 

Proof. It remains to prove the uniqueness claim. Let F and F' both satisfy the 
conditions (2.22), (2.23), and (2.28). Take x e V*(Yi), and write Fx = u, F'x = u'. It 
follows from (2.22) and (2.23) that B(u - u') e V*(Yi) and D(u - u') e Yi. so that 
u - u' e U1 by the definition of U1 . However, from (2.28) we also see that u - u' e 
U2 • Because Vi n V2 = {O}, it follows that u = u', and the claim is proved. • 

Corollary 2.2. In the situation of the theorem, the reduction of the number of inputs 
that results from imposing the constraint (2.3) is equal to 

m,.d = codim Y1 - codim(Yi + im G(s)). (2.29) 

Proof. The theorem that we just proved shows that the number of inputs in the 
constrained system is equal to 

me= dim{u E VJBu E V*(Y1) and Du E Y1 }. (2.30) 

Let H denote any mapping such that ker H = Y1; then (1.17) shows that the above 
quantity is equal to the dimension of the kernel of the rational mapping HG(s). 
Denoting the original number of inputs by m =dim U, we can write 

mred = m - me= dim U - dim ker HG(s) =dim im HG(s) 

= dim im G(s) - dim[im G(s) n ker HJ 

= dim[im G(s) + Y1] - dim Y1, 

which is equivalent to (2.29). 

(2.31) 

• 
Remark 2.3. The number of independent constraints is given by codim Y1 . So, the 
corollary states in particular that the number of inputs can never be reduced by an 
amount larger than the number of independent constraints. 
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It is seen that the constraints will not reduce the number of inputs if and only if 
the transfer matrix G(s) maps into the constraint subspace Y1 • In general, we can 
say that only constraints on outputs that depend on the controllable part of the 
system will reduce the number of inputs. 

An important thing to note in the theorem is that, once a choice has been made 
for a complement of U 1 = { u E U I Bu E V* ( Y1) and Du E Y1 } in U, the minimal state 
representation of (2.1)-(2.3) is essentially unique. So, the ambiguity of choosing a 
state representation for a system under output constraints is parametrized by the 
freedom we have in selecting a complement to a given subspace of the input space. 

3. Hamiltonian Systems 

We use the following definition of a linear Hamiltonian system in state space form, 
which is easily seen to be compatible with the definition given on pp. 111 and 150 
of [Sl]. 

Definition 3.1. Consider a linear system in input/state/output form 

x(t) = Ax(t) + Bu(t), 

y(t) = Cx(t). 

(3.1) 

(3.2) 

Assume that the state space X is equipped with a symplectic form denoted by ( ·, · ), 
and that the input and output spaces U and Y are dual with respect to a duality 
denoted by<·, ·).The system (3.1)-(3.2) is said to be Hamiltonian if the following 
conditions are satisfied: 

(i) (Ax1 , x 2 ) defines a symmetric form on X; 
(ii) (x, Bu) = ( Cx, u) for all x EX and u E U. 

We also assume that Bis injective. 

The assumption on the injectivity of the input mapping B helps to avoid some 
uninteresting singularities. Note that this assumption, under condition (ii), also 
implies that the output mapping C is surjective: u E ker B is equivalent to 0 = 
(x, Bu) = < Cx, u) for all x, i.e., u E ker B if and only if u E (im C)J.. 

For a Hamiltonian system (3.1)-(3.2), the quadratic form H(x) =!(Ax, x) is 
called the Hamiltonian of the system, or the energy. The system is said to be 
time-reversible if CA 2k B = 0 for all nonnegative integers k (see p. 200 of [S 1] for a 
motivation of the terminology). 

We now want to add the output constraint 

y(t) E Y1 for all t. (3.3) 

To apply the general result, Theorem 2.1, we have to compute V*( Y1 ) and select a 
complement U2 to the subspace V1 defined by (2.24). In the general situation, there 
are no special candidates for the role of U2 , and all complements of V1 are equally 
qualified. In the case of a Hamiltonian system, however, there is one particular 
candidate, namely the subspace Y/ perpendicular to the constraint subspace Y1 . 
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Under suitable circumstances, this is indeed a complement of U1 ; one possible set 
of sufficient conditions is given in the lemma below. 

Lemma 3.2. Let (3.1)-(3.2) be a Hamiltonian system, and assume it has uniformly 
second-order zeros at irifinity (i.e., CB= 0 and CAB is invertible). Let a subspace Y1 

of Y be given. Under these conditions, the subspace V*(Y1 ) is given by 

V*(Yi) = {x E XICx E Y1 and CAx E Yi}, (3.4) 

and Y/ is complementary to the subspace U1 = {u E UIBu E V*(Yi)} if and only if 

CABY1i n Y1 = {O}. (3.5) 

Proof. Following the defining algorithm (2.4)-(2.5), we get (because CB = 0) 

V1{Y1) = {x E XI Cx E Yi}, (3.6) 

V2(Y1) = {x E XICx E Y1 and CAx E Y1 }, (3.7) 

V3(Yi) = {x E V2 (Y1)13u EU such that CA 2 x + CABu E Yi}. (3.8) 

Because CAB is invertible, we have V3 (Yi) = V2 (Y1), so that V*(Yi) = V2 (Yi) is 
given by (3.7). Therefore, again using CB= 0, we obtain 

1/1 = {u E UICABu E Yi}= (CAB)-1 Y1 (3.9) 

which shows that the dimensions of U1 and Y1 are equal. So, Y/ is a complement 
to U1 if and only if Y/ n U1 = {O}; by (3.9), this is equivalent to (3.5). 11 

Remark 3.3. It should be noted that (3.5) will hold for every subspace Y1 of Y if 
the matrix CAB is positive definite. This is easy to see; suppose u E Y/· is such that 
CABu E Y1, then we will have 

(CABu, u) = 0. (3.10) 

If CAB is positive definite, this implies that u = 0. The positive definiteness condi
tion can be interpreted in physical terms. If u(t) has the dimension of a force and 
y(t) that ofa displacement, then (CABr1 will have the dimension of a mass. Under 
the conditions of the theorem (uniformly second-order zeros at infinity), the matrix 
(CABr1 is the leading term in the power series development around infinity of the 
inverse transfer function: 

c-1 (s) = ( CABr1 s2 + lower-order terms in s. (3.11) 

In a simple mechanical vibratory system of the form My+ Ky = u, the inverse 
transfer function (also called "mechanical impedance," see for instance p. 119 of 
[DJ) is obviously given by 

a-1(s) = Ms2 + K (3.12) 

and the mass matrix M might be determined from the impedance by multiplying 
by s- 2 and taking the limit ass goes to infinity. Following the same procedure for 
(3.11) would give (CABr 1 as a result, and so we call this matrix the effective mass 
matrix of the system (3.1)-(3.2). The requirement that CAB is positive definite can 
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now be formulated as: the effective mass matrix of (3.1)-(3.2) should be positive 
definite. 

If we let C11 denote the restriction of C to V*(Y1) taken as a mapping into Y1 , 

and if we coordinatize Y as Y1 EB Y2 where Y2 is an arbitrary complement to Y1, 

then it already follows from Theorem 2.1 that an equivalent state space form for 
equations (3.1) and (3.2) under the constraint (3.3), with state space X 1 = V*(Yi), is 
given by 

Y1 = Cux, 

U2 = F21X1, 

Y2 = 0, 

where F is any mapping satisfying 

(A+ BF) V*(Y1 ) c: V*(Y1). 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The notation here is as in the previous section; note that the requirement (2.23) is 
automatically satisfied in cases, such as the one considered in this section, where 
the mapping D is equal to zero. The following theorem, which is the main result of 
this section, states what more can be said when F is chosen such that its range space 
lies in the particular subspace Y/. Similar results were given in (S3] (for a much 
more general situation than considered here) and in [H2], but in these it was not 
proved that these equations do indeed give an equivalent representation of the 
original system with constraints. 

Theorem 3.4. Let (3.1)-(3.2) be a Hamiltonian system with uniformly second-order 
zeros at infinity. Let Y1 be a subspace of Y, and consider the system (3.1)-(3.2) with 
the constraint (3.3). If the complementarity condition (3.5) is satisfied, a feedback 
mapping ranging in Y/ may be selected that satisfies (3.17). The state space of the 
equivalent description (3.13)-(3.16) is then a symplectic space with respect to the form 
it inherits from the original state space X, and (3.13)-(3.14) is a Hamiltonian system 
with respect to this symplectic form and the induced duality between Y1 and U1 = 
{ueUIBueV*(Y1)}. Finally, the energy function of (3.13)-(3.14) is the energy 
function of (3.1)-(3.2) restricted to X 1 • 

Proof. To show that X1 = V*(Yi) inherits a symplectic structure from X, we use 
Lemma 1.1 with {xlCx e Y1 } in the role of the subspace V and V*(Y1 ) in the role 
of the subspace W. First, we note that the symplectic orthoplement of { xl Cx e Y1 } 

is equal to BY/, because 

{xlCx e Yi}= {xl(Cx, u) = 0 for all u e Y/} 

= {xl(x, Bu) = 0 for all u E Y/} = (BY/)<.L>. (3.18) 

It follows from CB = 0 that BY/ is contained in { xl Cx e Y1 }, so that, obviously, 

{xl Cx E Yi} n {xl Cx e Yi}<J.> =BY/. (3.19) 
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Therefore, Lemma 1.1 will give us the result we want if we can show that V*( Y1) is 
a complement of BY/ in {xlCx E Yi}. To show that the two subspaces intersect 
only in 0, assume that u E Y/ is such that Bu E V*( Y1 ). It follows from (3. 7) that 
CABu E CABY/ n Y1 = {O}. Because CAB is invertible, this indeed proves that 
u = 0. To complete this part of the proof, we have to show that {xlCx E Yi}= 
V*( Yi) + BY/. Take x such that Cx E Y1; we have to find u E Y1J_ such that 
x - Bu E V*(Y1 ). Because CABY/ is a complement of Y1 in the output space Y, 
there exists a u E Y/ such that 

CAx - CABu E Y1 • (3.20) 

Because we also have C(x - Bu) = Cx E Y1 , we see that x - Bu E V2(Y1 ) = V*(Yi), 
as desired. 

Now, since F maps into Y/ and B Y1J_ is contained in the symplectic orthoplement 
of V*( Yi), we have 

(3.21) 

for x 1 and x2 from V*(Yi). It follows that condition (i) in the definition of a 
Hamiltonian system is satisfied, and that the Hamiltonian of the constrained system 
is the restriction to V*(Y1 ) of the Hamiltonian of the original system. Because U1 

is a complement to U2 = Y1J_, the duality between U and Y can be restricted to a 
duality between U 1 and Y1 • It follows immediately that condition (ii) in the definition 
of a Hamiltonian system is also satisfied by the constrained system. 111111 

Remark 3.5. Suppose that the dimension of the original state space is 2n, and that 
we impose k constraints; i.e., the codimension of Y1 is k. Under the conditions of 
the theorem, we know that the state space of the constrained system, V* ( Y1 ), is a 
complement to BY/ in {x!Cx E Yi}. Because Bis injective and C is surjective, it 
follows from this that the dimension of V*(Y1 ) is 2n - 2k. This is the well-known 
property that "a system with n degrees of freedom under k constraints becomes a 
system with n - k degrees of freedom." We have given here an algebraic proof of 
this fact; in textbooks, we usually find proofs that are based on some limit argument 
(see the classical reference [Rl], but also the more recent treatment in [A2]). 

We have seen that, under mild conditions, output constraints on a Hamiltonian 
system uniquely define a new Hamiltonian system. Some properties of the original 
system will go over to the constrained system; such properties are called "hered
itary." In the following proposition, we list a number of hereditary properties. 

Proposition 3.6. Under the conditions of Theorem 3.4, the constrained system (3.13)
(3.14) will have uniformly second-order zeros at irifinity. If the original system (3.1)
(3.2) has a positive definite effective mass matrix, then the same will be true for the 
constrained system. If the original system is time-reversible, then so is the constrained 
system. 

Proof. We use the notation of the theorem. Because CB= 0, we have 
C(A + BF)B = CAB. This shows immediately that C11 (A + BF)11 B11 is injective 
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and hence invertible. The fact that CB = 0 also implies that C1 iBi1 = 0, and so we 
have shown that constrained system has uniformly second-order zeros at infinity. 

Now, assume that the effective mass matrix of the original system, (CAB)-i, is 
positive definite. Take u from U1. Using (3.21), we can write 

(C11 (A + BF) 11 B11 u, u) =((A+ BF)Bu, Bu) = (ABu, u) = (CABu, u);::::: 0, 
(3.22) 

with equality if and only if u = 0. We see that the matrix (C11 (.A + BF)11 B11 )-1 is 
also positive definite, which proves our second claim. 

It remains to show that the property of time-reversibility is hereditary. We first 
show that the following property holds for all k ~ 0: 

((A+ BF)kxi, x 2 ) = (Akx 1, x2 ) (xi, x2 E V*(Yi)). (3.23) 

This property is trivially true fork = 0, and its validity fork = 1 is asserted by (3.21). 
The general case is proved by induction: suppose that (3.23) holds for certain k, then, 
for x 1 and x 2 from V*(Yi), 

((A+ BFr1xi, x 2 ) = (A(A + BF)kxi. x 2 ) = (Ax 2 , (A+ BF)kxi) 

= -((A+ BF)kx1, Ax2 ) = -(Akx 1, Ax2 ) = (Ax2 , Akxi) 

(3.24) 

In this derivation we used the validity of the formula fork = 1, condition (i) in the 
definition of a Hamiltonian system, the sympletic property, the induction assump
tion, the symplectic property again, and condition (i) again. Now, suppose that the 
original system is time-reversible, i.e., the mappings appearing in (3.1)-(3.2) satisfy 
CA 2 k B = 0 for all k ~ 0. By condition (ii) of the definition and the property that we 
just proved, it then follows that 

(C(A + BF)2k Bui, u2 ) = 0 (3.25) 

for all u1 and u2 from U1 , which, by the fact that U1 and Y1 are dual spaces, is enough 
to show that C11 ((A + BF)11 ) 2k B11 = 0 for all k ~ 0. • 

This proposition allows us to conclude, for instance, that any system that is obtained 
by putting linear constraints on the outputs in the Hamiltonian system My+ Ky = 
u (Mand K symmetric, M positive definite) is a time-reversible Hamiltonian system 
with a positive definite effective mass matrix. 

4. Gradient Systems 

The following definition of a linear gradient system in input/state/output form is 
used here; it is easily seen to be equivalent to the one given on p. 224 of [Sl]. 

Definition 4.1. Consider a linear system in input/state/output form (3.1)-(3.2). 
Assume that the state space X is equipped with a nondegenerate quadratic form 
denoted by [ ·, · ], and that the input and output spaces are dual with respect to a 
duality denoted by<·, ·).The system (3.1)-(3.2) is said to be a gradient system (with 
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respect to the quadratic form [ ·, ·] and the duality < ·, ·))if the following require
ments hold: 

(i) A is symmetric with respect to [ ·, · ]; 
(ii) [Bu, x] = <u, Cx) for all u e U and x e X. 

We also assume that Bis injective. 

As in the case of Hamiltonian systems, injectivity of B implies surjectivity of C. 
We call the quadratic form f[Ax, x] the generalized potential of the system; note 
that Ax may be seen ~s the gradient of t[Ax, x] with respect to the symmetric form 
[" . ]. 

We now consider the constraint (3.3) in this context. As before, we are looking 
for conditions under which we can define a constrained system which inherits, 
in a natural way, the special structure of the original system. We define U1 = 
{ujBu e V*(Y1)} as in the Hamiltonian case, and look for complements of U1 in U. 
Again, a natural candidate is Y/. It turns out that, as soon as this candidate 
qualifies, the description that we derive from it has all the desired properties. 

Theorem 4.2. Let (3.1)-(3.2) be a gradient system, considered under the constraint 
(3.3), and assume that Y/ is a complement to U1 = {ulBu e V*(Yi)} in U. Let 
F: X-+ U be a feedback mapping such that im F c Y/ and such that V*(Yi) is 
(A + BF)-invariant. The equivalent state space representation (3.13)-(3.16) is then 
such that (3.13)-(3.14) is a gradient system with respect to the restriction of the form 
[-, ·]to V*(Yi) and of the duality<-, ·)to the pair of spaces(U1 , Y1). The generalized 
potential function of this system coincides with the generalized potential of the original 
system restricted to V*(Y1). 

Proof. The fact that (3.13)-(3.16) is a representation of the system (3.1)-(3.2) under 
the constraint (3.3) follows from the general theory. Because F maps into Y/ and 
V*(Y1) is mapped by C into Y1 , we have 

[(A+ BF)x1 , x2] = [Ax 1 , x2 ] + <Fx1 , Cx2 ) = [Ax1, x 2 ] (4.1) 

for all x1 and x2 from V*(Yi). This shows that condition (i) of the definition of a 
gradient system is satisfied, and also that the generalized potentials of the uncon
strained system and the constrained system are equal on V*(Yi). The fact that the 
duality between U and Y can be restricted to U1 and Y1 follows from the assumption 
that U1 is complementary to Y/, and condition (ii) for the constrained system is 
then immediate from the corresponding property of the original system. • 

If the symmetric form on X is definite (i.e., [x, x] = 0 implies x = 0 so the form is 
either positive or negative definite), then we can show that the complementarity 
condition is satisfied for all possible restrictions. 

Proposition 4.3. Assume that the system (3.1)-(3.2) is a gradient system with respect 
to a nondegenerate symmetric form [" ·] in the state space X and a duality <" ·) 
between U and Y. Assume that the symmetric form [ ·, ·] is definite. Under these 
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conditions, the subspace U1 = {u E UIBu E V*(Yi)} is complementary to Y/ for any 
subspace Y1 of Y. 

Proof. We first show that the definiteness of the symmetric form on X implies 
that CB is invertible. Because CB is square, it is sufficient to prove the injectivity. 
So, suppose that CBu = O; then 

[Bu, Bu] = (CBu, u) = 0 

which implies that u = 0. From the invertibility of CB, it follows that 

V*(Y1)= {xEXjCxE Y1 }. 

As a consequence, we have 

U1 = {u E UICBu E Yi}= (CBt 1 Y1. 

(4.2) 

(4.3) 

(4.4) 

This shows that dim U1 + dim Y/ = dim U, so that the complementarity condition 
will hold if U1 n Y/ = {O}. 

For gradient systems in general, we have 

{xlCx E Yi}= (BYi)l-11 (4.5) 

(proof as in the Hamiltonian case, see (3.18)). When the form is definite, this implies 
that V*(Y1 ) has zero intersection with BY/. Now, take u E U1 n Y1.L; then Bu E 

V*(Yi) n Y1.L = {O}, so that u = 0. II 

In gradient systems that arise as descriptions of RLC networks, the form on the 
state space X is usually not definite, unless we have either no capacitors or no 
inductors in the network. In order to obtain suitable sufficient conditions for output 
constraints to be well behaved in the context of general RLC networks, a further 
analysis of the gradient systems defined by such networks should be undertaken 
(following up on the work in [BM]); however, we will not do this here. 

The invertibility of the mapping CB, which, as we have seen, holds automatically 
when the form on X is definite, is in itself already enough to obtain the expression 
(4.3) for V*(Yi). This allows us to draw the conclusion that a gradient system with 
uniformly first-order zeros at infinity and with state space dimension n ("n degrees 
of freedom") becomes a system with n - k degrees of freedom if k linear constraints 
are imposed on the outputs. Note that the property of having uniformly first-order 
zeros at infinity is "hereditary": if the original system (3.1)-(3.2) has this property, 
then the same holds for the constrained system (3.13)-(3.14): C maps V*(Y1 ) into 
Y1 , and this implies that if C11 B11 u = 0, then CBu = 0, so that C11 B11 will be 
invertible if CB is. (We also use here the fact that the invertibility of CB implies that 
C11 B11 is square.) 

5. Examples 

We work out two simple examples in order to illustrate the abstract theory and to 
show that the theory leads to the answers that we should expect. 
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M echanica/ Example 

Our first example is the same as in Section 1. State space equations for a mass on 
an ideal spring can be written as follows: 

:t(:)(t)=(~k m;1)(~)(t)+G)u(t), (5.1) 

y(t) = [1 OJ(:) (t). (5.2) 

The force (input) is u(t), the displacement (output) is y(t). It is easily verified that the 
above equations constitute a Hamiltonian system with respect to the symplectic 
form 

( (~). (~)) = qp - qp (5.3) 

on X = IR 2 and the duality 

<u, y) = uy (5.4) 

between U = IR and Y = IR. The system has a second-order zero at infinity. Let 
us now take two such systems and connect them by requiring that the outputs 
(displacements) must be the same, i.e., the two masses are firmly attached to each 
other. The system before connection is described by the matrices 

( 

O mj1 

-k 0 
A= 0 i 0 

0 0 

0 ) (0 0) 0 B _ 1 0 

mf ' - ~ ~ , 
(5.5) 

and is a Hamiltonian system having uniformly second-order zeros at infinity with 
respect to the symplectic form 

(5.6) 

(5.7) 

between Y = IR 2 and U = IR 2• The connection constraint is expressed by 

y(t) E Y1 =span { G)}. (5.8) 



State Representations of Linear Systems with Output Constraints 77 

We readily compute that a basis for V*(Y1) is given by the two vectors 

We also have 

(!} (i:) (5.9) 

Y/ = span { ( ~ 1)}, (5.10) 

and so we are looking for a mapping F: X ~ U which ranges in this subspace and 
which is such that V*(Y1) becomes A +BF-invariant. Upon computing, we find 
that this requires 

F(~ :1)=(l)[m2k1-m1k2 oJ. 
1 0 -1 m 1 + m2 

0 m2 

(5.11) 

Here, we need that m1 + m2 is not equal to zero; note that this is precisely the 
condition for Y/- to be complementary to U1 . We assume that this condition is 
fulfilled. It then follows from (5.11) that the action of A + BF on V*( Yi) is given by 

(A+ BF)(~ ~') = (~ ~') (- k,O+ k, :) . (5.12) 

0 0 m1 + m2 m2 m2 

In order to obtain a matrix representation for the connected system, we have to 
select basis vectors in V*(Y1 ), U1 , and Y1 . It is not difficult to show (see p. 200 
of [Sl]) that "canonical" bases may be chosen in the following way for every 
Hamiltonian system (3.1)-(3.2) satisfying CB = 0. First select an arbitrary basis for 
the output space Y. Next, determine the dual basis U1' ... ' um for the input space U. 
Finally, it is possible to find a symplectic basis {q 1 , ... , qn, p 1 , •.. , p n} for the state 
space X in such a way that Bui = Pn-m+i for i = 1, ... , m. 

We can carry out this procedure in the case at hand. A basis vector for the output 
space Y1 is [l l]T. The dual basis vector in U1 is (m1 + m2r 1 [m1 m2]T. A 
corresponding symplectic basis for X is given by 

The matrices describing the connected system are then 

(A BF) = ( 0 (m1 + m2r 1
) (0) + i1 -(k1 + k1) 0 ' Bll = 1 ' 

(5.13) 

C11 = [1 O]. 

(5.14) 
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An Electrical Network 

For our second example let us consider the parallel connection of two capacitors. 
Before connection, the two capacitors can be described by the equations 

:J::) (t) = o. (::) (t) + G ~) (~J (t), 
(~:)(t) =(et c~1)(::)(t), 

(5.15) 

(5.16) 

where the inputs are currents and the outputs are voltages, and C1 and C2 are the 
capacitances of the two capacitors. This system is a gradient system with respect to 
the quadratic form 

[ (::} (::) J = c11 xf + c;1 x~ (5.17) 

on X and the duality 

( (~:} (::)) = Y1U1 + Y2U2 
(5.18) 

between Y and U. Now, establishing a parallel connection between the two capaci
tors means that the voltages across the two capacitors must be equal, which leads 
to the output constraint 

Y1 (t) = Yi(t). (5.19) 

So the constraint subspace Y1 is given by 

(5.20) 

We easily compute that 

(5.21) 

so that U1 is complementary to Y/· = span { [1 - l]T} if and only if C1 ":f - C2 . 

Assuming this, we have to find a feedback mapping F ranging in Y/ such that 
V*(Y1) =span {[C1 C2]T} becomes (A + BF)-invariant. This is satisfied by taking 
F = 0, which leads to (A+ BF)11 = 0. We can take [1 lF as a basis vector for 
Y1; the dual basis vector in U1 is (C1 + c2r 1 [C1 C2 ]r. Taking (nominally) the 
same vector as a basis vector for X1 , we obtain B11 = 1. Finally, C11 is then given 
by (C1 + C2 )-1, because 

(c11 o ) 1 (c1) 1 (1) (5.22) 
0 c;1 C1 + C2 C2 = C1 + C2 1 . 

The equations for the connected system now take the form 

x(t) = u(t), 

y(t) = (C1 + c 2r 1 x(t). 

(5.23) 

(5.24) 
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Here, the old inputs (currents) are expressed in terms of the new input by 

(U1) 1 (C1) 
Uz = C1 + C2 C2 u 

(5.25) 

so that the new input can be written in terms of the old inputs as 

(5.26) 

6. Conclusions 

It has been shown in this paper that the transformation of a linear with output 
constraints to standard input/state/output form leads to an essentially nonunique 
result, and that the indeterminacy can be described by the freedom we have in 
selecting a complement to a given subspace in the input space. For the more specific 
categories of linear Hamiltonian systems and linear gradient systems, the notion of 
energy, expressed through special vector space structures, serves to remove the 
indeterminacy, and leads to results that are familiar from physical modeling. We 
have thus shown how the general theory of transformations of linear systems can 
be connected to the standard methods of physical modeling, at least for the case of 
linear systems under output constraints. 

The analysis has also revealed a "nondegeneracy" condition, which appears in 
geometric terms as the requirement that two given subspaces should be comple
mentary. The viewpoint used in this paper seems less suitable for a treatment of the 
particular cases in which the complementarity condition does not hold. An alter
native framework for analysis can be set up by prescribing new external variables 
in conjunction with the output constraints. This point of view is currently under 
investigation. 
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