Skip to main content
Log in

Oblique projections: Formulas, algorithms, and error bounds

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

When an orthogonal projection is to be computed using data acquired by distributed sensors, it is often necessary to process each sensor's data locally and then transmit the results to a central facility for final processing. The most efficient way to do this is to compute oblique projections locally. This choice makes the final processing a matter of summing the oblique projections. In this paper we derive new formulas, and iterative algorithms and associated error bounds, for oblique projections in arbitrary Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. M. Adamyan and D. Z. Arov, A general solution of a problem in linear prediction of stationary processes,Theory Probab. Appl.,13 (1968), 394–407.

    Article  MATH  Google Scholar 

  2. S.N. Afriat, Orthogonal and oblique projectors and the characteristics of pairs of vector spaces,Math. Proc. Cambridge Philos. Soc.,53 (1957), 800–816.

    Article  MathSciNet  Google Scholar 

  3. N. Aronszajn, Theory of reproducing kernels,Trans. Amer. Math. Soc.,68 (1950), 337–404.

    Article  MathSciNet  MATH  Google Scholar 

  4. T.-S. Chang, Comments on “Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem”,IEEE Trans. Automat. Control,25 (1980), 609–610.

    Article  MATH  Google Scholar 

  5. D. Del Pasqua, On a concept of disjoint linear manifolds in a Banach space,Rend. Mat.,13 (1955), 406–422.

    Google Scholar 

  6. U.B. Desai and H.L. Weinert, A vector space approach to the indefiniteLQR problem,Internat. J. Control,39 (1984), 507–515.

    MathSciNet  MATH  Google Scholar 

  7. T.N.E. Greville, Solutions of the matrix equationXAX=X, and relations between oblique and orthogonal projectors,SIAM J. Appl. Math.,26 (1974), 828–832.

    Article  MathSciNet  MATH  Google Scholar 

  8. P.R. Halmos,Finite Dimensional Vector Spaces, Springer-Verlag, New York, 1974.

    MATH  Google Scholar 

  9. I. Halperin, The product of projection operators,Acta Sci. Math.,23 (1962), 96–99.

    MathSciNet  MATH  Google Scholar 

  10. C. Hamaker and D.C. Solmon, The angles between the null spaces of X-rays,J. Math. Anal. Appl.,62 (1978), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  11. D.C. Hyland and D.S. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore,IEEE Trans. Automat. Control,30 (1985), 1201–1211.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kato,A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  13. S. Kayalar and H.L. Weinert, Error bounds for the method of alternating projections,Math. Control Signals Systems,1 (1988), 43–59.

    MathSciNet  MATH  Google Scholar 

  14. J.D. Klein and B.W. Dickinson, A normalized ladder form of the residual energy ratio algorithm for PARCOR estimation via projections,IEEE Trans. Automat. Control,28 (1983), 943–952.

    Article  MATH  Google Scholar 

  15. E.R. Lorch, On a calculus of operators in reflexive vector spaces,Trans. Amer. Math. Soc.,45 (1939), 217–234.

    Article  MathSciNet  MATH  Google Scholar 

  16. V.E. Lyantse, Some properties of idempotent operators,Teoret, i Prikl. Mat.,1 (1958), 16–22.

    Google Scholar 

  17. F.J. Murray, On complementary manifolds and projections inL p andl p ,Trans. Amer. Math. Soc.,41 (1937), 138–152.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Pavon, New results on the interpolation problem for continuous-time stationary-increments processes,SIAM J. Control Optim.,22 (1984), 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  19. L.R. Riddle and H.L. Weinert, Fast algorithms for the reconstruction of images from hyperbolic systems,Proceedings of the 25th Conference on Decision and Control, 1986, pp. 173–178.

  20. Y. Saad, The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems,SIAM J. Numer. Anal.,19 (1982), 485–506.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Salehi, On the alternating projections theorem and bivariate stationary stochastic processes,Trans. Amer. Math. Soc.,128 (1967), 121–134.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Samson, A unified treatment of fast algorithms for identification,Internat. J. Control,35 (1982), 909–934.

    MathSciNet  MATH  Google Scholar 

  23. J.L. Speyer, Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem,IEEE Trans. Automat. Control,24 (1979), 266–269.

    Article  MATH  Google Scholar 

  24. K. Takeuchi, H. Yanai, and B.N. Mukherjee,The Foundations of Multivariate Analysis, Wiley, New York, 1982.

    MATH  Google Scholar 

  25. H.L. Weinert and E.S. Chornoboy, Smoothing with blackouts, inModelling and Application of Stochastic Processes (U.B. Desai, ed.), pp. 273–278, Kluwer, Boston, 1986.

    Google Scholar 

  26. D.C. Youla, Generalized image restoration by the method of alternating projections,IEEE Trans. Circuits and Systems,25 (1978), 694–702.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Office of Naval Research under Contract N00014-85-K-0255.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayalar, S., Weinert, H.L. Oblique projections: Formulas, algorithms, and error bounds. Math. Control Signal Systems 2, 33–45 (1989). https://doi.org/10.1007/BF02551360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551360

Key words

Navigation