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Abstract

Current parallelizing compilers do a reasonable job of extracting parallelism from programs with regular, well
behaved, statically analyzable access patterns. However, they cannot extract a significant fraction of the available
parallelism if the program has a complex and/or statically insufficiently defined access pattern, e.g., simulation
programs with irregular domains and/or dynamically changing interactions. Since such programs represent a large
fraction of all applications, techniques are needed for extracting their inherent parallelism at run—time. In this paper
we give a hew run—time technique for finding an optimal parallel execution schedule for a partially parallel loop, i.e.,

a loop whose parallelization requires synchronization to ensure that the iterations are executed in the correct order.
Given the original loop, the compiler generataspectorcode that performs run—time preprocessing of the loop’s
access pattern, arsthedulercode that schedules (and executes) the loop iterations. The inspector is fully parallel,
uses no synchronization, and can be applied to any loop (from which an inspector can be extracted). In addition, it can
implement at run—time the two most effective transformations for increasing the amount of parallelism inafapp:
privatizationandreduction parallelizatiorfelement—wise). The ability to identify privatizable and reduction variables

is very powerful since it eliminates the data dependences involving these variables and thereby potentially increases the
overall parallelism of the loop. We also describe a new scheme for constructing an optimal parallel execution schedule
for the iterations of the loop. The schedule produced is a partition of the set of iterations into subsetsaadfeants

so that there are no data dependences between iterations in a wavefront. Although the wavefronts themselves are
constructed one after another, the computation of each wavefront is fully parallel and requires no synchronization.
This new method has advantages over all previous run—time techniques for analyzing and scheduling partially parallel
loops since none of them has all of these desirable properties.
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1 Introduction

To achieve a high level of performance for a particular program on today’s supercomputers, software developers
are often forced to tediously hand-code optimizations tailored to a specific machine. Such hand-coding is difficult,
error-prone, and often not portable to different machines. Restructuring, or parallelizing, compilers address these
problems by detecting and exploiting parallelism in sequential programs written in conventional languages. Although
compiler techniques for the automatic detection of parallelism have been studied extensively over the last two decades
[26, 41], current parallelizing compilers cannot extract a significant fraction of the available parallelism in a loop if

it has a complex and/or statically insufficiently defined access pattern. This is an extremely important issue because
a large class of complex simulations used in industry today have irregular domains and/or dynamically changing
interactions. For example, SPICE for circuit simulation, DYNA-3D and PRONTO-3D for structural mechanics
modeling, GAUSSIAN and DMOL for quantum mechanical simulation of molecules, CHARMM and DISCOVER for
molecular dynamics simulation of organic systems, and FIDAP for modeling complex fluid flows [8].

Thus, since the available parallelism in theses types of applications cannot be determined statically by present
parallelizing compilers [6, 8, 11], compile-time analysis must be complemented by new methods capable of automat-
ically extracting parallelism atun—time The reason that run—time techniques are needed is that the access pattern
of some programs cannot be determined statically, either because of limitations of the current analysis algorithms or
because the access pattern is a function of the input data. For example, most dependence analysis algorithms can
only deal with subscript expressions that are linear in the loop indices. In the presence of non—linear expressions, a
dependence is usually assumed. Compilers usually also conservatively assume data dependences in the presence of
subscripted subscripts. More powerful analysis techniques could remove this last limitation when the index arrays are
computed using only statically-known values. However, nothing can be done at compile-time when the index arrays
are a function of the input data [21, 35, 43].

Run—time techniques have been used practically from the beginning of parallel computing. During the 1960s,
relatively simple run—time techniques, used to detect parallelism between scalar operations, were implemented in the
hardware of the CDC 6600 and the IBM 360/91 [37, 38]. Various synchronization schemes have been proposed to
delay execution until certain conditions are satisfied. For example, the HEP multiprocessor [36] has a full/empty
bit associated with each memory location and read (write) accesses are delayed until the bit is full (empty). Similar
data—level synchronization schemes have also been proposed [13, 27]. Higher—level synchronization primitives such
aslock or compare—and—swagan be used in the same manner [15, 24, 43]. When parallelimingops, some of
today’s compilers postpone part of the analysis to run—time by generating two-version loops. These consikt of an
statement that selects either the original serial loop or its parallel version. The boolean expressioh istétement
typically tests the value of a scalar variable.

During the last few years, techniques have been developed for the run—time analysis and scheduling of loops
[5,9, 16, 21, 24, 28, 33, 34, 30, 31, 32, 35, 42, 43]. The majority of this work has concentrated on developing run—time
methods for constructing execution schedules for partially parallel loops, i.e., loops whose parallelization requires
synchronization to ensure that the iterations are executed in the correct order. Given the origat@oop, most
of these techniques generatepectorcode that analyzes, at run—time, the cross-iteration dependences in the loop, and
scheduler/executarode that schedules and executes the loop iterations using the dependence information extracted by
the inspector [35].

1.1 Our Results

In this paper we give a new inspector/scheduler/executor method for finding an optimal parallel execution schedule for
a partially parallel loop. Our inspector is fully parallel, uses no synchronization, and can be applied to any loop (from
which an inspector can be extracted). In addition, our inspector can implement at run—time the two most effective
transformations for increasing the amount of parallelism in a loop: array privatization and reduction parallelization
(element—wise). The ability to identify privatizable and reduction variables is very powerful since it eliminates the
data dependences involving these variables. Thus, in addition to increasing the available parallelism in the loop these
dependence removing transformations also reduce the work required of the scheduler, i.e., it need not consider the
affected variables. We describe a scheme for constructing an optimal parallel execution schedule for the iterations of
the loop. The schedule produced is a partition of the set of iterations into subsetswaalkftbntsso that the iterations

in each wavefront can be executed in parallel, i.e., there are no data dependences between iterations in a wavefront.
Although the wavefronts themselves are constructed one after another, the computation of each wavefront is fully
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parallel and requires no synchronization. The scheduling can be dynamically overlapped with the parallel execution of
the loop iterations in order to utilize the machine more uniformly. Therefore, our new method has advantages over all
the previous techniques cited above since none of them has all of these desirable properties (a comparison to previous
work is contained in Section 7).

After covering some necessary background information in Section 2, we describe our methods for analyzing
and scheduling partially parallel loops in Sections 4 and 5. In Section 6 we discuss some strategies for applying
our techniques most effectively, and we compare our new methods to previously proposed run—-time methods for
parallelizing loops in Section 7. Finally, we present some experimental results in Section 8.

2 Prdiminaries

In order to guarantee the semantics of a loop, the parallel execution schedule for its iterations must redpét the
dependenceelations between the statements in the loop body [26, 19, 3, 41, 44]. There are three possible types of
dependences between two statements that access the same memory l8oatipead after write)anti (write after

read), andbutput(write after write). Flow dependences express a fundamental relationship about the data flow in

the program. Anti and output dependences, also known as memory-related dependences, are caused by the reuse of
memory, e.g., program variables.

If there are flow dependences between accesses in different iterations of a loop, then the semantics of the loop
cannot be guaranteed unless those iterations are executed in order of iteration number because values that are computed
(produced) in an iteration of the loop are used (consumed) during some later iteration. For example, the iterations
of the loop in Fig. 1(a) must be executed in order of iteration number because itératibmeeds the value that is
produced in iteration, for 1 < ¢ < n. In principle, if there are no flow dependences between iterations of a loop,
then those iterations may be executed in parallel. The simplest situation occurs when there are no anti, output, or flow
dependences between iterations in a loop. In this case, these iterations are independent and can be executed in parallel.
If there are no flow dependences, but there are anti or output dependences between iterations of a loop, then the loop
must be modified to remove all such dependences before these iterations can be executed in parallel. In some cases,
even flow dependences can be removed by simple algorithm substitution, e.g., reductions. Unfortunately, not all such
situations can be handled efficiently. In order to remove certain types of dependences two important and effective
transformations can be applied to the loppvatizationandreduction parallelization

Privatizationcreates, for each processor cooperating on the execution of the loop, private copies of the program
variables that give rise to anti or output dependences (see, e.g., [7, 22, 23, 39, 40]). The loop shown in Fig. 1(b), is
an example of a loop that can be executed in parallel by using privatization; the anti dependences between statement
S2 of iterationi and statemerfs1 of iterationi + 1, for 1 < i < n/2, can be removed by privatizing the temporary
variablet np. In this paper, the following criterion is used to determine whether a variable may be privatized.

Privatization Criterion: Let A be a shared array (or array section) that is referenced in allodpcan beprivatized
if and only if every read access to an elementia$ preceded by a write access to that same elemesivgthin
the same iteration of.

In general, dependences that are generated by accesses to variables that are only used as workspace (e.g., temporary
variableswithinan iteration can be eliminated by privatizing the workspace. However, according to the above criterion,

if a shared variable is initialized by reading a value that is computed outside the loop, then that variable cannot be
privatized. Such variables could be privatized i€@y—inmechanism for the external value is provided. Tést

value assignmergroblem is the conceptual analog of the copy—in problem. If a privatized varialile igfter the

termination of the loop, then the privatization technique must ensure that the correct value is copied out to the original



(non privatized) version of that variable. It should be noted that, based on our experience, the need for values to be
copied into or out of private variables occurs infrequently in practice.

Reduction parallelizatiois another important technique for transforming certain types of data dependent loops
for concurrent execution.

Definition: A reduction variables a variable whosealueis used in one associative and commutative operation of
the formz = z ® ezp, where® is the associative and commutative operator artbes not occur irzp or
anywhere else in the loop.

Reduction variables are therefore accessed in a certain specific pattern (which leads to a characteristic data dependence
graph). A simple but typical example of a reduction is staten®nin Fig. 1(c). The operatog is exemplified by

the + operator, the access pattern of arwdfy) is read, modify, writeand the function performed by the loop is to

add a value computed in each iteration to the value stored{ip This type of reduction is sometimes called an
updateand occurs quite frequently in programs. There are two tasks required for reduction parallelizatgmizing

the reduction variablgandparallelizing the reduction operation(In contrast, privatization needs only to recognize
privatizable variables by performing data dependence analysis, i.e., itis contingentonly on the access pattern and noton
the operations.) Since parallel methods are known for performing reductions operations (see, e.g., [12, 17, 18, 20, 44]),
the difficulty encountered by compilers arises from recognizing the reduction statements. So far this problem has been
handled at compile—time by syntactically pattern matching the loop statements with a template of a generic reduction,
and then performing a data dependence analysis of the variable under scrutiny to guarantee that it is not used anywhere
else in the loop except in the reduction statement [44].

3 Analyzing Partially Parallel Loopsat Run-Time

Given ado loop whose access pattern cannot be statically analyzed, compilers have traditionally generated sequential
code. Although this pessimistic strategy is safe and simple, as mentioned in Section 1, it essentially precludes the
automatic parallelization of entire classes of programs, e.g., those with irregular domains and/or dynamically changing
interactions. Since compile—time data dependence analysis techniques cannot be used on such programs, methods of
performing the analysis at run—time are required. During the past few years, several techniques have been developed for
the run—time analysis and scheduling of loops with cross-iteration dependences [5, 9, 16, 21, 24, 28, 33, 34, 35, 42, 43].
However, for various reasons, such technigues have not achieved wide—spread use in current parallelizing compilers.

In the following we describe a new run—time scheme for constructing a parallel execution schedule for the iterations
of a loop. The general structure of our method is similar to the above cited run—time techniques: given the original, or
sourceloop, the compiler constructespectorcode that analyzes, at run—time, the cross-iteration dependences in the
loop, schedulercode that schedules the loop iterations using the dependence information extracted by the inspector,
and executorcode that executes the loop iterations according to the schedule determined by the scheduler. In the
previous techniques, the scheduler and the executor are tightly coupled codes which are collectively referred to as
the executor, and the inspector and the scheduler/executor codes are usually decoupled [35]. Although for efficiency
purposes our methods can also interleave the scheduler and the executor, we treat them separately since scheduling
and execution are distinct tasks that can be performed independently.

First, in Section 4, we describe a new inspector scheme that in many cases should prove superior to previously
proposed schemes. Next, in Section 5, we describe a scheduler that can use the dependence information found by the
inspector to construct an optimal parallel execution schedule for the loop iterations; in addition, we mention how the
scheduler might be interleaved with the executor to more efficiently utilize the machine. After describing the basic
components of our methods, in Section 6 we discuss some strategies for applying them most effectively. Finally, we
compare our new methods to other run—time parallelization schemes in Section 7.

4 Thelnspector

In this section we describe a new inspector scheme that processes the memory references in a loop and constructs a
data structure which the executor can use to efficiently assign iterations to wavefronts. In addition, our inspector can
implement at run—time two important transformations: (element—wise) array privatization and reduction parallelization
(see Section 2). The ability to identify privatizable and reduction variables is very powerful since it eliminates the data
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Figure 2: A (a) source loop, (b) the arrag; for A[3], (c) its dependence gragihs, and (d) its hierarchy vectdd ;.

dependences involving these variables. In particular, it increases the available parallelism in the loop and also reduces
the work required of the scheduler since it need not consider dependences involving such variables when it constructs
the parallel execution schedule for the loop iterations.

The basic strategy of our method is for the inspector to preprocess the memory references and determine the data
dependences for eagchemory locatioraccessed. Later, the scheduler will use this memory-location dependence
information to determine the data dependences betweeétethtions We describe the method as applied to a shared
array A that is accessed through subscript arrays that could not be analyzed at compile-time (see Figure 2(a)). For
simplicity, we first consider only the problem of identifying the cross—iteration dependences for each array element
(memory location). After describing this inspector, we then discuss how the dependence information it discovers can
be used to identify the array elements that are read—only, privatizable, or reduction variables. The inspector has two
main tasks.

1. For each array elemedz], the inspector collects all the references to it into an array (orlstand stores
them in order of iteration number. For each reference it stores the associated iteration number and access type
(i.e., read or write) (see Figure 2(b)).

2. For each array elemed{z], the inspector determines the data dependences between all its references and stores
them in a data structur®,, for later use by the scheduler.

In Section 4.1, we discuss how the references to each array element can be collected and stored in the array (or list)
R,. Thus, assuming that, is available, we now describe how the inspector determines the dependences among the
references tol[z] and computes the data structuig.

The relations between the referencesd{@] can be organized (conceptually) into an array element dependence
graphD,. If adjacent references iR, have different access types, then a flow or anti dependence exists, and if they
are both writes, then an output dependence is signaled. These dependences are reflected by parent-child relationships
in D,. If adjacent references are both reads, then there is no dependence between the elements, but they may have a
common parent (child) i®,: the last write preceding (first write following) themRy,. For example, the dependence
graphDs for A[3] is shown in Figure 2(c).

Our goalisto encode the predecessor/successor information of the (conceptual) dependerizeigepbrarchy
vector H, so that the scheduler can easily look-up the dependence information for the refered¢els teirst, we
add alevelfield to the records iR, and store in it the reference’s level in the dependence gigpisee Figure 2(b)).
Then, for each level, we store H, the index (pointerto location) iR ., of thefirstreference at thatlevel. Specifically,
H_ is an array andd;[z] contains the index itR,, of the first reference at levéli.e., H, will serve as a look—up table
for the first reference ik, at any level (see Figure 2(d)). Note that this implies tHatrecords the position i, of
every write access and of the first read access in any run of reads.

We now give an example of how the hierarchy vector serves as a look-up table for the predecessors and successors
of all the accesses. Consider the read acceg§3pin the sixth iteration, which appears as the sixth entrizén Its
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Figure 3:An example of how the private element array® and hierarchy vectorsH (c) when two processors are used in the inspetiad |
loop (b) for the sourcdo loop (a).

level is5, and thus it finds its successor by looking at the 1 = 6th element of the hierarchy vectdfs, which
contains the valug indicating that its successor is th element inRs. Similarly, its predecessor is found by looking
in thes — 1 = 4th element off 3, which indicates that its predecessor is Stieelement ofRs.

4.1 Implementing the Inspector

We now consider how to collect the accesses to each array elgthgimto the arraysz,. Regardless of the technique
used to construct these arrays, to ensure the scalability of our methods we must prag&sthé references to the
shared array in adoal | (see Figure 3(a) and (b)). The computation performed inrdneki ng operations will
depend upon the technique used to construct the aftgydn any case, note that since we are interested in cross—
iteration data dependences we need only record at most one read and write ad&eks i@ny particular iteration,

i.e., subsequent reads or writes4fz] in the same iteration can be ignored.

Perhaps the simplest method of constructing the element aftays to first place a record for each memory
reference into an arrait4, and then sort these records lexicographically by array element (first key) and iteration
number (second key). After this sort, each arBywill occupy a contiguous portion (a subarray) in the sorted array
R,4. In this case the marking operations will simply record the information about the accesB intd\fter the
lexicographic sort, the level of each referencélincan be computed by a prefix sum computation.

However, since the range of the values to be sorted is known in advance (it is given by the dimension of the
shared array), a linear timebucketor bin sort can be used in place of the more genérat logn) lexicographic
sort. Moreover, if the inspector's marking phaselminked(i.e., statically scheduled), then further optimization is
possible. In this case, processawill be assigned iterationgn/p| through(: + 1)[n/p] — 1, wherep is the total
number of processors, is the number of iterations in the loop, ab& i < p. The basic idea is as follows. First, in
aprivate marking phasesach processor marks the references in its assigned iterations, and constructs element arrays
R, and hierarchy vector#,, as described abovéut only for the references in its assigned iteratiofihen, in a
cross—processor analysis phasee hierarchy vectors for the whole iteration space of the loop are formed using the
processors’ hierarchy (sub)vectors.

The private marking phase proceeds as follows. Afgt: s] be the shared array under scrutiny, and suppose each
processor hasseparatearraypR[1 : s, 1 : 2n/p] in which to store the records of the references in its set of iterations.
Each record contains the iteration, type of reference, and level as described above. (The second dimengigtpof
follows since, as noted above, at most one read and write to any element need to be marked in each iteration, and each
processor has/p iterations.) Assuming a processor marks its iterations in order of increasing iteration number, it can
immediately place the records for the references into its arRaiy sorted order of iteration number. In addition to the



arraypR, each processor has a separate aw#jl : s, 1 : 2n/p| used to store the hierarchy vectors for the references
in its assigned set of iterations. Again, assuming that iterations are processed in increasing order of iteration number,
the hierarchy vectors can be filled in at the same time that the references are receiliddeén Figure 3(c)).

In the analysis phase we need to find for each array eledpritthe predecessor, if any, of the first reference
recorded by each processor, i.e., we need to fill in the value in procéssierarchy vector for the reference
that immediately precedes (in the dependence giaptthe first reference ta[z] that was assigned to processor
Similarly, we must find the immediate successor of the last referentiiehat was assigned to processoProcessor
7 can find the predecessors (successors) needed for its hierarchy vectors by scanning the arrays of the processors less
than (larger thanj. For example, the “?” at the end p#H [3] for processor 1 in Figure 3 would be filled in with a
pointer to the first element in the arraf[3] of processor 2. Hence, the initial and final entries in the hierarchy vectors
also need to store the processor number that contains the predecessor and successor. These scans can be made more
efficient by maintaining some auxiliary information, e.g., for each array element, each processor computes the total
number of accesses it recorded, and the indicesinf the first and last write to that element. In any case, we note
that filling in the processors’ hierarchy vectors requires a minimal amount of interprocessor communication, i.e., it
requires only a “connecting” and not a full “merging” of the different hierarchy vectors.

There are several ways in which the above sketched analysis phase can be optimized. For example, in order to
determine which array elements need predecessors and successors (i.e., the elements with non—enip}y theays
processor needs to check each row of its aprBy(row z of pR corresponds to the arrdy;). This could be a costly
operation if the dimension of the original array is large and the processor’s assigned iterations have a sparse access
pattern. However, the need to check each rowfhcan be avoided by maintaining a list of the non—empty rows.

This list can be constructed during the marking phase, and then traversed in the analysis phase — thereby avoiding
the need to check every row. Another source of inefficiency for machines with many processors is the search for a
particular predecessor (or successor) since each processor might need to look for a predecessor in all the preceding
(succeeding) processors’ iterations. The cost of these searches can be redugetbf®ftog p) using a standard

parallel divide—and—conquer “pair-wise” merging approach [20], whésehe total number of processors.

4.2 Privatization and Reduction Recognition at Run-Time

The basic inspector described above can easily be augmented to find the array elements that are independent (i.e.,
accessed in only one iteration), read—only, privatizable, or reduction variables. We first consider the problem of
identifying independent, read—only, and privatizable array elements. During the marking phase, a processor maintains
the status of each element referenced in its assigned iteratiimgespect to only these iteration#n particular, if

it finds than an element is written in any of its assigned iterations, then it is not read—only. If an element is accessed
in more than one of its assigned iterations, then it is not independent. If an element was read before it was written
in any of its assigned iterations, then it is not privatizable. Next, the final status of each element is determined in the
cross—processor analysis phase as follows. An element is independent if and only if it was classified as independent
by exactly one processor, and was not referenced on any other processor. An element is read—only if and only if it
was either determined to be read—only by every processor that referenced it. Similarly, an element is privatizable if
and only if it was either privatizable on every processor that accessed it. Thus, the elements can be categorized by a
similar process to the one used to find the predecessors and successors when filling in the processors’ hierarchy vectors.
Finally, if we maintain a linked list of the non—empty rowspdt as mentioned above, then the rows corresponding to
elements that were found to be independent, read—only, or privatizable are removed from the list, i.e., accesses to these
elements need not be considered when constructing the parallel execution schedule for the loop iterations.

We now consider the problem of verifying that a statement is a reduction using run—time data dependence analysis.
Recall, as mentioned in Section 2, that potential reduction statements are generally identified by syntactically matching
the statement with the generic reduction template z ® exzp, wherez is the reduction variable, amlis an associative
and commutative operator. The statement is validated as a reduction if it can be shown through dependence analysis
thatz is not referenced iazp or any where in the loop body outside the reduction statement. Sometimes the necessary
dependence analysis cannot be performed at compile—time. This situation could arise if the reduction variable is an
array element accessed through subscripted subscripts, and the subscript expressions are not statically analyzable. For
example, although stateme®8 in the loop in Fig. 4(a) matches a reduction statement, it is still necessary to prove
that the elements of arrayreferenced irS1 andS2 do not overlap with those accessed in statengti.e., that:

K (%) # R(j) andL(3) # R(j), forall 1 < 4,j < n. Itturns out that this condition can be tested in the same way that
read—only and privatizable array elements are identified. In particular, during the marking phase, whenever an element
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Figure 4. The transformation of thao loop in (a) is shown in (b). Thear kwr i t e (mar kr ead) operation adds

a record to the processor’s arraf (if its not a duplicate), and updates the hierarchy vegifrappropriately. The

mar knor edux operation invalidates the indicated array element as a reduction variable since it is accessed outside
the reduction statemef3s.

is accessed outside the reduction statement the processor invalidates that element as a reduction variable. Again, the
final status of each element is determined in the cross—processor analysis phase, i.e., an element is a reduction variable
if and only if it was not invalidated as such by any processor.

This strategy can also be used whenékppart of the RHS of the reduction statement contains references to the
array A that are different from the pattern matched LHS and cannot be statically analyzed, i.e., the elements referenced
in exp are invalidated during the marking phase. A more complicated situation is when the loop contains several
reduction statements that refer to the same a#rain this case the type of the reduction operation performed on each
element must be the same throughoutthe loop execution, e.g., a variable cannot participate in both a multiplicative and
an additive reduction since the resulting operation is not commutative and associative and is therefore not parallelizable.
The solution to this problem is to also maintain the reduction type with each potential reduction variable. Whenever
a reference in a reduction statement is marked, the current reduction type (e.g., summation, multiplication) is checked
with with previous one. If they are not the same, the corresponding element is invalidated as a reduction variable.

4.3 Complexity of the I nspector

The worst case complexity of the inspectoi$a log p), wherea is the maximum number of references assigned

to each processor angdis the total number of processors. In particular, using the bucket sort implementation, each
processor spends constant time on each @{ts) accesses in the marking phase, and the analysis phase takes time
O(alogp) using a parallel divide—and—conquer pair—wise merging strategy [20]. We remark that since the cost of
the analysis phase is proportional to the number of distinct elements accessed (i.e., the number of non—empty rows
in the pR array) the complexity of this phase could be significantly less thénlog p) if there are many repeated
references in the loop. Also,dflog p > s, then the merge among the processes can be improv@té log p) time

by chunking theoR arrays.

5 The Scheduler

We now consider the problem of finding an execution schedule for the iterations of the loop. We assume that the
inspector described in Section 4 has been used on the loop. The scheduler derives the more restrictive iteration-wise
dependence relations from the memory location dependence information found by the inspector. Formalizing this,
the memory location dependences define a directed acyclic graphldag)V, E) describing the cross—iteration
dependences in the loop: there is a nede V for each iteratiotd in the loop, and there is a directed edgg v;) € E

if some memory location has a dependence from iteratioiteration;. Note thatD is implicitin the reference arrays

pR and their hierarchy vectogsH . A valid parallel execution schedule for a loop is a partition of the set of iterations



wf (1l:numiter) =0

done = .fal se.
cpl =1
4 do while (done.eq..false.) By for A[x]
rdy(1:numiter) = .false. level
done = .true.
7 doall i = 1, nunaccess
a = access(i) 1
8 if (wi(a.iter) .eq. 0) then
9 for each (b in Pred(a))
10 if (wW(b.iter).eq.0) 2
done, rdy(a.iter) = .false.
end for
end if 3
14 end doall
15 doall i = 1,numter
16 if (rdy(i).eq..true.) 4
wf (i) = cpl
18 end doall
cpl =cpl +1
end do while

(a) (b)

Figure 5: A simple scheduler. In (awf (i) stores the wavefront found iteratienthe global variablelone flags if all iterations have been
scheduled; dy (i) signals if iteratiory is ready to be executed, lower case lettersh)) are used for references to memory locatiang, t er is

the iteration which contains referengeandPr ed( a) is the set of immediate predecessora df the memory location dependence graphs. The
dependence graph for one of the memory locations accessed in the loop is shown in (b).

into ordered subsets calledavefronts so that all dependences go from an iteration in a lower numbered wavefront
to an iteration in a higher numbered wavefront. We say that a valid parallel execution schezhtlem@if it has a
minimum number of wavefronts, i.e., is has as many wavefronts as the longest pattitithepath) in the dag.

We remark that the schedulers described below can be used to construct the full iteration schedule in advance
(which is how we describe them for simplicity), or alternatively, they can be interleaved with the executor, i.e., the
iterations could be executed as they are found to be ready.

51 A simplescheduler

A simple scheduler that finds an optimal schedule is sketched in Figure 5(a). In the figure, anf &riraystores the
wavefront found for iteration, the global variablelone flags if all iterations have been scheduledy (i) signals

if iteration 7 is ready to be executed, lower case lettersk) are used for references to array elemeats,t er is

the iteration which contains referenagandPr ed( a) is the set of immediate predecessoraaf the array element
dependence graphs. The scheduling is performegliphases (line 4) so that in phasthe iterations belonging to

ith wavefront are identified. In each phase, all the references recordedp®theays are processed (lines 7-13),

and the predecessors of all references whose iterations have not been scheduled (line 8) are examined. An iteration is
foundnot readyif the iterations of any of its reference’s predecessors were not assigned to previous wavefronts (line
10). After all the references are processed, all the iterations are examined (lines 14-17) to see which can be added to
the current wavefront: an iteratiaiis ready (line 15) if none of its references sely (i ) to false. Advantages of this
scheduler are that it is conceptually very simple and quite easy to implement.

Optimizingthe simple scheduler. There are some sources of inefficiency in this scheduler. First, since a write access
could potentially have many “parent” read accesses it could prove expensive to require such a write to check all of its
“parents” (line 9). Fortunately, this problem is easily circumvented by requiring an unscheduled read access to inform
its successor’s iteration (the successor, if any, is a write to the same address) thatrié&ly. Then, a write access
only needs to check its predecessor if the (single) predecessor is also a write.

Another source of inefficiency arises from the fact that each idioad | (lines 7-13) requires timé&(n,/p)
to identify unscheduled iterations (line 8), whetg is the total number of accesses to the shared arrapasthe



number of processors. Thus, the scheduler takesdife, /p)cpl), wherecpl is the length of the critical path. Thus,
if p = O(epl), then it cannot be expected to offer any speedup over sequential execution, and even worse, it could yield
slowdowns for longer critical paths. However, note that in any single iteration of the scheduler, the only iterations
that could potentially be added to the next wavefront must have all their accesses at the lowest unscheduled level in
their respective element-wise dependence graphs. For example, consider the dependence graph shown in Figure 5(b).
If iteration 2 (level 1) has not been scheduled yet, then none of the iterations with accesses in higher levels could be
added to the current wavefront.

Thus, in each of thepl iterations of the outedo whi | e loop, we would like to examine only those references
that are in the topmost unscheduled level of their respective dependence graph. First note that we can easily identify
the accesses on each level of the array element dependence graphs since references are stored in increasing level order
inthepR arrays and theH arrays contain pointers the first access at each level. However, to process only the accesses
on the lowest unscheduled level it is useful to have a count of the total number of (recorded) accesses in each iteration.
This information can easily be extracted in the marking phase and stored in an array indexed by iteration number.
Then, in the scheduler, a count of the number of ready accesses for each iteration can be computed on a per processor
basis in the firstioal | (lines 7-13). In the secordbal | (lines 14-17), the cross-processor sum of the ready access
counts for each unscheduled iteration is compared to its total access count, and if they are equal the iteration is added
to the current wavefront.

In summary, we would expect this optimized version to outperform the original scheduler if there are multiple levels
in them array element dependence graphs, i.e., becaosky i&xamines the accesses at the lowest unscheduled level
in any iterationof the outerdo whi | e. However, note that if there are not many repeated write accesses (and thus
few levels), then it is possible that this version could in fact prove inferior to the original (due to the cross—processors
summation of the counts). Therefore, the determination of which version to use should be made using knowledge
gained about the access pattern by the inspector. These issues are discussed in more detail in Section 6.

Overlapping scheduling and execution. As mentioned above, the scheduler can construct all the wavefronts in
advance or it can be interleaved with the executor so that wavefronts are executed as they are found. A third alternative
is to overlap the computation of the wavefronts with the execution of the loop. First, all the processors compute the
first wavefront. Then, some processors are assigned to execute the iterations in that wavefront, and the rest of the
processors compute the next wavefront. The strategy is carried out repeatedly until all wavefronts are computed. The
number of processors assigned to each task would depend upon the amount of work contained in the wavefront. Thus,
this approach “fills out” the wavefronts that cannot employ all the the processors, i.e., in effect we dynamically merge
the parallelism profiles of the wavefront computation and the loop execution to more fully utilize the machine.

Remark: In this paper we are mainly concerned with constructing a parallel execution scheduleiferdtiensof
the loop. However, we would like to note that the array element dependence information extracted by the inspector
could also be used for producing schedules that overlap iterations or for creating multiple threads of execution.

6 Strategiesfor Applying Run—Time Parallelization

In this section we outline the basic strategy of using the methods in a real application environment.
At Compile—Time.

1. A cost/performance analysis is performed to evaluate whether a speedup can be obtained by these methods
(which is not always the case).

2. Ifthe compiler decides to perform run—time parallelization, then an inspector for the marking phase is extracted
from the source loop and any other code needed for the methods is generated.

Cost/Performance Analysis. The cost/performance analysis is primarily concerned with evaluating the amount of
available parallelism in the loop. Since the data dependence relations between the loop iterations cannot be analyzed
statically, an estimate of the available parallelism in the loop can only be made at compile—time using meaningful
statistics from previous runs of the program. If the loop is instantiated several times in the same program, then an
estimate on the available parallelism in a future instantiation could be made at run—time using statistics from previous
invocations of the loop within the same run. For every given (estimated) amount of parallelism, the potential speedup
is a function of the ratio between the work of the loop body and the the number of accesses that are shadowed using



our methods. The smaller this ratio, the more difficult it will be to obtain a speedup, with the worst case being what
we call a “kernel,” i.e., a loop that performs only data movement and no computation. Therefore, in order to obtain a
speedup, a substantial amount of parallelism, and sufficient processors to exploit it, are needed.

Instrumentation and Code Generation. For the marking phase, the compiler needs to extractagking loop

i.e, aparallel loopthat traverses the access pattern of the source withwut side effectéwithout modifying the

original data). It is imperative that the marking loop be parallel, for otherwise it defeats the purpose of run—time
parallelization [21, 33]. (Below, we mention some special circumstances in which speedups might still be obtained
using a sequential marking loop.) A parallel marking loop can be obtained if the source loop can be distributed
into a loop computing the addresses of the array under test and another loop which uses those addresses (i.e., when
the address computation and data computation are not contained in the same strongly connected component of the
dependence graph). Unfortunately, in some cases such a marking loop does not exist. In particular, when the data
computation in the loop affects future address computations in the loop. After extracting a marking loop, if possible,
the compiler augments it with the code for the marking operations, and generates the code for the analysis phase, and
for the scheduling and execution of the loop iterations. If a marking loop cannot be extracted, then the compiler must
choose between sequential execution and a speculative parallel execution [31].

At Run—-Time.

1. At run—time (and possibly also at compile—time) an evaluation of the storage requirements of the methods is
performed.If these requirements are prohibitive for the full iteration space of the loop, then the marking loop
can be strip—mined and the method (i.e, marking, analysis and scheduling) can be applied to each strip. Even
in the case of strip—mining, an optimal schedule can be obtained since the scheduling method can easily be
modified to assign iterations in each strip to a single wavefront structure.

2. The marking phase is executed.

3. Using information gathered during the marking phase, the compiler decides whether to continue with run—time
parallelization.A lower bound on the length of the critcal path is the maximum level (across processors) assigned
to any individual array element. If this lower bound is too high, then parallelization should be abandoned and
the source loop should be executed sequentially since speedups are unlikely.

4. The analysis phase is executd&®ecall that the analysis phase identifies all elements that are independent, read—
only, privatizable, or reduction variables, and that accesses to these elements are removed from consideration by
the scheduler. If all elements fall into one of these categories, then the loop can be execudedlas and the
scheduling step is omitted.

5. Execute an appropriate scheduler (overlapping it with ready iterations of the source [Blogpptimized simple
scheduler should prove superior to the original version unless the element—wise dependence graphs have large
average degree (see Section 5). Since the optimal parallel schedule may be imbalanced (the number of iterations
in a wavefront can vary significantly between wavefronts), it is desirable to interleave the scheduler and the
executor, i.e., overlap the scheduler’s wavefront computations with the actual execution of the ready iterations.
This can either be achieved with a dynamic partition of the processors among these two tasks (see Section 5) or
with a dynamic ready queue [25, 29].

Schedule reuse and decoupling the inspector/scheduler and the executor. Thus far, we have assumed that our
methods must be useshchtime a loop is executed in order to determine a parallel execution schedule for the loop.
However, if the loop is executed again, with the same data access pattern, the first schedule can be reused amortizing
the overhead of the methods over all invocations. This is a simple illustration actiexlule reuséechnique, in

which a correct execution schedule is determined once, and subsequently reused if all of the defining conditions remain
invariant (see, e.g., Salat al. [35]). If it can be determined at compile time that the data access pattern is invariant
across different executions of the same loop, then no additional computation is required. Otherwise, some additional
computation must be included to check this condition, e.g., for subscripted subscripts the old and the new subscript
arrays can be compared. Although a parallel marking loop is always desirable, if schedule reuse can be applied then
it may still be possible to obtain speedups with a sequential marking loop since its one sequential execution will be
amortized over all loop instantiations.
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obtains | contains | requires | restricts | privatizes
optimal | sequential| global type of or finds
Method schedule| portions | synchron| loop reductions
| This Paper [ Yes | No | No | No | PR ]

Zhu/Yew [43] No! No Yes No No
Midkiff/Padua [24] Yes No Yes® No No
Krothapalli/Sadayappan[16]] No® No Yes No P
Chen/Yew/Torrellas [9] No'+ No Yes No No
Saltz/Mirchandaney [33] No® No Yes Yes No
Saltzet al. [35] Yes Yes' Yes Yes No
Leung/Zahorjan [21] Yes No Yes Yes® No
Polychronopoulous [28] No No No No No
Rauchwerger/Padua[30, 31 No® No No No PR

Table 1: A comparison of run—time parallelization techniques dar loops. In the table entries? and R show that the method identities

privatizable and reduction variables, respectively. The superscripts have the following meanings: 1, the method serializes all read aueesses; 2, t
performance of the method can degrade significantly in the presence of hotspots; 3, the scheduler/exedotari®as loop (iterations are

started in a wrapped manner) and busy waits are used to enforce certain data dependences; 4, the inspector loop sequentially traverses the access
pattern; 5, the method is only applicable to loops without any output dependences (i.e., each memory location is written at most once); 6, the method
only identifies fully parallel loops.

Another method to reduce the cost associated with these methods is to hide their overheads by executing them as
soon as all the necessary data is available. If this type of decoupling is possible, then the inspector phase could be
overlapped with other portions of the program—thereby more fully exploiting the processing power of the machine
(of course support for MIMD execution is highly desirable in this case).

7 A Comparison with Previous M ethods

In this section we compare the methods described in this paper to several other techniques that have been proposed
for the run—time analysis and schedulingddf loops. Most of the previous work has concentrated on developing
inspectors. Consequently, a wide variety of inspectors have been proposed that differ according to the types of loops
on which they can be applied, the techniques they use, and the information they gather. In the following, we briefly
describe some of the previous methods, placing particular emphasis on the differences from and similarities to our
methods. A high level comparison of the various methods is given in Table 1.

Methods utilizing critical sections. One of the first run—time methods for scheduling partially parallel loops was
proposed by Zhu and Yew [43]. It computes the wavefronts one after another using a method similar to the simple
scheduler described in Section 5.1. During a phase, an iteration is added to the current wavefront if none of the data
accessed in that iteration is accessed by any lower unassigned iteration; the lowest unassigned iteration to access any
array element is found using atondompare-and-swagynchronization primitives and a shadow version of the array.
Midkiff and Padua [24] extended this method to allow concurrent reads from a memory location in multiple iterations.
Due to the compare—and—swap synchronizations, this method runs the risk of a severe degradation in performance for
access patterns containihgt spotgi.e., many accesses to the same memory location). However, when there are no
hot spots and the critical path length is very small, then this method should perform well. An advantage of this method

is reduced memory requirements: it uses only a shadow version of the shared array under scrutiny whereas all other
methods (except [28, 30, 31]) unroll the loop and store all the accesses to the shared array.

Krothapalli and Sadayappan [16] proposed a run—time scheme for removing anti and output dependences from
loops. Their scheme includes a parallel inspector that determines the number of accesses to each memory location
using critical sections as in the method of Zhu and Yew (and is thus sensitive to hotspots). Using this information,
for each memory location, they place all accesses to it in a dynamically allocated array and then sort them according
to iteration number. Next, the inspector builds a dependence graph for each memory location (similar to our arrays
R.), dynamically allocates any additional global storage needed to remove all anti and output dependences (using
renaming), and explicitly constructs the mapping between all the memory accesses in the loop and the storage, both
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old and new, thereby inserting an additional level of indirection into all memory accesses. The loop is executed in
parallel using synchronization (full/empty bits) to enforce flow dependences. To our knowledge, this is the only other
run—time privatization technique except [30, 31].

Recently, Chen, Yew, and Torrellas [9] proposed an inspector that has a private phase and a merging phase. In
the private phase, the loop is chunked and each processor builds a list of all the accesses to each memory location
for its assigned iterations. This is similar to the private marking phase of our inspector except that they serialize read
accesses (i.e., they have a list instead of the dependence graph). Next, the lists for each memory location are linked
across processors using a global Zhu/Yew algorithm [43]. Their scheduler/executaiogsasoss parallelization
[33], i.e., iterations are started in a wrapped manner and processors busy wait until their operands are ready. Although
this scheme potentially has less communication overhead than [43], it is still sensitive to hot spots and there are cases
(e.g.,doal I s) in which it proves inferior to [43].

Methods for loops without output dependences. The problem of analyzing and scheduling loops at run—time has
been studied extensively by Sakr al. [5, 33, 34, 35, 42]. Most of their work assumes that there are no output
dependences in the source loop.dmacr oss parallelization [33], an inspector finds the (at most one) iteration in
which each variable is written. The scheduler/executor starts iterations in a wrapped manner and processors busy
wait until their operands are available. In [35], the inspector constructs wavefronts that respect the flow dependences
by performing asequentiatopological sort of the accesses in the loop, and the scheduler/executor enforces any anti
dependences using old and new versions of each variable (possible since each variable in the source loop is written at
most once). The topological sort can be parallelized somewhat demgr oss parallelization. Leung and Zahorjan

[21] proposed methods of parallelizing the sequential inspector of [3Skdtioningthe loop is chunked and each each
processor computes an optimal parallel for its chunk, and then these schedules are concatenated together, separated
by synchronization barriers. lootstrappingthe inspector is parallelized using sectioning. Although bootstrapping
might not optimally parallelize the inspector (due to the synchronization barriers introduced for each processor), it will
produce the same optimal schedule as the original sequential inspector.

Other methods. In contrast to the above methods which place iterations in the lowest possible wavefront, Poly-
chronopolous [28] gives a method where wavefronts are maximal sets of contiguous iterations with no cross-iteration
dependences. Dependences are detected using shadow versions of the variables, either sequentially, or in parallel with
the aid of critical sections as in [43].

All of the above mentioned methods attempt to find a valid parallel execution schedule for the douoop.
Recently, we considered a related problem [30, 31]: testing at run—time whether the loop is fully parallel, i.e., whether
there are any cross-iteration dependences in the loop. Our interest in fully parallel loops is motivated by the observation
that they arise frequently in real programs. The test uses shadow versions of the shared variables, is fully parallel,
requires no synchronization, and can be applied to any loop. If desired, it can be used speculatively (i.e, without an
inspector), and can also identify privatizable and reduction variables.

8 Experimental Results

In this section we present experimental results obtained on two modestly parallel machines with 8 (Alliant FX/80 [1])
and 14 processors (Alliant FX/2800 [2]). However, we remark that the results scale with the number of processors
and the data size and thus they may be extrapolated for massively parallel processors (MPPs), the actual target of our
run—time methods.

To demonstrate that the new methods can achieve speedups, we applied them to three loops contained in the
PERFECT Benchmarks [4] that could not be parallelized by any compiler available to us. In addition, in order to
analyze the overhead incurred by the methods, we applied them to different access patterns taken from loops in the
PERFECT Benchmarks and to synthetic access patterns generated to test their behavior in various situations.

The methods were implemented in Cedar Fortran [14]. The inspector was essentially as described in Section 4.
In particular, we implemented the bucket sort version using sepafandpH data structures for each processor.

To avoid checking each row inR during the analysis phase of the inspector and in the scheduler, each processor
constructed a linked list of the non-empty rows ingi® array during the marking phase. Checks for independent,
read—only, and privatizable elements were implemented in the inspector (we did not yet incorporate the test for reduction
variables). In the analysis phase, these elements are classified at the same time that the predecessors and successors
are found for each row. One optimization that we did not yet implement was the “pair-wise” merge across processors
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when searching for predecessors or successors in the analysis phase (or when classifying elements as independent,
read—only, or privatizable). However, this is an important optimization since, as previously noted, without it the
analysis phase of the inspector may fail to scale with the number of processors. Since we implemented the optimized
version of the simple scheduler described in Section 5, a count of the total number of accesses in each iteration was
computed in the marking phase (no inter-processor communication is needed to determine these counts since each
iteration is assigned to a single processor). For simplicity, the scheduler and the executor were completely decoupled
in the implementation. In general, however, better speedups should be obtainable by interleaving these two tasks (see
Section 5).

8.1 Synthetic Access Patterns

Using synthetic loops, we now study the sensitivity of the overhead of the methods to two characteristics of the
sourcedo loop: itsaverage parallelisnfthe number of iterations divided by the number of wavefronts in an optimal
parallel execution schedule) and fitstspot degre¢the maximum number of repeated accesses to any array element).

To simplify the generation of the synthetic workloads, we did not identify independent, read—only, or privatizable
elements in the analysis phase. This should not affect our conclusions, however, since these computations can be
folded into the searches for predecessors and successors (with little extra work).

Average parallelism. To isolate the affect of the average parallelism in the source loop on the overhead of the
methods, we generated access patterns that were as similar as possible in all aspects except for the average parallelism.
In particular, there were two accesses in every iteration (a read followed by a write), and every array element was
accessed approximately twice (at some boundary conditions some elements are accessed either once or three times).

First, we would not expect the inspector execution time to be dependent on the average parallelism in the loop. In
the marking phase each processor mage accesses in its private shadow array (to isolate the effects of the average
parallelism, we assume that the marking phase is balanced). The overhead of the analysis phase is primarily dependent
upon the number of distinct array elements marked imRsarray (since it must find successors and predecessors
for each non—-empty row). Thus this overhead might \iawgrselywith the hotspot degree, but it is not necessary
dependent on the average parallelism because for the same critical path length the hotspot degree can be anywhere
betweerg and the number of iterations. In Figures 16 and 17 we display results from a loop with 2048 iterations run
on 10 processors. The plot shows the overhead incurred for a loop with a critical path length of “Step” (the average
parallelism is the number of iterations divided by the critical path length). As expected, the overhead of the inspector
is invariant with the length of the critical path, and that of the scheduler grows linearly with this length.

We now consider how the speedup of the overheads relates to the average parallelism. Since the execution time of
the inspector is independent of the average parallelism, its speedup should not depend on it either. Even though the
scheduling time does depend on the average parallelism, its speedup is not necessarily similarly correlated. This is
because each wavefront is calculatedd@al | loops, i.e., each of iteration of the scheduler can be expected to obtain
reasonable speedups, and thus the overhead of the scheduler as a whole can be expected to obtain good speedups as
well. In Figures 18 and 19 we show the speedup obtained for the inspector and executor, respectively, on a loop with
2048 iterations and three different values of average parallelism. In both cases the similar speedups are obtained for
the sequential loop (average parallelism 1) and the loop that is almost fully parallel (average parallelism 1024). In
Figures 20 and 21 we show analogous results on a loop with 1024 iterations. Recall that in our implementation we did
not use a “pair-wise” merge among the processors, i.e., in our implementation each processor cheecksaglier
processors for predecessors and successors whereas in the pair—wise megfgmlyoperations would be needed.

This fact is most likely the cause of the slightly diminished slope of the speedup curve after about 10 processors for
the overhead of the inspector.

Hotspots. To isolate the effect of the hotspot degree in the source loop on the overhead of the methods, we generated
access patterns that were as similar as possible in all aspects except for the hotspot degree. In particular, all loops had
2048 iterations, two accesses in each iteration, and an average parallelism of 51 (a critical path length of 40). Also,
a loop with hotspot valué contained references to each af/k array elements, whene = 2048 is the number of

iterations in the loop. In principle, we would not expect our methods to be negatively affected by the hot spot degree.

In fact, a larger the hotspot degree implies fewer non-empty rows ipEharray, and thus we might see improved

results in the analysis and scheduling phase since few rows would need to be accessed. The results in Figure 15 show
that in fact the total overhead (inspector + scheduler) is nearly the same for all hotspot degrees.
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8.2 Real Access Patterns

Now we would like to look at access patterns arising in real applications to demonstrate the diversity of partially parallel
access patterns and their associated parallelism profiles. By applying the new methods to such access patterns, we can
reconfirm the conclusions reached above using synthetic reference patterns. For this purpose we have chosen a loop out
of MA28, a blocked sparse UN-symmetric linear solver [10]. Loop MA30cd/IXD performs the forward—backward
substitution in the final phase of the blocked sparse linear system solver (MA28). We selected this loop because it can
generate many diverse access patterns when using the Harwell-Boeing matrices as input. Unfortunately, however, the
loop itself is not a good candidate for parallelization since it performs very little work and is highly imbalanced due to

the blocked nature of the algorithm employed by MA28.

We will limit our discussion below to two input sets: gemat12, which generates 4929 iterations, 460®p
which generates 822 iterations. After extracting and precomputing the linear recurrences from the source loop (based
on the methods described in [32]), we generated a fully parallel inspector and applied our methods to compute an
optimal parallel execution schedule for the loop.

From the data obtained we constructed the parallelism profiles depicted in Figures 6 and 7. These profiles depict
the size of the wavefronts of the optimal parallel execution schedule. As we can see from the figures, the same loop
can have vastly different dependence relations between its iterations. These figures clearly point out both the need for
run—time analysis techniques and for dynamic and adaptive scheduling schemes capable of overlapping scheduling and
execution. Figure 6 shows that most of the iterations of the loop can be executed in the initial wavefronts (the critical
path length is 114). This suggests that in this case it would be more beneficial to interleave the parallel wavefront
computation with the execution of previous wavefronts than it would be to overlap them, so that parallelization (and its
associated overhead) can be abandoned when the sequential tail of the profile is reached. Although in Figure 7 most
of the iterations are also executed in the intial wavefronts, in this case it appears that some benefit could be gained by
overlapping, i.e., we can take advantage of the “pauses” in parallelism to compute future (hopefully larger) wavefronts.
The histograms in Figures 8 and 9 underscore the need for scheduling and execution strategies that can be dynamically
adapting depending upon the type of parallelism encounted to more fully utilize the machine.

Despite the differences in the parallelism profiles Figures 10 and 11 show that the overhead of the run—time methods
described in this paper achieve similar performance. The reason that larger speedups were not obtained is that the loop
is heavily imbalanced due to the blocked nature of the algorithm used in MA28.

8.2.1 ParallelizingBenchmark L oops

We applied the methods to three loops contained in the PERFECT Benchmarks [4] that could not be parallelized by
any compiler available to us. In the analysis phase of the inspector it was found that one of the loops was fully parallel,
and that the other two could be transformed idtzal | s by privatizing the shared array under test. We show in
Figures 12 through 14 the speedup measured for each loop as a function of the number of processors used. As a
reference, we give the ideal speedup, which was measured using an optimally parallelized (by hand) version of the
loop. These graphs show that the speedup scales with the number of processors and is a significant percentage of the
ideal speedup. Below, we discuss each loop in more detail.

We remark here that these loops could also be identified by the LRPD test [30, 31], a run—time test for identifying
fully parallel loops, or loops that can be transformed idt@l | s using privatization and reduction parallelization.
An advantage of the LRPD test is that it has a smaller overhead than the methods we present here. The disadvantage
of the LRPD test is that if the loop cannot be transformed indoal | , then the overhead of applying the method is
added to cost of the sequential execution, i.e., a slight “slowdown” may be incurred. Ideally, in order to exploit the
relative advantages of the two methods, one would like to apply them both simultaneously.

BDNA-ACTFOR-Loop 240. This loop selects certain elements from a large array, and processes the selected
elements later in the loop. The shared array is accessed through a subscript array that is computed inside the loop (and
thus cannot be analyzed at compile—time). Although there are repeated accesses in this loop, it is determined in the
analysis phase of the inspector that the entire shared array is privatizable, i.e., that the loop can be transformed into a
doal | by privatizing the array. As shown in Figure 12, the obtained speedup scales with the number of processors
and is a significant percentage of the ideal speedup.

MDG- NTERF-Loop 1000. This loop calculates inter-molecular interaction forces. In the marking loop, to avoid
introducing false dependences we computed the branch predicates that guard accesses to the shared array under scrutiny.
As with the array in the loop from BDNA, it is found in analysis phase of the inspector that the entire shared array is
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privatizable. The speedup obtained scales with the number of processors and is a significant fraction of the ideal (see
Figure 13).

OCEAN-FTRVMT-Loop 109. This kernel-like loop is utilized in the computation of a 2—dimensional FFT and
accesses a vector with run—time determined strides. During the analysis phase of the inspector it is found that all
accesses inthe loop are unique, i.e., itis a fully parallel loop. Since this loop is invoked 26,000 times, and accounts for
40% of the sequential execution time of the program, it is an excellent candidatehfedule reusésee Section 6).

The access pattern for each instantiation of the loop is determined by a set of five scalars. In order to apply schedule
reuse, we checked whether the current set of scalars matched a previously analyzed set. If not, then we applied the
parallelization techniques, and if they did match then we simply executed the loogae &. As can be seen in

Figure 14, with schedule reuse we obtain scalable speedups that are comparable to the ideal speedup.

9 Conclusion

Parallelizing statically intractable loops at run—time is an important task since automatic, compile—time parallelization
had stopped with regular, well-behaved, statically defined programs—which represent only a fraction of all applications.
We believe that aggressive, dynamic techniques can break this barrier and extract much of the available parallelism from
even the most complex programs. Motivated by these concerns, we proposed new run—time inspector and scheduler
methods for parallelizing partially parallel loops. The inspector is fully parallel, uses no synchronization, and can be
applied to any loop (from which an inspector can be extracted). In addition, it can implement at run—time the two most
effective transformations for increasing the amount of parallelism in a loop: array privatization (element—wise) and
reduction parallelization. The scheduler/executer constructs an optimal parallel execution schedule for the iterations
of the loop. Although the wavefronts of the schedule are constructed in sequence, the computation of each wavefront
is fully parallel and requires no synchronization. These new methods improve on all previously proposed techniques
since none of them simultaneously has all these features (Section 7). The experimental results show that the proposed
methods are capable of obtaining speedups. In particular, since their overhead scales with the number of processors,
given sufficient processors it will become a very small fraction of the sequential execution time of the loop. Therefore,
we believe that the significance of these methods will increase with the advent of massively parallel processors (MPPs)
in which the penalty of not extracting the available parallelism in a loop could be a massive performance degradation.

Although these new methods illustrate the potential benefits of run—time parallelization, there is still much work left
to be done. For example, there are many potential scheduling strategies that need to be studied such as decoupling the
inspector/scheduler and the executor in order to hide the overheads, dynamically overlapping scheduling and execution,
or, constructing parallel threads of execution (as opposed to wavefronts). In any case, further investigation is needed
to determine the relative performance of the various strategies in different circumstances. Another important task is to
devise effective, automatable strategies for determining when and how to use run—time parallelization. Since speedups
obtainable from run—time parallelization are upper bounded by the inherent parallelism of the loop, the compiler needs
to estimate obtainable parallelism. Such estimates can be produced only through collection and interpretation of valid
statistics from programs in different application domains. The new methods provide a useful tool for such studies since
they determine the dependence graph and parallelism profile of the loop. It should be noted that run—time overhead
could be significantly reduced through architectural support.

We view the methods described in this paper as a building block in an evolving framework of run—time parallelization
as a complement to the existing techniques [30, 31, 32].
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Parallelism Histogram of MA28/MA28CD/DO_120
Input : GEMAT_12 — Total lterations: 4929
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Overhead Speedup for MA28/MA28CD/DO_120
Input : GEMAT_12 — Total lterations: 4929
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Parallelism Profile of MA28/MA28CD/DO_120
Input : BP_1600 — Total Iterations: 822
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Parallelism Histogram of MA28/MA28CD/DO_120
Input : BP_1600 — Total Iterations: 822
% of S(epi y

Figure 9:

Overhead Speedup for MA28/MA28CD/DO_120
Input : BP_1600 — Total Iterations: 822
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Speedup of Loop BDNA_ACTFOR_240
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Speedup of Loop  OCEAN_FTRVMT_109
vs. Number of Processors (FX/2800)
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Marking and Analysis Phase Overhead for:

Loops with Various Average Parallelism
Input : Synthetic Loop with N = 2048 lterations
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Speedup of Loop MDG_INTERF_1000
vs. Number of Processors (FX/2800)

Speedup
134

124

2 3 4 5 6 7 8 9 10 1 2 13 14
Number of Processors
ACTUAL _ __ IDEAL

Figure 13:

Run—Time Overhead for:

Loops with and without Hotspots
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Scheduling Phase Overhead for:

Loops with Various Average Parallelism
Input : Synthetic Loop with N = 2048 Iterations
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Marking and Analysis Phase Speedup for:

Loops with Different Average Parallelism
Input : Synthetic Loop with N = 2048 lterations
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Figure 18:

Marking and Analysis Phase Speedup for:

Loops with Different Average Parallelism
Input : Synthetic Loop with N = 1024 Iterations
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Scheduling Phase Speedup for:

Loops with Different Average Parallelism
Input : Synthetic Loop with N = 2048 lterations
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Scheduling Phase Speedup for:

Loops with Different Average Parallelism
Input : Synthetic Loop with N = 1024 Iterations
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