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ABSTRACT

Davenport-Schinzel sequences are sequences that do not

contain forbidden subsequences of alternating symbols. They
arise in the computation of the envelope of a set of functions.

We obtain almost linear upper bounds on the length X,(n) of

Davenport-Schinzel sequences composed of n symbols in which
no alternating subsequence is of length greater than 5 + L
These bounds are of the form 0(na(n)'^("(")' ^)), and they

generalize and extend the tight bound 0(na(n)) obtained by
Hart and Sharir for the special case 5 = 3 (a(n) is the functional

inverse of Ackermann's function), and also improve the upper
bound 0{n \og*n) due to Szemeredi.

1. Introduction

Consider the following combinatorial problem (most of this introductory

material also appears in [HS]): Let n, s he positive integers. A sequence
U = {u^, . . . ,u„) of integers is an {n,s) Davenport-Schinzel sequence (a

DS{n,s) sequence for short), if it satisfies the following conditions:

(i) 1 ^ M/ < n for each i.

(ii) For each / < m we have u, # M/+i.

(iii) There do not exist s + 2 indices 1 < ij < ij < • • • < i^ + 2 — ^ such that

«/i
= "/3 = "/j = • • • = a, ui^ = Ui^ = "/g = • • • = b,2S\da i- b.

We will write \U\ — m for the length of the sequence U.

Define

\^(/!) = max {\U\ : f/ is a DS{n,s) sequence } .

The goal of this paper is to establish almost linear upper bounds on Xj(ai).

The problem of estimating \s(n) has originally been posed by Davenport
and Schinzel [DS]. ITieir interest in it arose from its connection to the

Work on this paper has been supported in part by a grant from the U.S. -Israeli Binational Science

Foundation.



analysis of solutions of linear differential equations. Recently, Atallah [At]

has raised it again independently, because of its significance for problems in

dynamic computational geometry. These two applications are quite similar,

and can be briefly described as follows. Let f\, . . . ,f„ be n real-valued

continuous functions defined on a common interval /. Suppose that for each

i#y the functions /, and fj intersect in at most s points (e.g., this is the case

for polynomials of fixed degree, or Chebycheff systems, and so on). Let

g{x) = min {fi{x) : i = l, . . . ,n\., for a: ^ /, be the lower envelope (i.e. the

pointwise minimum) of the //'s, and let m be the smallest number of

subintervals I-^, . . . ,I„ oi I such that for each it there exists an index /^ with

g{x) = fijix) for all x 6 4. In other words, m is the number of connected

portions of the graphs of the //s which constitute the graph of g. Assuming
that I^, . . . ,I„ are arranged in this order from left to right, put

uiJi in) = Oi. .L) •

It is now easily seen that U(fx, . . . ,/„) is a DS{n,s) sequence. Moreover, it

is known (see [Atj) that lor any D3{n,s) sequence U one can construct a

collection /1, ...,/„ of such functions for which U(fi, . . . ,f„) = U.

Therefore the largest possibie value of m is precisely Xj(n).

Thus, in this setting, Davenport-Schinzel sequences are strongly related

to the problem of computing the (lower) envelope of a set of functions which
intersect each other in pairs in at most some fixed number of points. This

problem has many applicc^tions in computational geometry and related areas,

many of which are given in [At] and in [HS].

The problem of estimating Xj(«) has been studied in several papers [DS],

[Da], [RS], [Sz], [At], [HS]. It is known (and easy to prove) that \i(n) = n

and k2{n) = 2« — 1. Hart and oharir [HS] have shown that X^i^) = (d{na{n))

by establishing an equivalence between DS{n,3) sequences and certain

sequences of generalized path compressions on trees, and then by analyzing

these path compression schemes. Here a(n) is a functional inverse of

Ackermann's function, and is very slowly growing (see [HS] for more detail

concerning Ackermann's function; a brief review of the properties of this

function is also given in Section 3). For s > 3 the deep result of Szemeredi
[Sz] states that Xj{n) = 0{n \og*n), where* the constant of proportionality

depends on s, and where log*;i is the smallest / > 1 such that e, > n, where

€1 = 2 and €, + 1
= 2*'. (We use here the following standard notations. Let/,

g be two positive functions defined over the integers. Then f{n) = 0(g(n))
(resp. f{n) = fl{g(n))) if there exists a constant C > such that

/(n) < Cg{n) (resp. /(n) > Cg(n)) for all n. We write f(n) = e(g{n)) if

both f{n) = 0(g(n)) and f(n) = Cl{g{n)) hold, namely, if there exist

constants Cj, C2 > such that C^g(n) < f{n) < Cjgin) for all n.)

In this paper we derive the following upper bounds on \X") for

arbitrary s > 3

In this paper all logarithms are with base 2.
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X,(n) < nQ.iain)) (1.1)

where Qs(a) — 0(a'^(°' )) (a more precise definition of Q^ is given in

Section 5 below). These bounds improve Szemeredi's upper bounds [Sz]. We
do not know however whether these bounds are tight (in fact we strongly

suspect they are not). The proof of (1.1) involves a somewhat intricate

inductive argument based on recurrence formulae which extend the formula
used in [HS] for the case .s = 3. Another feature of the proof given here is

that we analyze Davenport Schinzel sequences directly, and do not use any
reduction of them to other combinatorial structures, as was done in [HS]. The
results of this paper can also be modified to yield a more direct proof of the

upper bound on X3(n) given in [HS].

2. Decomposition of Davenport-Schinzel sequences into chains

Definition: Let f/ be a DS(n,s) sequence, 9r>d let 1 < r < 5. A t-ckain c is a

contiguous subsequence of U which is a Davenport-Schinzel secuence of

order t.

Given n, s, t and U as above, we partition U into disjoint r- chains,

proceeding from left to right in the following inductive maimer. Suppose that

the initial portion {u^, . . . .Uj) of U has aljeady been decomposed into t-

chains. The next /-chain in our partitioning is then the largest subsequence of

U of the form (uj + i, . . . ,Ui^) which is still a Davenport-Schinzel sequence of

order /. We refer to this partitioning as the canonical decomposition of U into

r-chains, and let m = m,(U) denote the number of r-chains in this

decomposition.

The problem of obtaining good upper bounds for the quantities

|Xj ,(n) = max { m,(U) : U is a DS{n,s) sequence }

seems quite hard for general s and r. Nevertheless we have the following

partial results.
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Proposition 2,1 p-^ j_i(n) ^ n and |Xj,j-2(") ^ 2/i — 1.

Proof: Consider the first inequality. Let U he a. DS(n,s) sequence, and let

(c^, . . . ,c„) be the canonical decomposition of U into (j' — l)-chains. Let

1 < y < m, and suppose that Cj = {Up,Up + i, . . . ,u^). Let b = ", + i. By our

construction cj is a Davenport-Schinzel sequence of order s—1, whereas

Cj II [b] is not. Hence there exists another symbol a ^ b such that cj contains

a subsequence of s alternations of a and b ending at a. If s is odd then this

subsequence has the form

aba • • • b a .

But then Cj mu5t contcin both the first oanjirrence of b and the last

occurrence of a in U, for otherwise U would plainly contain one of the

forbidden subsequences aba ••• b a or b a b ••• a b of length

s+ 2. This implies that each, chain cj must contain the last occurrence of

some symbol (this obviously holds also for^ = m), and hence we must have

m ^ n. Similarly, if s is even then Cj must contain the subsequence

b a b • • • b a

of length s, and similar arguments to those used above imply that Cj must

contain both the first and the last occurrence of a , from which it follows once

again that m ^ n.

To estimate ^-j^_2(«) we proceed in much the same way. Specifically,

suppose s is odd, and consider an (5-2)-chain Cj in the canonical

decomposition of U, followed by a symbol b. Then there exists a i^ b such

that Cj contains a subsequence of the form

b a h • • b a



of length s—l. Now cj must contain either the first or the last occurrence of

a in U, for if cj contained neither of these occurrences, U would have to

contain a forbidden alternating subsequence of the form

a b a b ••• b a b a

of length 5 + 2. Since there are n first occurrences and n last occurrences of

symbols in U, and since c^ plainly contains at least two such first occurrences,

it follows that |Xj_j_2(n) < 2n - 1. Similar arguments can be used to handle

the case in which s is even. Q.E.D.

Definition: Let n, m and s be positive integers. We denote by iJ/j(m,Ai) the

maximal length of a DS{n,s) sequence composed of at most m l-chzins.

In Section 4 we will obtain upper bounds for »{;j(m,ri). In order to apply

these estimates to obtain upper bounds on Xj(n), we will need to estimate

jjL, i(n), a task which we have been unable to handle successfully (for s > 3).

Instead, we will use the followmg approximation. Let f/ be a DS{n,s)

sequence of maximal length, and let (ci, . . . ,c„), m -^ n, be its canonical

decomposition into (j?— l)-chains. We will replace each (5— l)-chain Cj by a

1-chain cj*, by leaving in cj only one occurrence of each symbol appearing

there. We will show in Section 5 that in this way we can obtain a DS{n,s)

sequence U* composed of at most n chains, whose length is not much smaller

than the length of U, i.e. than X^(n). This will establish a connection

between \j{n) and \\iXn,n), from which the desired upper bound on Xj(/i)

will be obtained.
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3. Statement of Main Results

In this section we state our main results, concerning the functions \ and

\\>. For this purpose, we briefly review first the definition and some basic

properties of Ackermann's function and certain auxiliary functions

("generalized exponentials" - cf. [Ac]). A more detailed description of these

functions can be found in [HS].

Let A^ be the set of positive integers 1,2 Given a function g from a

set into itself, denote by g'-'' the composition g og o • • • o g of g with itself

s times, for s ^ N. Define inductively a sequence {A,^}k = i of functions from

// into itself as follows:

Ai{n) = 2n

A,in) = At-\il) , A: > 2

for all n ^ N. Note that for all /c > 2, the function A^ satisfies

.4,(1) = 2
,

Ai(n) = A,_i(A,(n-l)), /z > 2 .

In particular, Aiin) = 2A2(n-l), thus A2 is the "power function"

A2(ai) = 2"
, n i N .

Then A^in) = 2'^'^"~'^\ thus A3 is the "tower function"

A,(n) = 22-"'
,

with n 2's in the exponential tower, for n ^ N. Finally, put

A{n) - AM
This is Ackermann's function (this is the variant used in [HS]). Ackermann's

function A grows very fast; its first values arc: A(l) = 2, A(2) = 4,

A(3) - 16 and A(4) is a tower of 65536 2's.



Given a strictly increasing fuction g from A^ into itself, its functional

inverse is the function -y from A^ into itself given by

7(/i) = min (j > 1 : g(s) > n}
;

thus, y{n) = s if and only if ^(^-1) < n < g{s). In particular, let a^ and a

denote the functional inverses of A^ and A, re-spectively. Then, for all n ^ N,

ai(/i) =

The functions a^ are easily seen to satisfy the following recursive formula:

oL^(n) = TTi-n {s^ I: aK\(n) - 1; ;

that is, ai(n) is the number of iterations of a^.i needed to go from n to 1. In

particular, a^in) is precisely log*M, as defined in Section 1.

All the functions a^ are non-decreasing, and converge to infinity with

their argument. The same holds tor a too, which grows more slowly than any

of the a^. Note that a(n) < 4 for all n < A (4) which is a tower with 65536

2's, thus a{n) < 4 for all practical purposes.

The following property, which follows immediately from the above

definitions, will be used in the sequel

aa(n)(") = a(") • (3.1)

We will also need the following inequality, proved in [HS]:

«2a(n)-3(") ^ 3 . (3.2)

We can now state our results.

MAIN THEOREM:

\,(n) - C'(/ia(/i)0(«('>)'"'))



-8-

for s ^ 3 and n ^ 1.

It is easily verified that these bounds improve those of Szemeredi (which

can be stated as Xj(«) ^ C(s)na2(n)), for each s and sufficiently large n.

The Main Theorem is proven in Section 5. It is a consequence of the

following Theorem, which yields upper bounds on the length of Davenport-

Schinzel sequences with a given number of 1-chains (i.e. on the function

\\fj{m,n) defined in the preceding section).

Theorem A:

4;,(m,n) = 0((m + n)a(m)^(»('")''')) .

Theorem A will be proved in the following section.

4. Upper bounds for v|< J
(m,/i)

In this section we establish almost linear upper bounds on the maximal

length \\)^{m,n) of a DS{n,s) sequence composed of at most m 1-chains.

Consider first the case s — 3. This case has been analyzed in [HS], and the

following upper bounds have been obtained (actually the bounds derived in

[HS] were for another function, namely the maximal length of admissible

path compression schemes on trees, but it can be easily verified (cf.

Proposition 4.1 of [HS]) that these same bounds also apply to our function

^i{m,n) < 4kmai,{m) + 2kn
, (4.1)

for each A: > 1. These bounds also yield, putting k = 2a(m) - 3 and making
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use of (3.2),

\\i2{m,n) < (24m + 4n) a(m) . (4.2)

Our aim is to establish inductively similar inequalities of the form

i}/,(m,n) < mF(j)(a(m)) + ;iGi^)(a(m)) , (4.3)

where Fjj\ G^'^ are appropriate positive and monotonia functions, whose

precise form will be specified below. Qearly, for the initial case s = 3, (4.3)

is obtained from (4.2) by choosing

F(J)(oc) = 24a , Gi3)(a) - 4a . (4.4)

Suppose next that (4.3) has been established for s—l, and consider the

case of s. Our aim is to establish a recurrence formula for i};j(m,n) which is a

generalization of the formula obtained in Proposition 5.1 of [HS].

Specifically, we have

Proposition 4.1 Let m, n >1, and let ^ > 1 tc a divisor of m. Then there

exist integers n* , n^, rij, ,ni, > such that

/ = i

and

^Am,n) < i ^si^,n,) + 24»,(^,n*)-Gi-i)(a(m)) + (4.5)

1 = 1 "

m(3 + 2F(,-i)(a(m)) + 2Gi^-i)(a(m))] .

Proof: Let U he. 2. D5'(n,5')-sequence consisting of at most m 1-chains

Cx, . . . ,c„ such that \U\ = »j;j(m,/i), and let ^ > 1 be a divisor of m.

Partition the sequence U into b layers Lj, . . . .L^ so that the layer L, consists

of Ihc /? — — 1-chains c-(,_i)p + i, C(-/_i)p+2, . . . ,c,^. Call a symbol a internal
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to layer L, if all the occurrences of a in U are within L/. A symbol will be

called external if it is not internal to any layer. Suppose that there are n,

b

internal symbols in layer L, and n* external symbols (thus n* -f- ^ n, = n).

/ = i

To estimate the total number of occurrences in U of symbols that are

internal to L,, we proceed as follows. Erase from Ly all external symbols.

Next scan L^ from left to right and erase each element which has become

equal to the element immediately preceding it. This leaves us with a sequence

L* which is clearly a DS(n,,s) sequence consisting of at most — 1-chains, and

thus its length is at most ^si'T'^^i)- Moreover, if two equal internal elements

in Li have become adjacent after erasing the external symbols, then these two

elements must have belonged to two distinct 1-chains, thus the total number

of deletions of internal symbols is at most ^-.
b

Hence, summing over all layers, we conclude that the total contribution

of internal symbols to \U\ is at most

Next, to estimate the contribution of external symbols to \U\, we argue as

follows. For each L, consider separately external symbols whose first

occurrence in U appear to the left of L, (call them non-starting external

symbols), and all the other external symbols which appear in L^. Note that

these latter symbols cannot have their rightmost occurrence within L,, and for

thai reason wc will refer to them as non-ending external symbols. Consider
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first non-starting symbols. To estimate their contribution to the length of L/

we erase from L, all other symbols occuring there, and, if necessary, also

erase each occurrence of a non-starting symbol which has become equal to the

element immediately preceding it. As above, at most -r— 1 deletions of

external non-starting symbols will be performed. Let L* be the resulting

subsequence, and suppose that it is composed of p/ distinct symbols.

We claim that L* is a DS(p,,s-i) sequence. Indeed, if this were not the

case, L* would contain an alternating subsequence W of two external non-

starting symbols a, b, which has length ^-1-1 and which begins, say, with a.

But since b is assumed to be non-starting, 'here must exist at least one

occurrence of b to the left of L;, which, ccixatenated with W, yields a

forbidden alternating subsequen:^e of length 5'-!- 2 within U, contrary to

assumptions.

Thus L* is a DS(pi,s—l) sequence, consisting of at most -7- 1-chains, so

that, by induction hypothesis, its length is at most

Hence, simuning over all layers, the total contribution of external non-

starting symbols is at most

/
b

J. Pi G(.-i)(a(m))m - b + mF^J-^\a{m)) +

But if we leave, in each L^, the leftmost occurrence of each external non-

starting symbol, and furthermore delete (at most b) elements which have

become equal to those immediately preceding them, we obtain a DS(n*,s)
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sequence composed of at most b chains, whose total length is at least

b

^ Pi - b. Thus
1=1

/ = l

Hence the total contribution of the external non-starting symbols to \U\ is at

most

m- b + mFi^-i)(a(m)) + [b + y\>,{b,n*) ]G(j-'Ka{m)) .

Repeating the above argument once again to the analysis of the number

of occurrences of external non-ending symbols in each of the layers L,, we

conclude that total contribution of these symbols to \U\ is also bounded by the

bound just stated. Thus we obtain the following final inequality

y\>Xm,n) < f ^s(^,n,) + 3m - 2b + 2mFi^-'\oL{m)) +

2[b + »i,,(Z>,n*))Gi-i)(a(m))<

i »V,(f->"/)
+ 3m + 2m[F(j-'){a(m)) + G(j-')(a(m))] +

as asserted. Q.E.D.

Proposition 4.2: Let n,q >1, it > 2, and suppose that m divides Aki^)-

Then

^s(m,n) < mqF[^\a{A,{q))) + nG^'\cxiA,iq))) , (4.6)

where

F{'Ho^) = , Gp)(a) = 2
,

and

Fi^)(a) = 2F/i)i(a) • G(j-')(a) + 3 + IF^J-'^a) + 2Gi^- ^)(aI4.7)
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for it > 2.

Proof: We will use (4.5) repeatedly to obtain the series of upper bounds on

i|;,, stated in (4.6) for k = 2,3,.... At each step we choose Z? in an appropriate

manner, and estimate \\i,{b,n*) using the bound obtained in the preceding

step. This yields a recurrence relation on \\)j which we solve to obtain a

better upper bound on \\)j.

Specifically, we proceed by double induction on k and q. To start this

iterative process with k = 2, suppose first that m = A^iq) = 2'?. Choose

b = 2 in (4.5); it is easily checked that 4;,(2,n*) = 2n* for all n* , so that

(4.5) yields

4n* Gi^-i)(a(m)) + il/X^,"i) + ^,(^,"2) •

-t-

2 ' '' ^'^ 2

The solution to this recurrence relation, for m a power of 2 and

n = «* + «! + ^2 arbitrary, is

y\>,(m,n) < m log m [s + 2F(j-^^a{m)) + 2Gi^-i)(a(m))] + 4nGi^-^)(a(m))

(This is easily established by induction on m.)

To complete the argument for k = 2, note that if m divides A2{q) = 2"?

then m is a power of 2 and log m -^ q, thus

vl;,(m,/0 < m^ • (3 + 2Fi^-^)(a(m)) + 2Gi^-^)(a(m))] + 4/iGi^-i)(a(m)) .

Thus if we put, as in (4.7),

F[^){a) = 3 + 2F(.^-i)(a) + 2Gi^-^)(a) ,

and
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we can rewrite the preceding inequality as

which, since m ^ A2{q), implies (4.6) for k = 2.

In particular, we have for m = 1, 2 (and ^ = 1)

y\fXm,n) < mFi^)(a(m)) + «G^^)(a(m)) <mFi^)(a(m)) + /iG/^)(a(m))
,

for all it > 2. Since A,,(l) = 2 it follows that (4.6) holds for each fc > 2 and

q = l.

Suppose next that k > 2 and q > I, and that the induction hypothesis is

true for all k' < k and q' >1, and for k' = k and all ^' < q. Observe that

A^(q — i) is a divisor of At(^) because they are both powers of 2. Assume

first that m = Aic{q); let i = Ajf{q — X) and choose b = — , which is an integer

dividing m = A^{q) = Ai^.i(t). Hence by induction hypothesis (for k—l and

r) we have

4/,(t.n*) < f /Fii)i<a(A,_i(0)) -f n*G^L\(aiA,.,(t))) =

mFii)i(a(m)) + «*Gii)i(a(m)) .

Then (4.5) becomes

^,{m,n) < 2: ^sit,n,) + 3m + 2m fFi^-i)(a(m)) + Gi'-i)(a(m))l +
1=1 ^

(2mF/i)i(a(m)) + 2«*Gii)i(a(m)) ]
• Gi-i)(a(m))

,

Recall that we have defined

Fi^)(a) = 2Fii)i(a) • G(j-'\a) + 3 + 2F(j-')(a) + 2Gi^-i)(a)
,

G/0(a) = 2Gli)i(a)-Gi-i)(a),

Hence, using the induction hypothesis once more (for k and ^-1), wc obtain
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^sim,n) < i \t(q - l)F|^)(a(0) + n,Gt\a(t))] +
1 = 1

*-

mF|^)(a(m)) -h n*GJi'\a{m)) <

mqFJ^'\a{m)) + nGJi'\a{m))

b

(because n* + ^ n, = n),a& asserted.

/ = i

Finally, assume m divides A^{q), say A^(q) = pm. Let U he a. DS{n,s)

sequence composed of at most m 1-chains whose length is \\>j(m,n). Create p

copies of U, using p disjoint sets of n symbols each for these copies, and then

concatenate all these copies to form a new sequence U* . U* is obviously a

DS{pn,s) sequence composed of at most pm = Ayijq) 1-chains, and its length

is therefore

p^Xm,n) < >\>Mt{q),pn) ^ qA^{q)Fi'\a{A,{q))) + pnGi'\oi{A,{q)))
,

which, divided by p, yields the leqLdred i/iequality. This completes ihe

proof. Q.E.D.

Corollary 4.3: For all m, n ^ 1 and ^ ^ 2,

vi;,(m,n) < 2moL,{m)Fi^){a{A,{a,{m)))) ^ nG[^){oL{A,{a,{m))))
,

where a^ is the functional inverse of A^ as defined in Section 3.

Proof: Put q = a^im), so that Ai,{q-l) < m ^ A^^q). Let

m
> 1, then Ajt(^) < {p + \)m < 2pm. As in the preceding proof

we have

p^\lXm,n) < \]^,ipm,pn) < y\tXAk{q),pn) =

qA,{q)Fi^\a{A,{q))) + pnGJ^^\a{A,iq)))

2pmqFi^\a{A,{q))) + pnGi'\a{A,{q)))

Dividing hy p we obtain the desired inequality. Q.E.D.



- 16-

Corollary 4.4: For all m, n ^ 1,

y\iXni,n) ^ mFi^)(a(m)) + nGi^)(a(m)) ,

where

F(j\ol) = 2aFi')(a) , Gi^)(a) = Gi^\a) .

Proof: Put it: = a(m). Then (3.1) implies that at(m) = a(m), so that

a(At(a,(m))) = a(A(a(m))) = a(m) .

Hence Corollary 3.1 implies that

vl;,(m,n) < 2ma(m)Fif^)(a(m)) + nG(f„)(a(m)) ,

as asserted. Q.E.D.

Proposition 4.2 and Corollary 4.4 thus complete the inductive proof of

(4.3) for all 5 > 3.

Proof of Theorem A: The inequalities (4.4) and (4.7) together yield a

recurrence scheme for the functions F^/^ and Gi^\ We can use these

formulae to obtain more direct estimates on the^e functions as follows.

Proposition 4.5: For each .y > 3,

Gi^)(a)<8"''V"-i)'"\ (4.8a)

Fi'^ia) < ll(2a)-3 GW(ot) . (4.8b)

Proof: We will first establish (4.8a) using induction on s. For s — 3 (4.8a)

follows immediately from (4.4). Suppose s > 3 and that (4.8a) has been

established for s-1. It easily follows from (4.7) that

G(f)(a)< 2 [2G(- !)(«)]""'.

ITius by induction hypothesis we have

GijHa) < 2[2-8'«'"a(<^-i)'"^
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< S('^'~'+ !)(« - 1) + i-a(°"i)'"^

as asserted. This proves (4.8a) for all .s > 3. Next c»nsider (4.8b). It follows

immediately from (4.4) that (4.8b) holds for 5 = 3. Suppose s > 3 and that

(4.8b) has been established for s — 1. Put

a = 2Gi^-i)(a) , b^3 + 2F(j-''>{a) + 2G£-'-^)(a) .

Then (4.7) implies

Fi^)(a) < aFtJ,{a) + b

where F{^)(a) = 0. This implies that

Thus, putting k = a, it follows that

nKcc) <
^^P^l~^_ ^

• (3 + 2F(-i)(a) + 2G(-i)(a)
]

• a .

To simplify the calculations, write (4.8b) in the form

Fi^)(a)<D,(a)Gi^)(a) . (4.9)

Then the induction hypothesis implies that

[3 + 2(D,_i(a) + l)G(-^)(a)l-a

*" ^^ 2Gi^-i)(a) - 1
^'^ ^"^

<(2D,_i(a) + 5)aGi^)(a).

Hence (4.9) will continue to hold for s too if we put

D,(a) = (2D,_i(a) + 5) a.

The solution of this last recurrence formula is

D,(a) = (2a)-3 . z)3(a) + (^Z^'~'
' ^

. 5a
la. — 1

< (2a)^-3 • D3(a) + 2(2a)^-^-5a

= (2a)^--' (D3(a) + 5) = ll(2a)^-3 ,
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from which (4.8b) follows immediately. Q.E.D.

Theorem A now follows immediately from (4.3) and (4.8).

Corollary 4.6:

Proof: Immediate.

5. Upper bounds for Xj(rt)

Having obtained the upper bounds on \\)j{m,n) in the preceding section,

our next step is to use them to obtain almost linear upper bounds for Xj(n),

by establishing a relationship between these two quantities. As already noted

in Section 2, this will be achieved by constructing a DS{n,s) sequence U*

whose length is sufficiently close to \,{n), but which contains only at most n

1-chains, and then by using 6* to bound Xj(/i) in terms of vj;j(n,n).

Details are a& follows. We will prove, using induction on s, that for each

n > 1 ^^c

K(n) < nQXa(n)) (5.1)

where Q^ is a positive and monotonic function whose exact form will be

specified below. The claim holds for 5 = 2 if we put Qiioi) = 2, as follows

from the results of [At] and [HS].

Suppose the claim holds for all 2 < 5' < 5 and consider Xj(n). Let U be

a DS(n,s) sequence of maximal length Xj(n), and let (ci,C2, . . . ,c„) be the

canonical decomposition of U into (j— l)-chains. By Proposition 2.1 we have

m < n. For each j = \, . . . ,m replace Cj by the 1-chain c* obtained by

retaining in cj only the leftmost occurrence of each symbol appearing there.
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To obtain U* we first concatenate the 1-chains cf, . . . ,c^ in order; then,

proceeding from left to right , we erase every element that has become equal

to the element immediately preceding it (at most m < n elements will be

erased). Suppose that cj contains kj distinct symbols, for 7 = 1, . . . ,m. Since

each Cj is a D5(itji,5'- l)-sequence, we have by induction hypothesis

\cj\ < \s.^{kj) < kjQ,^^{a{kj)) < kjQ,.^{cL{n)) .

Thus

''^
' ^^ - l2.-i(cx(n))

so that

Hence

K{n) = |f/| = S \cj\ < {n + \U-\) a- !(«(.'')) •

But \U*\ is plainly a DS(n,s) sequence composed of at most n 1-chains, so

that by Theorem A

where Hj{a.(n)) is as given in Corollary 4.6. We thus conclude that

K(n) < n {H,ia(n)) + l)(2.-i(a(n)) .

Hence (5.1) will also hold for s if we put

(2,(a) = (//,(a) + l)(2,_i(a) .

If we substitute the explicit form of H^ into this recurrence formula and solve

it, we obtain

(s-i)(s-2)
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This cx)mpletes the proof of the Main Theorem.

Remarks: (1) The bounds just obtained could be somewhat improved if we

used the canonical decomposition of U into (j-2)-chains rather than into

(j— l)-chains. Nevertheless, the resulting bounds would be of the same

asymptotic order of magnitude.

(2) The case j = 3 can also be handled by the above technique. In this case

the chains Cj are 2 -chains, 50 that the length of each cj is at most 2kj — 1 (cf.

[At], [HS]). The same reasoning as above would then imply

Xj(r) < 2(n + i}/3(".«)) •

If we use this bound, and somewhat improve the analysis in Section 4 for the

case J = 3, we can obtain a more direct derivation of the bound

\-i{n) = 0{na{n)) obtained in [HS].

(3) We do not have lower bounds for X,(n) (other than those obtained in

[HS] for X3), and we strongly suspect that the bounds (5.1) can be

substantially improved. To do that, using the techniques developed in this

paper, one would have (a) to improve the formula (4.5) by finding tighter

estimates on the contribution of externa] symbols to the length of U, and (b)

to establish a better connection between X, and 1];^, e.g. by establishing an

explicit upper bound on ^jl^ i(ai).
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