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The paper deals with common generalizations of classical results of Ramsey and Tur,4n. 
The following is one of the main results. Assume k~2, e>0, G,, is a sequence of graphs of n- 

1__ / 3k-5  
vertices and at least [ +e |  tP- edges, and thesize of the largest independent set in G,, is 

2 t 3 ~ - 2  ) 
o(n). Let H be any graph of arboricity at most k. Then there exists an no such that all G~ with 
It>n0 contain a copy of hr. This result is best possible in case H=K~,k. 

1. Introduction. Notation. Statement of the main results 

In her paper [9] the third author  raised a general scheme o f  new problems. 
These problems can be considered as common  generalizations o f  the problems 
treated in the classical results o f  Ramsey and Turfin. Since 1969 she and the first 
author  have published a sequence o f  papers on the subject [5], [6], [4]. This work is a 
cont inuat ion o f  the above sequence. 

We are going to define the Ramsey- -Turf in  function RT( . . . )  below. Our  
main aim is to give reasonable estimates for this function in some special cases. 
However  before doing this we have to say a few words about  notat ion.  We hope 
that  in general these will be standard and self-explanatory, but we do not stick to 
the special notat ion used in the earlier papers mentioned above. 

In what  follows the letters k, l, m, n, r, s, t denote non-negative integers. 
We set n = { 0 ,  1 . . . . .  n - l } .  For  arbitrary sets A , B  let [A]"={XcA:  IX[=n},  
[A] ~ ' =  {X=A : [X I =>n}, etc. Further,  let [A, Big'm= { X c A  UB:  IXN AI = 
=n/', I,YNBI=m}. 

For an arbitrary sequence k0 . . . . .  1#_~ the Ramsey function Rs(k o . . . . .  k ,_l)  
equals to the minimal n such that  for all s-partit ions [nq-1]~= U E,- o f  length 

i - < r  

r o f  nq-1  there are i<r  and A = n - t - 1  such that  IA[>=k~ and A is homogeneous  
for the partition in the class El, i.e. [A]~cEi. 

Definition 1.1. (The Ramsey--Turdn function RT(n ;  ko . . . . .  k,_~; l)). 

AMS subject classification (1980): 05 C 55, 05 C 35. 
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Assume n, k 0 . . . .  , k,_~, 1 are such that  n<=Rz(ko . . . .  , k,-1, l). Then there 
exists a largest integer e satisfying the following condition: 
(1.2) There exists a graph G=(V~, EG)=(V, E) with [V]=n, ]E]=e  and there 

is a partition E = U Ei of  E such that there is no independent set of  size 
i < r  

l for G and none of the graphs Gi=(V, El), i<r contains a complete 
k, graph. 
Let RT(n; ko . . . .  ,k,_x; l)=e for the above e. 

Note that this is not the most general problem one can raise here. First 
of  all the function just defined is really RTs (n; k o . . . .  , k,_~; I) for s = 2 ,  but 
we do not give here any results for hypergraphs corresponding to the cases s > 2 .  

It  should be also clear that it is just a convenience for us to give an a priori 
different role to the number 1, and not to speak about 2-partitions of  length r +  1 
of  a set of  size n. In our results the r ' th  class plays a special role. 

There is one more remark in place here. Let fiT(n; ko . . . . .  k,-1; l) be the 
set o f  all those numbers e for which there is a graph G=(V, E) satisfying (1.2) 
with [El=e.  

The investigation of this set R'T(n;ko, ...,k,_a; l) in general could be 
quite interesting and relevant to several problems considered in the literature (e.g. 
size Ramsey numbers). 

It  is a quite intrigueing question if this set is always an interval. We have no 
counterexample to this statemant. However in the cases we are going to investigate 
RT(n; ko . . . . .  k,_~; l) sufficiently characterizes R'T(n; k0 . . . . .  k,_~; I) and we 
do not discuss this problem any further. 

Finally we would like to state two obvious formulas showing explicitly the 
connection of  the RT function and the Ramsey and Turfin functions: 

{(n, k0, ..., k ,-1,  I): RT(n; ko . . . .  , kr-~; l) is defined} = 

{(n, k0, ..., k ,-1,  I): n <= R2(ko . . . .  , k ,_l ,  I)} 

and RT(n; k+ l ; n +  1) is the Turfin number of  the complete k-graph. Our main 
results in this paper concern the case r =  I, and we start to discuss them now. 

The classical result of  P. Tur~in yields that for k->2 

1(1) 
(1.3) RT(n; k + l ;  n + l ) = - ~ -  1-- n2( l+o(1) )  

As to the function RT(n; k; I) most of  the known results are asymptotic 
estimates in case 1 is replaced by a function of  n which is o(n). We will continue 
in this tradition and we will freely use the symbol RT(n; k; o(n)). 

The earliest result on the subject stated in [4] says that for k=>2 

(1.4) 1 (1-V~-7)n~(1 +o(1)) RT(n; 2 k - l ;  o(n))=-f 



RAMSEY--TUR~N TYPE PROBLEMS 71 

The case of  even second entries turned out to be much harder. It was proved 
only much later in [1] and [10] that 

?12 
(1.5) RT(n, 4, o(n)) = -g- ( l+o( l ) )  

[10] gives the upper estimate and [1] the counterexample. 
One of the main aims of this paper is to generalize this and prove that for k =>2 

(1.6) 1 [ 3 k - 5 ~  2 
RT(,,, 2k, o(n)) = [3-£--2J" (1 +o(1)) 

The lower estimates are all obtained using the only important genuine example 
given in [1]. This will be done in Section 4. 

First we give a technical definition to restate (1.4) and (1.6) in one formula 

Definition 1.7. For l>-_3 let 

1 I - 3  1 3 / - 9  
a t -  2 l - 1  = 2 - ' 3 l - 3  in case l is odd, 

1 3 1 - 1 0  
in case 1 is even. a t -  2 3 l - 4  

1 1 z is strictly increasing. The sequence a3, aa, a 5, a6 . . . . .  0, ~ , ¥ ,  5- . . . .  
Now the common generalization of  (1.4) and (1.6) is that for l=>3 

(1.8) RT(,, I, o(,0) = a, '0 +o(1)) 

The upper estimate will be a corollary to our main Theorem 1 which is an 
Erd6s--Stone type generalization of  (1.8). 

First we introduce a convenient symbolism for stating this result. 

Definition 1.9. Assume n, l and the graph H are such that there is a graph G =(n,  E) 
not containing H as a subgraph and having no independent set of size l. We 
denote by RT(n; H; l) the largest integer e for which a graph G described above 
exists with [El=e. 

Note that RT(n; k; I)=RT(n; Kk; l) for the complete k-graph Kk. 

(1.10) Let Chrom (k) denote the class of  graphs G with chromatic number at 
most k. 
Taking into consideration that RT(n, G, n+ 1) is the Tur~in number of  G, 

a classical result of  [7] generalizes (1.3) to 

(1.1 I) For k >-2, and .for e a c h  GcChrom (k +  1), RT(n, G, n+ 1)~  1(1) )) _<--ff 1 -  n 2 1+o(1 . 

We now remind the reader that a graph G =(V,  E)  is said to have arboricity number 
at most k iff V can be written as the union of  sets V = U V~ in such a way that 

l-,:k 

G(Vi), the subgraph of  G spanned by Vt, is a forest for i<k. 
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Now in our generalization of (1.8) the arboricity plays a role similar to that 
of  the chromatic number in (1.11). However, the analogy is not complete and we 
need some more definitions to state the result. 
Definition l.12. Let I ~ 3  and set k = [ • ] .  Let Arb(I)={G=(V,E): There is 
a sequence (Vi: i<-k) such that V=[_J Vi, G(VI) are forest for i<=k, G(Vk) 

i n k  

has no edge and l/'k--O for even l}. 
Note that for even l, Arb (1) is the class of  graphs of arboricity < L  while z 2 ~  

for odd l, Arb (l) consists of  graphs whose vertex set is the union of  an independent 
set and of a subset spanning a subgraph of  arboricity at most [~-]. 

Note that KtcArb (l) for /=>3. Now we are in a position to state our main 

Theorem 1. For l>=3 and G ~ A r b ( / )  Rr(n; G, o(n))<=azn2(l+o(1)). 

Note that because of  K~cArb (l) this yields the upper estimate needed for 
(1.8). The proof  of  Theorem 1 will be given in Section 4. 

We would like to point out an interesting phenomenon. 

Definition 1.13. By the above result, for each G there is a smallest real number 
c, 0~c '<-}  such that RT(n; G" o(n))~cn"-(l+o(l)). Let us denote this smallest 
c by CRT(G)=c(G). We call it the critical number of  G. 

There are some graphs for which we can not determine the critical number. 
Such is the two by two Turfin graph K~.~2=G~. By Theorem 1, we know that 
c(G0 ~: ½ but we have no other information. 

On the other hand for all graphs G for which we can determine c(G) the 
critical number turns out to be one of the a~; l =3 ,  4, . . . .  We do not venture to 
conjecture that this is true in general, but we point out that our results imply that 
c(G) can not be arbitrary. 

In Section 5 we shall prove 

(1.14) For all graphs G, c(G)~[az, a~+~] for some odd 1. 
Hence e.g. there is no graph G with -~-<c(G)<*x. 

The main tool of  the proof  of  Theorem I is a judicious application of Szeme- 
rddi's regularity lemma invented in [11] and improved in [12]. In Section 4 we will 
restate this lemma for the convenience of  the reader. We will use this lemma in 
Section 6 to solve a problem stated in [6] as well. The other tools of  the proof  are 
the tree building lemma (to be given in Section 2) and a generalization of  Turfin's 
theorem for some discrete weight functions. This will be given in Section 3. 

Finally, in Section 6 we will give the usual mess of  miscellaneous unsolved 
problems. 
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2. The tree building lemma 

First we restate an easy lemma of [8] which will serve as a basis of  most 
o f  the computations. 

[ e m m a  2.1. Giren c, e > 0  and r there is wt s such that for all sufficiently large 
n and for all set system ~ ' c  ]nl ~ ' '  with [.~-[~-s there is a subsystem . ~ ' c ~  with 
[.Y'l>=r and !'~Yl>=(c"-e)n. 

The graphs defined below will be used for constructing subtrees of  a graph, 

Definition 2.2. For r',r">=l, a graph H = ( V ,  E) is said to be an (r',rO)-graph 
with root x (x~V) if [Vl<=(r'y"+l and for each y<-V which has distance at most 
r '  from x the degree of  y is at least r ". The edges adjacent to the root x of  H 
will be called the special edges of  H. 

The following is obvious. 
(2.3) For r_>- l an arbitrary tree of  r + 1 vertices is a subgraph of  each (r, r)-graph. 
The following lemma deals with situations when we are given a graph G=(V, E), 
IV]=n,  an integer p ~ l ,  sets V i, i<p [V~]=n and mappings fi:E-+[Vi] ->-°' 
for i<p. The aim of the lemma is to find a large subtree T of G such that, for all 
i<p, (-/Ji(e) is still large. Here is a formal statement of  the lemma. 

e( ' /"  

Lemma 2.4. (The tree building lemma.) Given c>O, r', r", p ~ l  there exist c'>O 
and s such that for all graphs G=(V,  E) with lVl=n,  IEj>=sn and for all mappings 
J): E~[VI] >--~', IV/[=n, Jbr i<p,  ./'09" all st~eiently lw~e n one can find an (r', r") 
subgraph H o E  with 

[N{f,-(e): eEH}[ ~_c'n Jbr i < p .  

(Note that in the statement of  the lemma we have identified the (r', r")-subgraph 
in question to its set of  edges /4, the vertex set being UH.)  

Proof. We write down the proof  for p =  1, the rest being a mere teclmicality. 
We prove a stronger stac, ement by induction on r' .  Namely we prove that given 
c>O, for every r", t there are c ' > 0  and s such that for all G=(V, E) with 
IEl~sn and for all f :E-[Vd~% IV~[=n, there are at least m edges of  G which 
are special edges of  some (r',  r")-subgraph H o E  satisfying 

[(~ {f(e): eE H}] >= c'n. 

For r ' = l  this follows from Lemma (2.1). Assume that the lemma is true for 
r '  for all ?", U, 8 > 0  with suitable 8 ' > 0  and g. 

Let G = ( V , E )  and f:E-+[V1]~-% IVI=IVlJ=n  be given and let n be 
sufficiently large. By the induction hypothesis, we can arrange that for 

E = {e: e is a special edge of some (r ' ,9""+D-graph 

R ( e ) c G  with f(e)  = (~ {f(e'):  e'~R(e)}A]f(e)l >= a'n} 

we have IE[>=~n. For  e~E, let g(e) denote the endpoint of  e, which is not the 
root of  B(e). 
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Apply Lemma 2.1 for the graph G=(V,  E) and for the mapping f : E ~  

In case ~ and n are large enough and e ' > 0  is small enough we will get 
that for 

= {eEE: There is an (1, r") graph H(e) with root x and such 

that g(e ' )=x for e'EH(e), and ]f(e)l>=c'n for 

f(e) = N {f(e')E/~(e)}} 

]~]~tn  holds. Let now e~E. Clearly, there is an ( r ' + l ,  r")-graph H contained in 
@ {R(e'): e'ER(e)} such that e is a special edge of H and 

IN{f(e'): e'~H}l >= lN{f(e'): e'E~7(e)}l _-> c'n. 

3. The generalization of Turfin's theorem for weight 
functions taking values 0, ½, 1 

In this W=(V,  w) will denote a multigraph i.e. V is a set, and w: [V] 2~ 
-~{0, ~, i}. 

In [2] these objects were called multigraphs, for e E[V] 2, w(e)=0 means that 
e is not an edge, w(e)=½ means that e is a simple edge w(e)= 1 means that e is 
a double edge. Our notation suits our present purposes more, and our lemma is 
unfortunately not covered by the numerous interesting results proved there. 

Definition 3.1. Given W=(V, w), we define two graphs G~2=(V, E~2) and 
Gw=(v, E w) by setting 

E ~  = {eE[V]2: w(e) ~ -~r, E~' = {eE[V]Z: w(e) = 1}. 

Put e(w) = ~ w(e) (i.e. "the number of edges" of  W), and d~,(x)= ~ w({x, y}) 
eE[V] 2 yE V 

("the degree of x E V in w"). 
Now the following definition of a "complete/-subgraph of  w" is not entirely 

natural but seems to work well, and suites our final aim. 

Definition 3.2. Let W=(V, w) be given. The pair (X, Y) X c  Y c V  is a complete 
l-subgraph of w iff [X]~cE~, [Y]-°cE~/2 and [Xl+lY/_->l. 

Lemma 3.3. (The generalization of Tur6n's theorem.) Assume l~3, IVl=n and 
W =(V, w) does not contain a complete l-subgraph (X, Y). Then e(w)<:a, n2(l +o(1)). 

Remark. Note that we will prove a much better result since we can determine an 
extreme cinfiguration for sufficiently large n. It is also obvious that generalizations 
for weight functions say taking values {0, ½, ~, 1} are immediate but we consider 
this out of the scope of this paper. 

Proof. The idea of Zykov's proof of Turzfn's theorem, the so-called symmetrization, 
works. See [13]. We will only outline the proof. 
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Assume W=(V,  w) does not contain a complete l subgraph (X, I0, 
and e(w) is maximal. Choosetwo vertices x ~- y, {x, y} ¢ E~/2. Assume dw(x) >-dw(y). 
Define w" so that w(e)=w'(e) for y~e and w'({z,y})=w({z,x}) for z~V. Then 
e(w') is still maximal and w' does not contain a complete /-subgraph. Indeed, 
if (X, Y) were a complete l subgraph of  w', only one of  x, y could occur in Y, 
and if it was y, we could change it to x. By repeated applications of  this operation 
we can assume that there is a w with maximal e(w) and such that {x, ),}~E~/z 
is an equivalence relation. Denoting the equivalence classes by A0 . . . . .  A,,_x 
we know that for i<j<m either w(x, y)=½ for all xcAi, y~Aj or w(x, y ) = l  
for all x~Ai, yEAj. Moreover m<l--1, since any one element subset o f a  [Y]Zc 
E~2 can be chosen as X. We now know that G~' does not contain a complete 
l - m  subgraph. Choose now x~A~,yEAj i~ j<m,  w(x,y)=½.  Assume dw(x)~ 
dw(y). Define w' as follows: w(e)=w'(e) if efqAj=O, and for e= {z, y}, y~Ai 
let w'(e)= w( {x, y}). Then e(w')>-e(w). Now to see that W' does not contain 
a complete/-graph (X, Y) it is sufficient to see that G~' does not contain a complete 
( l -m)-graph.  I f  it did, then this complete ( l -m)-graph  could contain at most one 
element from each A~: i<m and it could only meet one of  the equivalence classes 
A~, Aj. If  it met A j, we could change the common element with Aj to an element 
of  Ai obtaining a complete ( l -m)-graph  in G~' as well. 

By repeated application o f  the above operation we can obtain a w with 
maximal e(w), not containing a complete/-graph ()(, Y) and such that {x, y} ¢ E~ 
is an equivalence relation, and denoting the equivalence classes of  this relation by 
B0 . . . . .  B,,,_ 1, the A-partition is a refinement of  the B-partition. 

From now on we assume that n is sufficiently large. Next we can assume 
that each Bi contains at most two A j-s, since an easy computation shows that if  
B,. contains more than two Afs  then splitting B~ to two almost equal parts 
Bi, o, Bil, and defining for x, yCBI w'(x, y ) =  1 iff xEBi.o, y~Bi,1 and w(x, y ) = 0  
otherwise, e(w')>=e(w)+ o(1) but w" still does not contain a complete /-graph (x, y). 

Next, if two B's say Bi and B j,  i ~ j  contain two Ak-S, then an easy 
computation shows that one does not decrease w more than by o(1) by first 
equalizing the size of  B~, Bj and then the Ak'S contained in their union. After 
that an easy computation shows that we are better off by splitting B~UBj into 
three equal parts choosing them as new B'-s and making them Ak-s well. It folios 
that there is a basically maximal configuration either of the form V=Bo t)... 0 B,,,_~, 
Bo=AoUA~,A~+~=B~ for 2<-i<m=m'+l,  m+m'<l  or of  the form 

V=BoU. . .UB, , , , ,  m = m', Ai= B~ for i < m  =[½] 

In case 1 is odd, only the second possibility can occur and []BiI-IB~I]_-<I for 
i, j<m'. In case l is even, the first possibility occurs and computation shows that 
one gets the "largest" e(w) in case w is regular, i.e. the sizes of the sets are deter- 
mined in such a way that dw(x)~-dw(y) for x , ) ' c  V. The reader can easily check 
that this gives the numbers az for l =>3. II 



76 r,. ERD6S,  A. HAJNAL, V. T. s o s ,  E. SZEMERt~DI 

4. Restatement of the regularity lemma. Proof of Theorem 1 

Definition 4.1. Let G=(V, E) be a graph 
(i) For A, B c V  set %(A,B)=e(A,B)=IEY~[A,B]X'i  I and d z ( A , B ) =  

e(A, B) 
d(A, B ) -  IAI'[B-----~ provided A, B~0 .  

(ii) For e>0 ,  A , B ¢ O ,  A, B c V  the pair (A,B)  is said to be e-regular 
if for all X c A ,  Y c B  with IXI~>tlAI, IYI~tlBI 

]d(X, Y ) - d ( A , B ) [  < e holds. 

(iii) A disjoint partition of V, V = l j C;, Is said to be an equitable partition 
i~=m 

of  length m + l  if [Cx]=]C~[ for l~_i~m,  Co is the exceptional class of the 
partition. 

(iv) An equitable partition V =  (J C~ is said to be e-regular if  ]Co]~en 
i~_m 

and (C~, CJ) is t-regular for all but era" pairs ( i , j )  1 <=i<j~m. 

Szemeridi's regularity lemma [12]. For  every co>0 and mo there are no=no(to, too) 
and nh=m~(to, too) such that for every graph G=(V, E> with IV[=n>no(to, me) 
there is an eo-regular partition V = U C~ of V with 

i ~ t n  

nl  o < i n  < t111 (go ,  t oo ) .  

Now to prove our Theorem 1 we will prove its "finite" form, i.e. 

Theorem 2. Assume l=~3, H=(Vn ,  EH)EArb (l) and 
6 > 0  and no such that for a graph G=(V,E> with 
and ~(G)~6n, H is isomorphic to a subgraph of G. 
notes the size of the largest independent set of G.) 

e>O. Then there exist 
IV I = n > no ,  IE[ --> (at + t )  n "~ 
(Here a(G) as usual de- 

Proof. Let {Vnl=r. We now describe the order in which we are going to choose 
the parameters featuring in the lemmas. In the proof  we are going to apply Lemma2.4 
repeatedly < l  times with p ~ l  and r ' , r"=r  starting with c~=t/2 and then 
applying the lemma for sets of  size c'n c '=e. ,  and so on. This gives us numbers 
c~ . . . . .  c t>0,  and numbers s~ . . . .  ,st (from Lemma 2.4). We than fix e0 of the 
regularity lemma so that eo is smaller than q . t / 4 .  We then choose mo of the 
regularity lemma so large that Lemma (3.3) should apply for graphs having (at+ e/4)m "z 
edges and m ~ m  o vertices, and so that 1/m0<e/4. The regularity lemma yields 
us numbers nl and nh. We will assume that n>n~ and we will choose 6 so small, 
that even a subset A c V  of size >=(1/m~)ton must contain sn edges where s -> 
max {si: i _-<l}. 

Let V~= U Vii H, k=[I/2] be a partition establishing that H c A r b  (l). First 
~_-<k 

we apply the regularity lemlna and obtain an t0-regular partition of length m +  1 
(mo<m<m 0 V= U C, of  the set V. 

i ~ m  
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We now define a weight function w: {1 . . . .  ,m}~{0,  1/2, 1} as follows: 
< : : "  "<z :  For l = ~ < j = m  

w({i,  j})  = 

0 i f  d(Ci, Ci)<--~ or (Ci, C i) is nOteo-regular 

1 ~o { 
1 ~ < d(C~, C~) < 7 + 2  and (Ci, C~) is ~o-regular -~if-5= 
1 if d(Ci, C~) > -f+--~ 

x e . 2 > _ ¢  _ _  g h  ., Clearly, e(w)~ .~ d(Ci, t~])--~m°-eo m =(al+¥]m" because l/m~, is small. 
l~_i <j~_rn 

Hence we can apply Lemma 3.3. We get subsets X c  Y c  {1, ..., m} such that the 
pair (X, Y) is a complete/-graph for the weight function w. 

Let {io, ---, i,,-1} = Y",,X, {i,,, ..., i ,+v_l}=X u +2 v = l .  
To continue we need more notation. For x•V, BcV,  V~(x, B ) = { y E B :  

{x, y}EE} and vc(x, B)=IVG(x, B)]. v~(x, B) is the degree of  the vertex x for B. 
For O # X c V  let //G(X, B ) =  (~ Vc(x, B). 

x ( X  

Assume now for a minute that u # 0 .  The pairs (Cio, Cij) O<j<u+v  are 
C > all e0-regular, by the definition of  w, and because of [Y]2cE~2. Hence Vc(X, i ) =  

= ~ - e o  l.lCij] for all 1 <=j<u+v, for a positive portion of xcCio. 
Applying Lemma 2.1 we can arrange that there is a subset AocC~0, !A0[--r 

such that [/7~(A0, CO[>=e~nO-~7e°)-- for l ~ j < u + v ,  where cl is still larger than 
" ' ' 1  

eo. Repeating this procedure u times we get sets AocCio .... ,A ,_ I cC i  ..... 
, n ( l  - e o )  

IAol = . . .  = IA,-ll = r and such that the sets Ha ( U A~, Ci~) = C i have size >= c,, - -  
i < u ml 

for u<--j<u+v, and c, is stilllarger than e0. 
Now we turn our attention to the set C,','. Now because of [X]"cE'~, for all 

, (1 e--eo' ( 1  e) , 
j, u<j<u+v,  v~(x, C ] ) _ - > [ ~ + ~ J  [CjI -> +~ -  ICj, for xcC,7 where C,*,cCT, 

is still large enough to contain s edges as required by Lemma 2.4. Now for x, y .  CZ, 
{x, y}EE, u < j < u + v  let fj({x, y})=Va(x, Cj)N V~(y, Cj)=FI~({x, y}, Cj). Then 

f2({x,y})>AICj[. Now, by Lemma 2.4 we can choose an (r, r)-graph H,,cE, 
~ 4  

U H , ~ .  A,,cC,*,cCi. in such a way that for each u<j<u+v  

H~(e, Ci) ~ c,,+t - -  
E E L* t n  l 

Since A~ = U H~ this implies 

n ( 1  - ~0)  [U~(A., c01 _-> ~.+~ 

Clearly, we can continue this procedure, and define the sets A j c C  u for j < u + v  
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in such a way that for . / < j ' < u + v  [Aj, Aj,]I;IcE, and that for u<=j<u+v, G(Aj) 
contains an (r,r)-graph. Let B,,=A2~UA2.+~ for v<[u/2]=k 

B(./~)+j = A.+j for j < v, and 

Bk = O for  1 even and 

B k = A  (./2)+~ for  l odd. 

Now for v<k ,  the graphs G(B~) contain a tree isomorphic to H(V~H). 
For v<[u/2] this is true because G(B~) contains a K~,, and for [u /2]<w:k  
this is true by (2.3) because G(B.) contains an (r, r)-graph. 1 

5. The counterexamples 

5.1. There exists a sequence Gx,.=(n, EL. } of  graphs, such that ]EL.[=o(n2), 
~(G,,)=o(n) and the girth of G~,. tends to infinity. See [3]. 

5.2. There exists a sequence G~,.=<n, E2..) of  graphs satisfying the following 
conditions: 

IE. ,  , i  1 
n ~- 8 ' K4  • G.2 ... .  c~(G.,,,) = o ( n )  

Note that G2,. can be chosen so that n=A2, .UBa, ,  and all but o(n 2) edges of  
G... are in [A2,.,B2,,,] 1'1. See Ill. 

As it is pointed out in the paper of  Bollobfis and Erd6s, it is not known if 
Ge,. can be chosen so that ]E2,,,l->n2/8 holds for all n. This leaves a corresponding 
open problem for all even l, l ->4. It is also not known if G~.,. can be chosen so that 
G2,.(A2,.), G~,,,(B~,.) have large girth as well. If  this was the case, our argument 
on p. 20 would yield that CRr(H) = cz for some l for all graphs H. 

5.3. Let k = l .  There e.,dsts a sequence G~..=(n, E~,.) of  graphs such that, 
k I n =a~k+lZ, and ct(G~..)=o(n). See [4]. , 3, t!  

For the convenience of  the reader we describe a proof. We assume that n is 
divisible by k. In the other cases we can argue similarly. Let n =  (J Az, [Ai[=n/k 

i<k  

for i<k .  Let G~=(A~,/~"), i < k  be isomorphic to GI,./k defined in 5.1. 
Clearly E2,,,= O [Ai, Aj ]"~C((J  /71) satisfies the requirements of  5.3. 

i<z j<k  i<k  

5.4. Let k->2. There exists a sequence Gk,----(n, Eke) of  graphs satisfying the 
following conditions 

Kzk C G k [E;,.I 1 [ 3 k - 5 ]  
4,., n" 2 t ~ ~ - 2 1  = a2k and 

c~(C4 k , . )  = o ( n )  f o r  n -~ co. 
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Proof. We assume for the sake of simplicity that n is divisible by 3 k - 2 .  Choose 
4n 

the pairwise disjoint sets At: i < k -  1 in such a way that n = [_J Ai, IA01 = 
i < k - - I  3 k - 2 '  

3n for 0 < i < k - 1 .  Let Go=(Ao,/~0) be isomorphic to the graph and IA~I = 3 k - 2  

Gz,4.13k-Z defined in 5.2 and for 0 < i < k - - I  let G~=(Ai,/~i) be isomorphic to 
Ga,3./~k-~ defined in 5.1. 

Put E~,.= (J /7~U (_J [At, Aj]I'L A computation shows that, by 5.2. 
i < k - - I  i < k < j - - 1  

IE, ,.I 
712 ~ O2k / f  n ~ co. 

By 5.1 and 5.2, c~(G],,)=o(n). Finally if  A:cn and [X]2cE~,, then 
[X('IAgI_-<3 and IXNATI~_2 for 0 < i < k - 1 ,  hence [XI<=3+2(k-2)=2k-1.  | 

5.3 and 5.4 conclude the proof of (1.8). We are now in a position to prove 
our claim (1.14). 

Assume that for some graph G=(V, E)  Cgr(G)<at for some odd l > 3 .  
Then, by 5.3, for all sufficiently large n, GcGV/.~, J holds. But, because of, by 5.1, 

• " ' I t  z] • the girth of  GL, tends to the mfimty, GcGa/,  xmplies that the arboricity of  
G is at most [I/2]. This in turn implies that GEArb ( I -  1) and then, by Theorem 1, 
CR,r(G)~al_l holds as well. I 

6. Miscellaneous remarks 

First we would like to mention that using the methods of this paper we can 
prove a more general statement. 

6.1. Assume kl, ..., kr>-3. There is a constant akl ..... k, such that 

R ( n ;  k~ . . . .  , k , ;  o ( n ) )  = ak~ ..... k,.,:(l+o(1)). 

Moreover the numbers aka . . . . .  k .  can be obtained as Ramsey numbers of multiple graphs 
w w). 

We preserve the formulation of  a more precise statement, and the proof of  
it for later publication• This will be done in a joint work with M. Simonovits, to 
whom we would like to express our thanks for his helpful comments concerning the 
work published in this paper as well. 

To make the rather vague statement 6.1 a little more comprehensible we write 
down a special case of it we obtained earlier. 

Definition 6.2. Let r-_>2 and let R~(3 . . . . .  3 L) be the largest integer for which there 
is a 2-partition [n]2= U Et of length r of  n such that the graphs G~=(n, El) 
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do not contain K~, and is such that for all j<n there is an i<r such that G 
does not contain an edge adjacent to j. Clearly 

R2(3, ..., 3 ~ ' )  =< R~(3, ..., 3 5) -<_ R2(3, ..., 3 L). 

Now our methods give 

Theorem 3. RT(n, 3 .... , 3L, o(n))=l [1 1 
R;(3, - ,  3'~)) n2(l +o(1)). 

The proof is based on a simple application of the regularity lemma, along 
the lines described in the proof of Theorem 2. Since R~(3, 3, 3)=Rz(3, 3)=5 
we get 

Corollary. RT(n; 3, 3, 3, o(n))=2nz(1 +o(1)). 

This was explicitly stated as a problem. 
The first author stated several times the following problem: Is it true that 

R~(3 . . . . .  3L)=Rz(3 . . . . .  322-t) for all r_->37 Finally Fan Chung proved (oral com- 
munication) that this is not the case. The constructions are quite involved. 

Finally we mention another type of problems. For a graph G=(V, E) let 
~,(G) be the size of the largest subset A c V  for which G(A) does not contain 
a complete K, graph. Clearly ~(G)=~(G). 

Let RT(n;k;llr)=max {e:BG=(V,E) (IVI=nAIEI=eAK~ C-GA~,(G)<I)}, 
provided the set after the max sign is nonempty. We are again interested in 
RT((n, k, o(n)tr). Again, as in the original problem, one can with a special argument 
generalize (1.4) and show that for k ~  1 

(6.3) RT(n, 3k + 1, o00,3)= 1 {1--1} n~(1 + o(1)). 

Now one would conjecture that an application of the regularity lemma and 
an appropriate generalization of Turfin's theorem for weight functions taking 
values {0, 1/3, 2/3, 1} should yield the answer in cases 3k+2,  3k+3 as well. 
However, this is not the case and though we have partial results there remain simple 
unsolved problems. Here is the simplest unsolved case: 

We can prove that R(n, 5, o(n)]3)~ 1/12 n2(1 +o(1)). Is this best possible? 
To show this an analogue of the Bollobfis--Erd6s graph (2) would be needed which 
we think will be extremely hard to find. At the moment we can not even disprove 
RT (n, 6, o(n)13)=o(n2). 
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