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We describe a variational principle based upon minimizing the extent 
to which the inverse hessian approximation, say H, violates the quasi- 
Newton relation, on the step immediately prior to the step used to con- 
struct H. It suggests use of the BFGS update. 
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1. Introduction 

The problem under consideration here is that of minimizing an  

unconstrained function f ( z ) ,  z E Rn,  by means of a variable metric 

method. The original method of this type is due to Davidon, 1959, whose 

work was subsequently clarified and extended by Fletcher & Powell, 1963. 

The method is thus popularly known as the DFP method. 

Given an approximation B to the hessian of f ( z ) ,  a step 6 2  and the 

gradient 6g correspondmg to this step, with 6 z T 6 g  # 0, a new approxima- 

tion B + ,  which satisfies the quasi-Newton relation B + b z  = 6 9 ,  is defined 

as follows: 

B+ = ( I  - p 6 g 6 z T ) ~ ( 1  - p 6 g 6 ~ T ) T  + p 6 9 b g T  

where p  = 1 / 6 g  T 6 z .  This is the DFP update. 



If H  = B - I ,  the new approximation H +  = B+I to the inverse hessian 

obtained using the DFP update, satisfies H + 6 g  = 6 z  and is given by: 

By interchanging 6 z  and 6 9  and interchanging H  and B in (1.1), we 

obtain the complementary DFP update, known popularly as the BFGS 

update. This is widely believed to be the most effective variable metric 

update, and is defined by: 

The DFP and BFGS updates are both members of a single parameter 

family known as the Broyden class, Broyden, 19'70. There are a number of 

equivalent expressions for it. A convenient one is: 

(1.3) 

where 

@ is a real number, and p is defined as in (1.la). There is a corresponding 

expression for Be. 

In (1.3) we can think of H! as being obtained by adding to H  suitable 

rank-l matrices composed from the vectors H 6 g  and 6 2 ,  or equivalently 

from the vectors ( 6 2  - ~ b g  ) and bz. The significance of this remark is 

that when variable metric methods that use ezact  line searches are 



applied to a quadratic function, the vectors ( 6 2  - H 6g ) and 6 2  a t  t h e  

current iterate can be shown i o  be conjugate to all previous steps. Thus 

H! has what is known as the hereditary property i.e. it will satisfy t h e  

quasi-Newton relation on previous steps. (We assume that the reader is 

reasonably familiar with the terminology and literature on variable 

metric methods, see Murray, 1972 . )  Similar statements can be made 

about B!. 

We shall use the notation of update functions, see Dennis & More, 

1977,  to write ( 1 . 2 a )  as H + = u ~ ~ ( ~ z , ~ ~ , H )  and ( 1 . 3 )  a s  

H! = U p ( 6 z , 6 g  . H ) .  Similar expressions are used for the DFP update. 

Also H > 0 means H  is positive definite, and u / / v means the vector u is 

parallel to the vector v . 

Given 6 z , & g  with 6 ~ ~ 6 ~  > 0 and H  = H ~ ,  Dennis & More, 1977 ,  show 

that the update H +  = U m ( 6 z , 6 g  , H )  is the minimum norm update i n  

the following sense 

H+ = argRmin [ ( J B  - H  ( I : H symmetric and R d g  = 6 2 1  ( 1 . 5 )  

where I 1 .  I ( W , ~  is a weighted Frobenius norm defined for any square sym- 

metric matrix as 

and A! satisfies 2 d g  = 6 2  ,A! > 0 .  

Using the above weighted norm represents a very natural rescahng 

of the problem using a positive definite matrix which satisfies the quasi- 

Newton relation on the current step. The originators of this approach 

include Greenstalt, 1970 and Goldfarb, 1970.  



Here we study an alternative variational principle. Suppose 6 z ,  

represents the step immediately prior to 6 z  and 6 9 ,  the corresponding 

gradient change, with H 6 9 ,  = 6 2 - .  In general H + 6 g -  # 6 z - .  Since the 

purpose behind the formation of H on this prior iteration was to satisfy 

the quasi-Newton relation on 62 , ,  it seems reasonable to ask whch 

update H? from among those of the form (1.3) minimizes 

1 ( ~ f d g -  - 6 2 -  1 I v ,  where W is a suitable vector norm. We show that for 

different choices of W ,  solutions correspond to the BFGS and DFP 

updates. In particular, the BFGS is, in a sense, the "best" solution, 

because the associated choice of W is the most natural one. In the discus- 

sion we compare the new variational principle with (1.5). 

2. Alternative Variational Principle 

Let us first study the preliminary question of when an inverse hes- 

sian approximation H can satisfy a quasi-Newton relation simultaneously 

over several steps. 

Theorem 2.1: Given linearly independent 6 z i  and linearly independent 

bg i ,  i = 1,2, ..., k which satisfy 6z?6g, # 0, then there is a symmetric 

matrix H such that H6gi  = 6 z i ,  i = 1,2, ... ,k if and only if 

bz:dBj = 6 ~ 3 z , , i  # j ,  lri, j s k .  

Proof: (i) Suppose there exists a symmetric matrix H such that 

H6gi  = 6 z i ,  and H 6 g j  = b z j ,  i # j ,  1 Si, j r k. 

Then 

T b g f ~ d g i  = 6 9 ,  6 z i  



and 

a g : ~ a g j  = aspzj , 

Since H is symmetric. 6z:6gj = 6g;6zj, i # j .  1 6 i. j zz k . 

(ii) Suppose now 

T T 6 z i 6 g , .  = 6 g i 6 z j , i  # j .  1 Si, j ~k ( 2 . 2 )  

Assume that there exists an index m < k and a symmetric Hm such that 

~ , 6 g j  = & z i t  j = 1,2 ,..., m - 1 (2.3) 

Let 

where 1 ~ ,  Z 0 is chosen orthogonal to 69 . . . , 6gm-l and 4 d g m  # 0. 

The latter can always be satisfied since 6 g l ,  . . . , 69 ,  are linearly 

independent. Then 

Also for j < rn we have 

( 6 2 ,  - ~ ~ 6 ~ ~ ) ~ 6 g ~  = 6 ~ 2 6 ~ ~  - 6 9 2  ( H m h g j )  

= 622tSgj - d g 2 6 z j  

by the induction hypothesis ( 2 . 3 ) .  

= O  b y ( 2 . 2 ) .  



Because of this, and the way u, is defined 

Hm+16gj = 6zj for j = 1,2 ,..., m 

The induction hypothesis therefore holds for j = 1,2, ..., m .  

Since the induction hypothesis is rl~viously true for m = 2, the result fol- 

lowswithH givenby H = Hk+l. o 

In general it is clear that me conditions of the above theorem will not 

hold. Reverting to our simpler notation of Section 1, 6zrdg = dg T6z, 

will usually not hold. It is then natural to ask which update solves the 

problem: 

min I I R6g - - 62- 1 1 w : R E Up(6z .6g 
R 1 1 

for some suitable choice of vector norm 1 1 .  I ( W .  

Theorem 2.2: Given H > 0 , 6z, = (z - z ,) and corresponding 

bg, = (g - g -), let H6g- = 62-. Let 62 be a non-zero step satisfying 

6zTbg, = 0, and 6g be the corresponding gradient change with 

62 T6g > 0. Then: 

(i) The BFGS update ~ f !  = UBFCS(6z,6g.H) solves the problem (2.4) 

where I I ( I is the vector norm defined by W = jl?-' such that 

E6g = 62, ij! > 0. 

(ii) The DFP update H: = UDFP(6z,6g ,H) solves the problem (2.4). where 

( 1 .  I ( is taken to be the vector norm defined by W = H". 

Prod: We now use the definition of the BFGS and DFF updates and the 

Broyden family given by (1.2a), (1. lb)  and (1.3) and henceforth we affix 



the symbols B and D to H+ to distinguish the BFGS and DFP updates. It 

follows from (1.2a) and 6z Tdg - = 0 that 

We can assume that Hfbg- # 6z- or the result would follow immediately 

Hence 

(H=bg- - bz-)/ / b z  

Now from (1.3) 

(Hf69- - 6z-) = (Hfbg- - 62-) + Bw(wT6g-) 

Also 

(Hf69- - 6zJT(E-')w = -p(69 T6z-)6z T(g-l)w 

= 0 using (1.4), since w T6g = 0 

Thus ) 1 ~ f b g _ - 6 = - 1  ) 1 H f 6 g - - 6 ~ - 1 ( ~  for all B where 1 . 1  I w  is 

defined as in (i) in the statement of the theorem. 

(ii) The Broyden family can also be written 

Hf = H? + pwwT , p ascalar. 

Now from ( l . lb )  

(Hf69- - 62-) = -(6gTH6g-/ 6 g T ~ 6 g ) ~ 6 g  

and 

(HJbg- - bz-) = (Hf69- - 6z-) + p(wTbg-)w 

Also 



again from (1.4). 

I t  follows that 1 I H P  69- - 62- 1 (H-l  % I I Hf69 - - 62- 1 I H-l for all tp. 

3. Discussion 

The condition 6zTbg - = 0 in Theorem 2.2 holds when z is a minim- 

izng point of f (2) along the direction 62, (i.e. the line search is exact) 

and 62 / / Hg . This follows because 

Now when line searches are exact (and conflicts are unambiguously 

resolved) we know from Dixon's, 1972, theorem that variable metric 

methods based upon (1.3) give iterates that are independent of the values 

of the parameter 8.  Furthermore, under these conditions, Powell has 

shown that the single parameter family (1.3) is the most general family of 

updates that leaves iterates unaltered, see Dixon, 1972. We therefore 

have a very natural context withn which to ask the question: Which 

updates H! solves (2.4)? From Theorem 2.2 we see that for what seems 

to be the most natural choice of W ,  the solution is the BFGS update. 

The requirement that line searches be exact can be dropped, by 

modifying the way in whch search drections are defined. If for given 

H,> O , 6 2 , = 2  -2- and 69, = g - g - with bg 62 - > 0 we replace 

62 / Up(6z, , 6g - , H,)g by 

Then 6zT69, = 0. Also Dixon's theorem extends to  variable metric 



methods based on (1.3) and (3.2), see Nazareth, 1982. This too is a 

natural setting for Theorem 2.2, whch again suggest the BFGS update is 

the appropriate choice. 

We have noted that the problem (1.5) has been extensively studied. A 

problem similar to the one quoted can be formulated for minimizing 

I I B+ - B I I w F in a suitable weighted Frobenius norm, and in this case 

the DFP update is the solution. Again, see Dennis & More, 1977. It is 

therefore open to question whether the BFGS update is singled out. Tt has 

been argued that since variable metric methods use the inverse hessian, 

the reasonable thing to do is to minimize ( IH+ - H I 1 F .  But search 

directions can equally well be defined in terms of the hessian B , and one 

could argue with equal conviction that one should minimize 

1 \B+  -BI  I W,F.  

In contrast, the result that would be complementary to Theorem 2.2 

does not go through in an analogous manner. The reason for this is that 

the proof of Theorem 2.2 uses the fact that 6 z T b g ,  = 0. When working 

with the complementary form, this relation would transform to 

b g T 6 2 -  = 0. This is not necessarily true for the first case one would con- 

sider, namely, the case when line searches are exact. If line searches are 

T exact, and 6 9  6 2 ,  = 0, then the conditions of Theorem 2.1 hold, and the 

quasi-Newton relation would be simultaneously satisfied on 6 2  and 6 2 , .  

Theorem 2.2 singles out the BFGS update since the scaling by E'' is to be 

preferred to the scaling by H". 

Finally we point out that Theorem 2.2 can quite easily be generalized 

to the extended family of updates of Davidon, 1975, and that alternative 



variational principles to (1.5), e.g. (2.4), may provide useful guides for 

choosing suitable updates within other contexts, for example, quasi- 

Newton methods for solving systems of nonlinear equations. 
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