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Abstract

A cooperative game in characteristic-function form
is obtained by allowing a2 number of individuals to exercise
partial comtrol over the constraints of a (generally non-
linear) mathematical programming problem, either directly
or through committee voting. Conditions are imposed on
the functions defining the programming problem and the
control system which suffice to make the game totally
balanced. This assures a nonempty core and hence a stable
allocation of the full value of the programming problem among
the controlling players. 1In the linear case the core is
closely related to the solutions of the dual problem. Appli-
cations are made to a variety of economic models, including
the transferable utility trading economies of Shapley and
Shubik and a multi-shipper one-commodity transshipment model
with convex cost functions and concave revemie functions.
Dropping the assumption of transferable utility leads to a
class of controlled multi-objective or "Pareto programming”
problems, which again yield totally balanced games.
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1. Introduction

We consider in this paper a method of introducing players into the
control structure of a mathematical programming problem in order to
develop its game-theoretical properties. Specifically, in a controlled
Bfgggammigg problem (or CPP), some of the constraints have two possible
states: their "constant" term (i.e., the right-hand side) has a
designated positive value if the player who controls that constraint
belongs to the operative coalition and is zero otherwise. These
"variable constants" can be regarded as representing resources or skills
that the player in question brings to the enterprise, and thevcptimized
value of the objective function for each possible coalition is regarded
as representing the "worth" of that coalition. The resulting set
function, interpreted as the characteristic function of a cooperative
game, can bhen be used as a guide in assigning credit for the optimized
objective in accordance with the contributions of the different
controllers.

More specifically, under the somewhat complicated set of conditions

spelled out in Sec. 4, such a "CPP game" will be shown to be totally
balanced (Sec. 4, Theorem 1), and hence to have a nonempty core. This
means that the optimum value of the CPP can be apportioned among the

participating controllers in a way that is "stable" or "unobjectionable"



in the sense that no subset of them could operate the program by them-
selves and improve upon their allotted shares.

Secs. 2 and 3 are preparatory, and Sec. 5 contains a series of
remarks about the model 6f Sec. 4. In Sec. 6 we extend the model to
permit control by committees, making use of the theory of simple
games. In order to obtain total balancedness in this case it is
necessary to require that the committee associated with each constraint
have at least one member with veto power. This is equivalent to saying
that the simple game of each committee must be balanced. But it is
interesting that total balancedness of the committees (which would
trivialize the committees by giving every member a veto) is not required.

Not surprisingly, there is an intimate relationship between CPPs
and trading economies with privately-owned production functions. The
latter are known under quite general conditions to have characteristic
functions that are totally balanced [1, 17, 21]. Our present
model most naturally corresponds to the "transferable utility" case,
since we work (until Sec. 11) with a single objective function which
each controller is equally desirous of optimizing. In Secs. 8 and 9
we make this correspondence explicit in both directions. An interesting
question, which we defer to a later occasion, is the extent to which

the competitive equilibria of the economic model, whose allocations are

known to form a subset of the core, can be given a direct interpretation
in the programming problem.

The general CPP framework encompasses several special cases of
interest in economics. The "assignment market" of Shapley and Shubik
[19] is a simple, early example of a controlled linear programming
problem, and many of its subsequent generalizations (e.g. [4, 10, 11])

also fit the CPP framework. The pure exchange economies ("market games")



of [6, 18, 20] also have simple CPP representations in which all the
constraints are linear. Another special case is a multi-shipper one-
commodity non-linear transshipment model that does not appear to have
been previously studied. All these applications are described in

Sec. 10 of this paper.

Finally, in Sec. 11 we give a brief sketch of the extension of
our results to the nontransferable utility case, which requires a
multi-objective "Pareto programming" model.

There is a broad similarity between this paper and some recent
work of Kalai and Zemel [8, 9], also dealing with "comtrolled
mathematical programming”. While the two approaches have many
applications in common, they were conceived and developed independently
and there are several significant points of difference, namely (1)
in the way in which the player controls are intreduced, (2) in the
conditions that are imposed in order to ensure total balance, and
(3) in the extent to which nonlinear objectives and censtraints can
be accommodated. Considering also the fact that the two models have
rather different, though overlapping, domains of natural application,
it was concluded by both sets of authors (on comparing notes before
publication) that neither approach "dominates" the other, and that

both approaches-are worth pursuing.



2. Notation

For any finite sets M and N, MC N means nonstrict inclusion,
M\ N means Bodlean subtraction, |M| is the cardinal number of M,
and 2 is the collection of all subsets of M. Although we shall
often for convenience use the natural numbers to name the elements of
these sets, e.g., M= {1,...,m}, N={1,...,n}, we do not mean to
imply that they have elements in common. The symbol R denotes the
real numbers or the real line, and RM denotes the |M|-dimensional
cartesian space whose coordinates are indexed by the elements of M.
If x eRM and yeRM then X >y means Xizyi for each 1 ¢ M.
The set of all x € RT with x >0 is denoted Rl\_f, where "¢" in
this case (as is clear from the context) is the zero vector in RM For

any VEM we define
RV (e RM:xi =0 if 1 e MV}

in other words, RMIV is the space RV represented as a subspace of

RM. Finally, for amy x ¢ RM, xV is the projection of x on RMIV



3. Games, Cores, Balancedness

A game (more completely, "cooperative game with transferable
utility") is denoted by an ordered pair (P,v), where P = {l1,...,pl
is a nonempty finite set and v is a function from 2P to Rr
satisfying v(¢) = 0. The elements of P are called players, the
elements of 2P are called coalitions, and v 1is called the

characteristic function of the game. The values of v(S) are meant

to express in some sense the worth or profitability of the various

coalitions S CP.

The feasible payoffs of (P,v) are those vectors x ¢ RP that

satisfy
2 x, <v(P).
iep * 7
The core of (P,v) is defined as the set of feasible payoff vectors
that cannot be improved upon by any coalition, i.e.:
Core(P,v) = {x ¢ R: Zx, = v(P) and 2 x, >v(S) for all S<B}L
ieP ieP * T
If the core of (P,v) "exists" (i.e., is nonempty) it represents a
region of stability in the space of all possible allocations of the
game's tosal profit --- a region where the outcome is not likely to
be distmambed by dissident coalitions.
A callection of coalitions B = {S),...,8} ¢ P is said to be

balanced (w.r.t. the finite set P) if there exist nonnegative

balancing weights wl,...,wq such that, for each i ¢ P

W =
o 3 #
J 2 .1€S£



The game (P,v) is balanced if for every such B8, w,
a
Z‘wzv(Sg) < v(P).
=1

The following result is well known [3,16]:

Theorem A. (Bondareva-Shapley). The core of (P,v) is nonempty if

and only if (p,v) is balanced.

Each nonempty Q © P defines a subgame of (P,v) in the obvious

way, namely, the game (Q,vQ) where vQ(jS) =v(S) for all S ¢ R,

We say that (P,v) is totally bahanced if all its subgames are balanced.

Total balancedness, first imtroduced. in 18], isa characterimtic feature

of many ecortmicomedels [1, 6, 8, 9, 17, 20, 2 1.



4k, The Programming Game

We now make precise the notion of a "controlled programming
problem" (CPP). We begin with an ordinary methematical programming

problem, as follows:

MAXIMIZE ~f£(x) subject to x ¢ R, , and

g ey Feqp

gj(x) a. vj € 02,

J

to which we append a system of controls given by a "control map®
s5:¢c-P U {o0}.

In the above, the symbols N, Cl"C2’ C, and P represent the finite
sets {1,...,n}, {l,...,cl}, {cl +1,...,c}, {1,...,e} ana {1,...,p},

respectively, identifying the variables, constraints, and controllers

of the problem, while f and the g'j are functions from Rf to R
about which we shall have more to say presently.

First, let us describe how the control system operates. The
quantities a; are interpreted as "resources". If d(j) is a
positive integer, then the controller &(j) ¢ P has-a veto on the use
of aj. This means that he has the power unilaterally to replace
the number aj by O in the right-hand side of the j-th constraint.
But if ©®(j) = 0, then the j-th constraint is fixed, and not subject

to any such mani'pulation.l

1 In contrast, the formulation of Kalai and Zemel [8,9] has the
players controlling the variables rather than the constraints; this is
sometimes more natural, e.g., in network problems. However, it is usually
possible to translate a given model from either comtrol form to the other

by putting in extra variables or constraints.



Using these ideas, we define the S-reduced problem for each

s ¢ 2 to be the originally stated problem (above) with 8y replaced

by O whenever 8(j) ¢ SU {0}. Note that S may be the empty set. Let

(8) CIR? denote the feasible set for the S-reduced problem. We wish

now to define a cooperative game (P,v), according to
(k.1) v(8) = max{f(x) :x ¢ 8(8)}.

In other words, the worth of S is the optimal value of the S-reduced
problem. Under the six conditione thet we are about to impeose, the maximum
in (4.1) will be well defined and v(¢) will be zero, so that (P,v)
will indeed be a game; moreover it will be totally balanced. The first

three conditions are as follows:
(1) aj >0, all j e C.

(11) a,=0 if 8(j) = 0.

dJ

(I11) v(8) is well-defined for each S ¢ 2P; that is,

®(8) is nonempty and the maximum in (4.,1) is achieved.

Before we state the other conditions, three special classes of

functions must be defined. First, for each player i, let Ai denote

the set of indices k ¢ N for which xk would be forced to be zero
if i withheld his resources, even if the otﬂer constraints in C did

not exist. Thus,

A=k eN: if gy(x) <0 forall jeC N 571(1),

gj(x) = o for all j e C, n 5-1(i), and x € RE,

then x_= 0}



Denote the collection (Al""’Ap) by @. (Note that the sets Ay
need not be disjoint and need not exhaust N.) We shall say that a
R N . . s .

functhn h:R i R is Q-geparable if there exist functions
n, : f]Ai ~R, i=1,...,0, such that

h= 2h,.

jep *

If, furthermore, each hi is a convex function, vanishing at O,

we shall say that h is convexly Q-separable, or (CSQ). 2

For the two other special classes of functions, we shall write
(CH) for the class of functions h: RI_E -~ R that are conmvex and
homogeneous (i.e., positively homogeneous of degree one), and (LH)

for the class of homogeneous linear functions. We shall also write

h ¢ (-CSQ@), etc., to mean that -h ¢ (CSQ@), etc. For example,

we have (LH) = (CH) N (-CH). Note that each of the classes defined
is a convex cone, i.e., is closed under addition and multiplication by
nonnegative scalaers.

We a@an now complete our list of conditions.

2 Tt would be slightly stronger and superficially simpler to base

our conditions on the collection @', given by

A} = {k e N: if x ¢ 8(P\{i}) then X, = 0}.

Since A; DA, this would yield (CSQ') o (CSQ) and result in a
minor strengthening of Theorem 1. But this modified definition is
undesirable because it depends too heavily and specifically on the
data of the programming problem and, among other things, raises the
possibility that the class of functions (CSQ') might change as we

move from one S-reduced problem to another: (See also Remark U in Sec. 5.)
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(IV) each gj for j e C isa sum of a (CS @) function

and a (CH) functien.

(V) each g for jeC, is an (LH) function.
(VI) f is the sum of a (~CS @) function and a (-CH)

function.

Thus, our mathematical programming problem is essentielly a:convex
programming problem, although since we have adopted the "maximizing"
point of view the objective function is concave.

Condition (III) tells us that (4.1) is well defined, but before
we can claim to have defined a game we must also verify that v(¢) = 0.
Indeed, in the ¢-centrolled problem the right hand side is all zero,
by definition and by condition (II). Since the functions gj all
vanish at the origin (conditions (IV) and (V)), the §-centrelled problem
is feasible and its value is at least f(0) = 0. Now suppose there

were a point x ¢ ®(¢) with f(x) > 0. Let k be any index such that

Xy > 0, and suppose that k ¢ Ai for some i ¢ P. That means that
replacing certain of the aj by 0 would suffice to force X, = 0.

But we have "zeroed out" the entire right hand side and yet x, >0,
so k does not belong to any of the Ai' This means that x lies
in a subspace of RY on which all the functions g5 as well as £
are homogeneous. It follows that the value of the ¢-controlled problem
is unbounded, since arbitrarily large positive multiples of f(x) can
be achieved. This contradicts condition (III). So we conclude that

v(g) = 0, and that we do indeed have a well defined cooperative game.

Our main result in this section is:



Theorem 1. Suppose conditions (I)h(VI)fhé&dfiﬁ;af éff; éﬁén “(P,v)

PO OD PSP st o P

ig totally balanced.

Lemme 1. Suppose conditions (I), (II), (I¥) and (¥) held.. Let B= CHRNES

P 0 Pt 2 s

be & balanced collection of coslitions (w.r.t. P), with weights

(wl,...,wq). Then
Wy ) (sl) o bWy e (Sq) c @ (P).

Proof. Put Q= {1,...,q} and = {Leqiic Sz} and Q@ = Q\Qi.

o et s

Choose x‘e € ® ﬁsz3 for each Mg Q, andtlet
Xx= 2 wzxz
£eQ
We must show that

J;e®(P)

First, let j e C; and assume that gy satisfies (IV). We shall

prove that
A £
(k.2) gi(x) s Z weg (x).
j —ZGQ f:j

First, if g, is (CH) let w= 2 w,. Then
J LeQ

(4.3) y(3) = Tey (Z (/")
€

A

- £
R CS

2w g.(xz)
geq Y377

which verifies (4.2) if g is (CH). (The first line in (4.3) is

due to homogeneity, the second to convexity.)



Next, if g is (Cs @), say gj=g;'+--- +g§ with

. . A,
g}(x) = gg(x 1) for all x e RI_E and all i ¢ P, then for each i,

. AA A
e - JCE w z<><> )
i > A
= gJ( Wz(x ) )
zeQ
A
< ol

Lte

> wzgj((x) H+ Z e ((x) h)
LeQt LeQ”

- T i
= ot wzgj X .

The inequality in (4.4) ~follows from the g} being convex. The
reagons for the equalities are ...
A,
first: The projection map x — x 1 is linear 3
second (xz)Ai =0 if £ ¢ ai;

third: gi(O) - 0.

Summing (4.4) over i

m

P, we continue

g4(x) L6

ieP j

i,, 88
Z T owgh
ieP LeQ J

IA

= 2 W, j((X ) )
£eQ l€P

(x*

12
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This verifies (4.2) if g5 is (Cs @), and hence also if gy is
a sum of a (CS @) and a (CH) function. So (4.2) has been
established for all g5 satisfying condition (IV).

In order to complete the proof of Lemma 1 we must verify that
% satisfies each constraint J eC.

Suppose first that J € Cl‘ Put 3

Q= Qé(j) = {8 c Q:8(j) ¢ 8,1,

and put aj = Q\Qj. Then

. J J
(4.5) g5(x") <
0 if J S QJ
But
A £ 4
g.(x) € Z wg. (x)+ Z weg(x) (by (4.2))
J 4eQ, J 2§, 7Y
( 2 Wz>a_ (b7 (4.5))
LeQ, J
dJ
=a (by balancedness).

Finally, suppose that J ¢ 02. Since gj is now (LH) by condition
(V), we can go through the same argument as just given with "=" in
place of " <". 8o all constraints are satisfied, and we have

xec® (P). This completes the proof of Lemma 1.

3Thus, Ql names the sets in R that contain player i, while

Qj names the sets in 8 that contain the controller of constraint j.
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Proof of Theorem 1. First we check that (P,v) is balanced. Let

B = {sl,...,sq} be balanced (w.r.t. P), with the weights

(wl,...,wq). our task is to show that
> LRI .
(4.6) v(P) > wlv(sl) + + qu(Sq)

Condition (III) guarantees for each # ¢ Q the existence of xz e ® (Sz)

such that v(S,) = £(x?). Put

X = wx e+ wxY
= l wq H

then § € P) by Lemma 1. Moreover, the same argument that
established (4.2) may be applied to the function -f if condition

(VI) holds, so we have
A £
£(x) > 2 wzf(x ).
LeQ
But then
v(P) > £(x)

2 wzf(xz)
LeQ

v

2 w,v(s,)
2eQ AR 2ad

showing that (P,v) is a balanced game.

Finally, to show that (P,v) is totally balanced, we observe
that all of its subgames are also "controlled programming games",
arising from convex programs that differ from the original convex
program only in their right-hand sides, and employing control maps
that differ from the original function ® only in that they map into
0 the constraints of the players who are not present in the subgame.
Conditions (I)-(VI) are therefore preserved and all the subgames of

(P,v) are balanced. This completes the proof of Theorem 1.
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5. Discussion

Remark 1. Dummy players.

By an argument similar to our proof that v(¢) = 0, it can be
demonstrated (as one would expect) that v(D) = 0 for any coalition

D of players who are "dummies", in the sense that &(j) ¢ D implies

Remark 2. Duality in the linear case.

In the case of a purely linear program, a direct proof of Theorem
1 using duality is available. Indeed, the dual LP solutions of the
P-controlled problem yield points in the core of the game, though not
all core points are dual solutions in general.

Assuming linearity, the S-controlled problem may be written

MAXIMIZE 2 d, x

keN X K

subject to x ¢ Rf , and

2 b x <a.ls), jecC,
kel kgxk - J 1
2 b, X = a,(S), J eC,
key KJE 2

where we define

() aj if 8(j) € S
8. =
J { 0 i 8(3) ¢ s.

Hy

The IP dual of the S-controlled problem is

MINIMIZE 2 a (S)y
keN 9 9
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Cl C. c C
subject to y ~ eR™, y “ eR ", and

2 b
JG

kjyj k € N.

Note that the feasible set of the dual does not depend em::'S...
By condition (IIT), the primal WAs an-optimel.selution: X¢{S)

and a value v(S):

v(s) = L d.x(8).
keN Kk
Therefore the dual has an-eptimsl solution=:y( $). and the same value:
v(8) = & aj(S)yj(S).
JjeC
Define, for each i ¢ P,

= (hy.®) = Z y )
uy Jec ( i )y( ) jea‘l(i)ajyj(P)

We claim that the vector u = (ul,...,up) is in the core of the
game (P,v).

Indeed, by condition (II) we have ay = 0 for j e 8-1(0), 8o

Zou = & ay (P)= Z ay
ieP jes-l(P) jeC

3 ;j(P) v(P).

Also, since y(P) is feasible in the dual of the S-controlled problem

for every S CP, we have

1

Z uy Z aj&j(P) =

. (S)yj(P)
ieS ,jeS-l(S)

jeC 'j

> 2 a (S)y (s) = v(8).
JeC
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Hence u is in the core, and it follows that the game is balanced.
That it is in fact totally balanced follows as in the last paragraph

of the proof of Theorem 1.

In some special cases of interest (see (II) in Sec. 10) the
dual solutions yield the entire core. In general, however, they
describe only a subset of the core. FPor further discussion of this

point see Gwen [11], Rosenmiller [12], and Samet and Zemel [13].

Remark 3. Convexity is not enough.

The following example with P = {1,2} shows that convex separa-

bility cannot be replaced in Theorem 1 by simple convexity.

2 2
MAXIMIZE 20xl - Xy T X5,
subject to x ¢ R2, and
8(J):
X = %, <1 1
X5 <2 2
X + X, <0 0

Then A, = g and A, = {2}, so the objectiwve function is concave

but not (CS @). One easily calculates
v(p) = b7, w(fi}) =19, v({a) =32, v(§)=o.
since v({1}) + v({2}) > v(P), the game is not balanced.

Remark 4. A simple test for (CS Q).

~n

Condition (IV) is complicated by the fact that it acts not on
the individual functions gj but on all of them together, since the
definition of (CS @) involves the sets Ai e G. In many cases,

however, this complication can be avoided, as we can learn enough

about @ by a simple inspection of the individual gj's.
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For instance, it may happen that gj, in addition to being
convex and vanishing at 0, is strictly increasing in all the
variables X, on which it actually depends --- that is, for all
k ¢ T where TCN is such that gj(x) = gj(xT). If this is true,
then the single constraint gj(x) < 0 will force xT to be 0. BSo
we have T CAB(j) (assuming ©(j) # 0) and hence gy € (cs @),

without further ado.
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6. Committee Controls

Our model already provides a way to represent the control of a
resource by a "committee" of players T ©€P in one special case, namely,
when the committee's rules require a unanimous vote before the resource
will be made available. This is accomplished by writing the constraint
in question |T| times, mapping it by © each time to a different
member of T.

To represent more general types of committee control, however,
we must make an extension of the model. We eliminate the function
8:C-P U {0}, and, in its place, assign to each j € C a collection
wj CZEP of pairwise independent coalitions,h each one having authority
over the use of the j-th resource. The generalized S-controlled

problem is then defined by putting a(S) for the right hand side, where

a., i Wbn2°44.
a.J_(S):

0 if not.

In other words, aj can be used only if some subset of S has the

power to authorize it.

One may regard the elements of uh as the minimal winning
coalitions of a simple game [15]. Minimal winning coalitions are
typically assumed to be non-disjoint, and in fact our present purpose
will require that there is at least one player common to them all.

Define

<
—~
[N
~—
1]

ﬂ{S:Sewj},

<
=
—~
He
~—
]

{3:1 ¢ v}

Two sets S and T are "independent" if neither S T nor
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Here the letter V is meant to suggest "veto". It is well known that
a simple game has a nonempty core if and only if there is at least
one veto player.
Let v(S) denote the value of the generalized S-controlled
problem just defined. We wish to show that the game (P,v) is
totally balanced. First, however, we must adjust our conditions
(I)-(VI) to the extent that they involve the function ©. Specifically,

we replace comditien (II) by~
(11') ay = 0 if v(j) = ¢.

(In other words, committees with no veto members do not control anything. )
In addition, we shall replace G with Q' = (Ai,...,Aé), where A is

the set of all indices k ¢ N such that the three’cenditions

gj(x) <0 for a1l  jeC N V1),

g(x) =0  forall JeCyN vi(i), and

x>0

together imply that x_ = 0. (In words, ptayer. i can.foroce

x. to be zero by exercising all his vetoes.) This- mediffisstion.leads

k
to new conditions (IV') and (VI'), with (CS @') and (-CS Q')

replacing (CS @) and (-CS a).5

Theorem 2. Suppose comditions (I), (II'), (III), (IV'), (V), and

P s 8 s s s o0 ot

(VI') hold in a generalized (committee-controlled) CPP. Then (p,v)

is totally balanced.

5To see that our generalized model includes the original,

merely set wj = {{58(3)1} for j ¢ S-l(P) and wh =¢ for je 8-1(0).



Proof. Let I"‘h be any subset of P. For each j ¢ C, define

L]

P:

‘Vh'(,j) =N{s:s ¢ N wj}

with the convention that N ¢ = P. Imtuitively, V}(j) consists of
those individuals in Ph who are essential to any attempt by the group
(|

P’ +to control j. For amy S CZPi; we now define an auxiliary

"S-hproblem" by taking the right-hand side to be ah(S),- where

a if vﬁ'(j) cs,
¥ _
aj(S) =

0 if not.

We see that this control structure is of the special "unanimous" form
described in the first paragraph of this section. The controls can
therefore be "individualized", and after a routine verification of
the conditions of Sec. 4, Theorem 1 can be applied to show that the
game (P“,v‘f“) is totally balanced, where v"“(s) denotes the optimal
value of the S-Hproblem. By Theorem A, Core(P!,v*) is not empty.
We now compare this auxiliary game (Ph,vh) with the subgame
(?*,v,) of (5,v), Obteined in the uamel vey be Festricbing the
domain of Vv to the subsets of P. (see the last paragraph of

Sec. 3). First we claim that

aj(S) < a;(s), 11 scp

Ir aj(S) = 0, this is immediate. If aj(S) # 0 then there is a
subset Q of S that belongs to EB by the definition of aj(S).
Hence Vh(j) C Q< S by the definition of Vh(j). Hence a;(s) =
a, = aj(S) by the definition of a;(S), and the claim is proved.

J
It follows that all of the S- %roblem's constraints are (if any-

thing) less constraining that those of the S-problem. Hence
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v_h(S)=v(S)5vh(S), all scp .
P

On the other hand, the Ph-hproblem and the P" -problem are identical.
So we have

v ') = we') - v,

“p
and hence

Core(Ph,v_Pg.) ) Core(P.,vh) £ 4d.

By Theorem A, the subgame (Ph,v H) is balanced. Since thisiholds
P

for=all Eh «CP, the game (P,v) is totally balanced.
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T. A Canonical Separable Form

We return to the case of an individualized control function B.

Tn Sec. 84t will. be useful to have a way of eliminating the (=-CH)
part of the objective, leaving it purely (-CS @). (See condition (VI)
in Sec. 4.) Accordingly, consider a CPP in which the objective has

the form
. A, A
£(x) = £5(x 1) + -o- + £2(x P) + h(x),

where h is (-CH), h# 0, and f -h is (=~CS @). Introduce pn
new variables y;, ieP, k ¢ N, and write y- for (y;,...,y;) and

y for (yl,...,yp). Define a new CPP with ¢ +p +n constraints

as follows:
) 2 oM 1
MAXIMIZE f£(x,y) = 2 (£ (x ~) + h(y™)),
i=1
subject to x ¢ RI_E, Yy € RI_EXP, and
gj(X) s aj, Jd € Cl,
gj(x) = aj, J e C2,
2 y‘i < B, iebP,
keN
i
x - 2y =0, k ¢ N.
k 5P k

Here B is a positive constant, chosen so large that the constraints
in which it appears are ineffective (that is, until B is replaced by 0).

The new control & function is given by

5(3) =8(3), JeC

8(c + 1) = 1, ieP,

g(c +p + k)

0, k ¢ N.
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Each of the new sets Ai’ i ¢ P, therefore consists of just the
variables in the original Ai’ together with the n new variables
yi, X ¢ N. It follows that T is (-Cs &), as desired. Moreover,
if the functions gj originally satisfied condition (IV), then they
continue to do so with (CS &) in place of (CS @). OF course, all
the new constraints also satisfy condition (IV).

The equivalence of the old and new CPPs may be seen from the
fact that when we maximize the new obJective f(x,y), the concavity
of h and the symmetrical form of the constraints as they involve
the "y" variables permits us to assume w.l.o.g. thet the yi are all
identical. Then, by the homogeneity of h,

Zn(y') = pa(y") = n(oy") = n( Z¥h) = n(x),
ieP ieP

so
max £(x,y) = max £(x),

and the two programs have the same value. In the S-problem we can
similarly take the yl, i € S to be equal, with the same result.

So the characteristic functions &f the two CPPs coincide.
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8. The Programming Problem as a Production Market

The next two sections explicate the connection between controlled
programming problems (CPP) and transferable utility production
markets (TUPM). As we shall see, either model can be translated
under certain conditions into the terms of the other, in a way that
not only preserves the characteristic functions of the associated
cooperative games, but also reproduces more or less faithfully the
detailed modelling of production, trade, and consumption.

We first formulate the TUPM model.6 We start with a finite

set T of agents and a finite set L of commodities, and equip

each agent 1 ¢ T with an initial endowment wh e R&, a set of

production possibilities Y' CR”, and a ubility function

ut :RE-* R.7 We assume

(a) that each ui is continuous, concave, and nondecreasing;
and
(b) that each Y' is convex and closed, with ¥ n RE = {0}.
This model may be regarded either as a genefalization of the
pure exchange TU model of [18] and [20] or as a specialization
of the more general non-TU production models of [1] or [17].

1 Depending on the particular role of the agent i -- producer,

supplier, consumer, etc., some of these items may be trivial, e.g.

ul = const. or Y = {0].
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For nonempty S C T, define 8

o Ty
ieS

and
w(s)=w{zui(x):xen1‘ and E(x-wi)eys} .
ieS ieS

Intuitively, w(S) represents the best result possible for the members
of S if they pool their resources and production capabilities and
distribute the output among themselves to maximize their combined
utilities. The game (T,w) is known to be totally balanced, and so
invites comparison with the programming game of Theorem 1.

Congider & CPP satisfying conditions (I)-(VI). In view of Sec.
7, condition (VI) can be strengthened w.l.o.g. to the requirement that
the objective function be (-CS @), so the problem takes the following

form:

A
MAXIMIZE  f£(x) = fl(xAl) + oo + PP(x P)

subject to x ¢ Rf , and

g,j(x) S_ a,j, j € Cl
gj(x) = aj, J e 02’

and governed by the control function

5:¢c~P U {0].

8 More generally, we could equip each coalition S with its own
production set YS CIRL and make the natural requirement that the
ensemble {Y° :SCT, S # g} ve "totally balanced", in the sense that

for each S CP,

. Sk
Ys = UE WkY 9y
k

where the union runs over all balanced collections of subsets of S and

their respective balancing weights. (see Sec. 3).
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We wish to translate this CPP inte a TUPM.

Some further notation will be helpful. For each i ¢ P, let
a(i) denote the vector in RE whose j-th term is a5 if 8(j) =1
and 0 otherwise. (In the notation of Sec. 6, this would be called
a({i}).) = Also, for any ¥y « RS , let © (P,y) denote the
feasible set for the above program with (al,...,ac) replaced by

(yi,...,yé). Finally, define
Cc
z={(-y,x):y ¢ R, and x ¢ ® (p,y)};

this is a closed, convex subset of RC X RN, containing the origin.

We can now make the appropriate identifications:9

T &> P
L < CUN
we = (a(i),o) e RCUN
%) < fi(xAi) for all i eP =T

Y=Y = 2
It is now immediate that the two games (T,w) and (P,v) are equal.

Note that the CPP makes a sharp distinction between raw materials and
consumer goods. The more general "production possibility set" approach
of the TUPM accommodates this distinction but does not require it.

Note also that the fact that different players control different inputs
in the CPP gives them different practical production possibilities,

despite the fact that the Y are all.equal.

9 Tt is understood that the sets C and N have no members in
common, despite the convention of using overlapping sets of positive

integers to name their members.



9. The Production Market as a Programming Problem

We now reverse the viewpoint of the preceding section, and
attempt to represent the TUPM as a CPP. Since no extra trouble is
involved, we shall do this in terms of the more general coalitional
production market, described in the second footnote of Sec. 8, in
which the coalition-controlled production possibility sets YS may
be larger that what would arise from merely adding up the individual
sets Yi, ie 8.

In order to carry out the translation of the TUPM into a CPP we
have to introduce a regrettably large array of new variables \z=;(2§’s)
and X = (x]f’i), where i e T, S ¢ 2T\ {g}, and k ¢ L.~ We shall
interpret zi’ as the quantity of commodity k given by agent i

k

to the coalition S, before the production move, and XE’?

quantity of commodity k given by the coalition S +to agent i,

the

after the production move.

For each nonempty S C T, define hS H RL - R by
hy(x) = mig a(x,¥),
ye

where 4 denotes Euclidean distance. Note that hS is a convex
function vanishing at 0, by condition (b) in Sec. 8.

We can now write out the programming problem

MAX TMIZE 7 ui< z xs’i>
ieT SGET\{¢}



subject to x >0, z >0, and

w [ D& - zzl’s> <0
S\. . -
jieT ieT

all § ¢ 2°\{¢)

kel 1eT
5,18 <t
T
se2 \{¢}
all i e¢T
Z 2 xﬁ’l <B

keL S€2T \{q}

As before, B is a suffieiently large constant.

Let us now describe the controls for the four classes of constraints
above. Those of the first class are uncontrolled, i.e., are mapped by
& dinto 0. Those of the second are comtrolled by the unanimous vote
of their respective coalitions, as described in the first paragraph of
Sec. 6. (Technically, each constraint must be repeated |s| times to
accomplish this by a singled-valued function ®.) The third and fourth
classes are controlled by the respective agents i€ T

The objective function of this CPP is clearly (-Cs @). Likewise,

A

the h, are (CS @) --- indeed, their domains are R+S, where

S
Ag =N {Ai :i ¢ S}. Tt follows that all the conditioms (T)-(VI)
of Sec. 4 are satisfied. That the CPP has the same characteristic

function as the THPM we started with is obvious from the construction.

To what extent are our two translatiéns
TUPM - CPP and CPP - TUPM

"fajthful" in their preservation of structure? Consider their

composition:
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(9.1) TUPM - CPP - TUPM.

Comparing the two TUPMs that appear in (9}1) will reveal to us just
how much structural detail, if any, is ¥lest initrenslation”.

In each step the characteristic function is preserved, and
hence the core. But the original TUPM is obviously not recovered
unchanged. Thus, while we start with 2t - 1 production sets YS,
possibly all different, we end with essentially just one set, VY.
(More precisely, we end with t = |T| identical copies of Y.) Also,
in place of the original £ = |L| commodities, we wind up with
2t(2t - 1) commodities. So our two transformations are certainly
not exact inverses of one another!

The proliferation of commodities in (9.1) is more apparent
than real, however, In order to gain the desired (CS @) form for
the constriants and objective in the CPP, we had to distinguish each
commodity according to its ownership, before, during, and after
production. For fixed k and S, the t commodities (zi’s) are
perfect substitutes in production; and for fixed k and i, the
2% -1 commodities (xs’i) are perfect substitutes in consumptien.

Moreover, the production set ¥ is in a very high-dimensional

space, and includes representations of all the original production
sets YS. A little reflection reveals that while a coalition S (in
the CPP) has formal access to all the original production sets, it

has practical access only to those YS' with S' ©€ 8, #%ince in the
S-problem it does not control the inputs required to operate the other

production sets.

In short, while the composition of the two transformations

necessarily yields a TUPM of a special and rather unwieldy form, it
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does not lose any structural information of significance. Indeed it

is not difficult to establish, though we shall not do so here, that

the competitive equilibrium prices of the two TUPMs are the same,
with due allowance for the multiplicity of labels worn by each of the

original commodities in the second model.
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10, Other Applications

In this section we present three applications of our very general

formulation to mare-particular economic models.

(I) The TU Pure Exchange Market.

If we eliminate production, the economic models considered in Sec. 8
and 9 reduce to the simple trading economies with transferable utility
that were introduced in [18] in order to provide an ecenomic -
characterization of tetally balanced cooperative games. . (See also [6, 20].)
The characteristic function of such & "TU exchange market""(TUEM) is
given by

v(8) = max<{ 2 ui(xi) :$X € REXP and 2 (xi-wi) = 0};

ied ieS

this is kmown te.he totally bAlanced (see [181).

The corresponding CPP requires far fewer variables than the

production version in Sec. 9. Let

g=(g9:4eT, jeT),

J representing the guantity of commodity k shipped by

. i
with qk
trader i to trader Jj. We then see without difficulty that the
following CPP represents the TUEM (as a special case of the

representation in Sec. 9), and yields the characteristic function

v given above.

MAXTMIZE = ui< 2 q"jj')
ieT © \ jeT

LXTXT

. , and

subject to g € R
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D gt <wl
JeT
all 1eT

) qji <B

jeT
with each constraint controlled by the respective trader i. (Since
these are vector inequalities there are 2|T| |L| constraints in all,
and B is now a vector of large constants.)

The relation of this simplified, production-free version to the

general form in Sec. 9 is given by the identifications

Y= v° = {0}
RERE > (Zi’s > x“>
se2T\(¢} 143
= Z <xs’j - Ezz’s>,
se2\{¢} 141

as one can easgily verify.

(II) The Optimal Assignment Game.

This model was first presemted in [19]; see also [4, 10, 11].

There are two types of agents, T -and U, thus
T4£g, Usdg, TNU=¢, TUU=P.

It is assumed that any agent can emter into an exclusive, . Bilateral
contract with at most one agent of the opposite type, and together
they will enjoy a nonnegative profit &y 5 ieT, je U, The

potential profitability of a coalition S ©P is therefore

max {a.i + eec 48, . }=v(8)
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where il,...,ik are distinct members of SN T and jl,...,jk

are distinct members of S N U, and
k = min (|S N T|, |sNU|).

This will be recognized as a form of the well known optimal assignment
problem , which can be expressed as a linear programming problem

despite its discrete character. For S =P we have

MAXIMIZE DIEEDY 8 %33 7
ieT jeU 1J
subject to x € REXU, and
2 x,, <1, all ieT
jeu 9
2 x;5 S 1, alt j e U.
ieT J

This has always a solution in integers, and if we interpret xij =1
to mean that i and j have entered into a contract, we see that its
optimal value is precisely v(P), as defined above. To obtain a CFP
with v as its characteristic Sunction, we merely introduce a control
function & +that maps each constraint onto its respective 1 ¢ T or
J e U.lo

Since everything is linear, the argument of Remark 2 in Sec. 5
applies. The solutions of the LP-dual problem, which is

MINIMIZE 2 t, + 2 ou,,

ie? t jeU

subject to t € RE s 1€ RE , and

Replacing the right-hand side by arbitrary nonnegative integers would
yield the job-matching game treated by Crawford and Knoer [4].
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are therefore outcomes in the core of the game. In fact, as was shown
in [19], the core and the set of dual solutions coincide exactly in

this case.

(III) A transshipment game.

Let (V,E) denote a transportation network consisting of a finite
set V of nodes and a finite set ECV x V of (directed) arcs.
A single commodity is to be shipped over this network, and the shippers
(players) will control the events at some of the nodes. For simplicity,
assume that each shipper controls precisely one node;ll this enables us
to treat the players P as a subset of V. Denote the set of uncontrolled

nodes V\P by J. With each node i ¢ P we associate ...

a supply capacity Si >0,

a demand capacity Di >0,

a purchase cost function p, :[O,Si] - R, and

a sales revenue function r, :[O,Di] -~ R,

With each arc (i,j) € E we associate ...

a flow capacity Cij >0, and

a shipping cost function i3 :[O,Cij] ~R,.

The Py and cij are concave, the ry convex, and all these functions
are continuous and vanish at O.

The "rules of the game" allow any set S of shippers, if they wiih
to act imdependently of the others, to purchase, transship, and sell the
commodity, provided they obey the capacity constraints and avoid the
nodes belonging to the other players. In other words, they are

restricted to the subnetwork (VS,ES), where

As previously, more complex systems of control could be considered

here.
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Vg=8UJ
ES=Eﬂ(VS><VS).

The "worth" v(S8) of the coalition S is just the maximum profit
(i.e. total revenue minus total cost) that it can achieve in this
subnetwork.

This model can be expressed as a CPP. 1In the following, Zy

represents the supply at node i and xi 3 the amount shipped from

node i to node j.

MAXTMIZE
2 [r.(z. - > X, . + 2 x ) -p (z.)] - 2 oe, (x..)
el N gia, e P gy ) H T gy W
subject to z € RX s X € RE , and
z, - Z x4+ 2 x,. < D,
SETCITIC SN HEROE A
ieP
z. < 8,
i = i
xij < Cij ’ (i,3) € E\(J X J).

The first two types of constraints are comtrolled by the corresponding

players i ¢ P. The constraints of the third type are controlled by

i andl® 3 if i eP, jeb,
i alone if ieP, jed,

Jj alone if ied, jeP.

With this control structure the required separability is attained
and the CPP satisfies conditions (I)-(VI) of Sec. 4. We conclude
that this transshipment game has a core, i.e., a way of distributing
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the profits among the shippers which will not leave any subset of them
in a position to improve their payoffs by independent action.

Special cases of this transshipment model include the classical
linear transportation problem, the meximum flow problem, and the

optimal assignment problem already discussed.



11. The Non-TU Case. Controlled Pareto-Programming Problems

If the utilities of the players are not transferable we can mo
longer work with a single objective function; instead, there will be
s finite set of non-comparable objective functions to be "Pareto-
optimized." Nevertheless, it is still possible to show that the
non-TU game arising from a "controlled Pareto-programming problem"
is totally balanced, and hence has a non-empty core. We briefly
outline this.

Iet M be a finite set. Call a subset X of RM comprehensgive

if yeX and z <y imply 2z € X. Also let X denote the closure

of X and let X denote its comprehensive hull, i.e., the

smallest comprehensive set that conmtains X.

A cooperative game without transferable utility is an ordered

triple (P,F,D). Here P is a finite set, F 1is a closed subset of
RP, and D is a map from the nonempty subsets of P to nonempty,
open, comprehensive, proper subsets of RP, satisfying three further

conditiens:

(1) D(P) F
(ii) if =x e D(S) and xS = zS, then =z e D(S);
(iii) (y5:y ¢ D(8)\ U D({i})} is bounded and nonempty. 13
ieS
We now interpret these symbols. P 1is the set of players, as
before; RP is the set of payoff vectors, as before; F is the set
of payoff vectors that are feasible; and D(S) is the set of payoff

vectors that coalition S can improve upon. Consequently, the core

of (P,F,D) is just the set
lBThere are many - variatioms on this "NIU characteristic-
function form" in the literature, all more or less equivalent. For a

discussion of this specific version, see [T ].
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F\U {D(8):8 ¢ 2P\ {g13.

Following Scarf [14], we define the game (P,F,D) to be balanced

if, for every balanced family {sl, ...,sq} of coalitions we have

q -
ND(s,) F ,
2=1

It is totally balanced if each of its subgames (R,FR,DR) is balanced,

where § # RCP, and F, and D; are defined in the cbvious way.

The following generalization of the "sufficiency" half of Theorem A

is due to Scarf [14]; see also [1T7].

Theorem B. If (P,F,D) is balanced, its core is non-empty.

OPISPD OD P2 s et P2 P2

In a controlled Pareto-programming problem (or CPPP), the

constraints, the control map, and the associated sets Ai C N are
exactly as in Sec. 4, i.e., are subject to conditions (I), (II),
(IV), and (¥). Let ug :RNIAi -+ R be the utility function for

player i. We further assume that

(iv) uy is quasi-concave and continuous for each i ¢ P,

N|A;

(v) @(8)n x R is compact for each S ¢ 'BP\ {g1,

ieS
where ©(S) is defined to be D(S), in effect the feasible set of

the "S-problem" in this new setting.

For sny S € 2\ {g}, put
R A,
v(s) = {z ¢ K : for some x e 8(s), zZ; = u((x) ') for all i € S}.

The game (P,F,D) that arises from this CPPP is given by the

identifications:
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F e> V(P) and D(S) <> interior of V(S) .

Tt is easy to check that, given (iv) and (v) and these identifications,
conditions (i), (ii), and (iii) are also satisfied.

To check that (P,F,D) is balanced, let {sl,...,sq} be a balameed
collection with weights (wl,...,wq). Take any x e () {D(5,): 4= Ly...503.
We must show that x ¢ F. By the definition of D, there exist

xz ¢ ©(sy), £ =1,...,9, such that
P A TN PO
w((x) ") >u((x) ") forall ieS.

Consider the point

;c = Eiw'e’xz .

By Lemma 1, x is in ©(P). But for any i € P,

. A, . A A
ul((x) 1) = U.l( 2 wz(x ) T 2 wz(x ) 1)
\L:ieS, L:ifs,
. A,
_ ul( >3 wz(xz) 1)
lziesz
i,, 25
> min w((x) ")
L:ieSL

. A,
>ut((x) h) .

i
(The first inequality follows from the quasi-concavity of u and the
fact that the sum of the weights w, i e SL is 1.) It follows from

this that s ¢ F, since F is comprehensive and contains v(P).
Thus (P,F,D) is balanced. But since each S-problem of a CPPP is
itself a CPPP (compare the last step in the proof of Theorem 1), we

condlude:
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Theorem 3. Assume that conditioms (I), (II), (IV), (V), (iv), and (v)

L e Ll el

hold for a CPPP. Then the derived non-TU cogperative game is totally

balanced.

As in the TU case, a production economy can be associated with
any controlled multi-objective programming problem of this type, and

vice versa. We omit the details.
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Footnotes

O D P 8 P ot o2 s P

1.

In contrast, the formulation of Kalai and Zemel [8,9] has the
players controlling the variables rather than the constraints; this
is sometimes more natural, e.g., in network problems. However, it
is usually possible to translate a given model from either control
form to the other by putting in extra variables or constraints.

It would slightly stronger and superficially simpler to base

our conditions on the collection @', given by
A} = {k e N: if x e &P\{i}) then x_-= 0} .

Since A; D A; this would yield (csa@') o (cs@) and result

in a minor strengthening of Theorem 1. But this modified definition
is undesirable because it depends too heavily and specifically

on the data of the programming problem,and, among other things,
raises the possibility that the class of functions (CSQ') might
change as we move from one S-reduced problem to another. (See also
Remark 4 in Sec. 5.)

Thus, Qi names the sets in ® that conmtain player i, while

Qj names the sets in B that contain the controller of constraint
Je

Two sets S and .T are "independent" if neither S CT nor T CS.
To see that our generalized model indludes the original, merely

set wj = {{8(j)}} for j e S-l(P) and UE =g for je 8-1(0).
This model may be regarded either as a generalization of the pure
exchange TU model of [18] and [20] or as a specialization of

the more general non-TU production models of [1] or [17].



10.

12.

13.

Depending on the particular role of the agent i =-- producer,
supplier, consumer, etc., some of these items may be trivial,

e.g. ul = const. or ¥ - {o}.

More generally, we could equip each coalition S with its own
production set YS CIRL and make the natural requirement that the
ensemble {YS :8cT, S# ¢} be "totally balanced", in the sense

that for each S <P,
S

P oUl wr s,
k

where the union runs over all balanced collections of subsets of
S and their respective balancing weights. (See Sec. 3).
Tt is understood that the sets C and N have no members in
common, despite the convention of using overlapping sets of positive
integers to name their members.
Replacing the right-hand side by arbitrary nonnegative integers
would yield the job-matching game treated by Crawford and Knoer
(4],
As previously, more complex systems of control could be considered
here.
See the first paragraph of Sec. 6.
There are many variations on this "NIU characteristic-function
form" in the literature, all more or less equivalent. For a

discussion of this specific version, see [1T7].
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