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Randomly generated polytopes are used frequently to test and compare algorithms for a 
variety of mathematical programming problems. These polytopes are constructed by generat- 
ing linear inequality constraints with coefficients drawn independently from a distribution such 
as the uniform or the normal. 

It is noted that this class of 'random' polytopes has a special property: the angles between 
the hyperplanes, though dependent on the specific distribution used, tend to be equal when the 
dimension of the space increases. 

Obviously this structure of 'random' polytopes may bias test results. 
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1. Introduction 

Testing and comparing algorithms still is an aspect of mathematical program- 
ming that has received little attention. In spite of efforts by the Committee On 
Algorithms (COAL) of the Mathematical Programming Society, a generally 
accepted treatment of this topic has not yet been formulated (see e.g. [8, 11, 12]). 
One of the difficulties involved in devising a uniform and sound methodology for 
testing and comparing algorithms stems from the test problems to be used. The 
pros and cons of 'randomly generated' versus 'real world' test problems have 
been the subject of many lengthy and vivid discussions. Here we do not take a 
stand in that argument, but point out a special property of some 'randomly 
generated' problems, that may bias test results. 

We consider convex polytopes P, constructed as the intersection of linear 
half spaces 

aix <bi, i = 1 , 2  . . . . .  m, 

172 



W.B. van Darn et al./ Randornly generated polytopes 173 

i.e, 

P = { x E R " [ a i x < - b i ,  i = 1  . . . . .  m} 

with ai =(ai l ,  ai? . . . . .  ain) ~ R n. 

Such polytopes are used in testing and comparing linear, quadratic, integer and 
some nonlinear programming algorithms. Usually the coefficients a 0 are 
generated by drawing from either a uniform or from a normal distribution. [4, 7, 
9, 10, 13, 16, 18, 20, 21, 23]. 

In Section 2 we list some intuitive evidence that the angles between the 
hyperplanes corresponding to the constraints are not uniformly distributed. We 
indicate reasons why these angles tend to be equal. Moreover  we show that this 
behaviour becomes stronger as the dimension of the space increases. These 
arguments are formalized for a broad class of probability distributions in Section 
3. There we derive analytical expressions for the limit of the mean and variance 
of the cosine of the angle between two hyperplanes.  In Section 4 we consider the 
rate at which the generated angles approach the asymptotic results. This analy- 
tically derived rate of convergence is O(1/n). The final section contains a 
discussion on the implications of our results. 

Since the difficulties arise for all examined probability distributions we advise 
care in drawing conclusions based on empirical results on ' random' polytopes.  

2. Some preliminary observations 

No matter which definition of a ' random' polytope is adopted (see e.g. [6, 15, 
16, 17, 21]) the randomness of this polytope should also be reflected in the 
distribution of the angles between the hyperplanes determining the polytope. 

It seems reasonable to demand that these angles behave according to a 
uniform distribution on the relevant interval. As it turns out, such properties are 
not exhibited if the coefficients are drawn from most simple distributions. To 
make this intuitively clear we will illustrate this point for the uniform dis- 
tribution and the normal distribution. 

First consider the uniform distribution on the interval (p, q) with 0 < p < q. 
Independently drawing coefficients ai~ . . . . .  a~, from a uniform distribution is 
equivalent to selecting points ag from a hypercube.  Each point determines the 
direction of the normal vector  to a constraint. Therefore  the angle between two 
constraints (hyperplanes) is determined by two points. As illustrated in Fig. 1 
only small angles are possible; these are also not uniformly distributed. 

Now consider the normal distribution N(0, 1); In this case we can get every 
angle, but still the size of the angle is not uniformly distributed for n-> 3. To 
make this intuitively clear consider Fig. 2 (n = 3). Without loss of generality (use 
the independence assumption) we may assume the first normal vector we have 
generated is s0 E R 3. The set of (normalized) vectors that make an angle ~ with 
a,, is a circle of which the radius depends on ~. Since the probability density 
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func t ion  on the sphere  is uni form the probabi l i ty  of  an angle ~ ~ (~0~ - e, q~ + e) 

is not  equal to the probabi l i ty  of  an angle r E (q~z- E, r + e). 

A n d e r s o n  [2, p. 64] states the densi ty  fn of  the cosine o f  the angle be tween  two 
const ra in ts  (hyperplanes  with d imens ion  n - 1) 

I 
1 F(~n) (1 - x:) (~-3)n for  n -> 2. 

L ( x )  : V ~  r ( ~ n  - 1)) " -  

This implies (see [2, p. 65]) that  

E(cos(angle))  = 0 

and 

1 
var(cos(angle))  = -  Vn > 2. 

tl 

3. Mean and variance of the angles between hyperplanes 

In this sect ion we derive the mean  and var iance  of  the angles be tween  

hyperp lanes  over  all possible po ly topes  genera ted  in the w a y  descr ibed  in the 
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previous section. It is important to note that we do not at tempt to determine 
these moments for the angles between hyperplanes in one polytope. This allows 
us to work with stochastically independent  realizations of cos Ckl, where we 
denote by ck~ the angle between the hyperplanes corresponding to constraints k 
and I. (In one polytope the angles ck~, Ckh and ch~ are obviously dependent.)  We 
consider the angle between hyperplanes formed by generating i.i.d, coefficients 
aki and atj from the same probability space g2 (with probability measure P),  where 
the abbreviation i.i.d, stands for  independent identically distributed. 

To indicate realizations of the random variables a~j (i = k, l) we will use a~i(w) 
and to indicate the dependence of ckt on n we will use Ck~;,. Thus, 

Define 

and 

tt 

akJ( ~ )a~i( ~~ ) 

cos ckl;.(co) = (3.1) 

= = 

[3i~ :a= E(a~i) = f a~j(oJ) dP(o)), i = k, t 
D 

13kl:i : a_ E(%alfl  = f akj(w)alj(oJ) dP(o)). 
[2 

(3.2) 

Since {a~j}je~.~=k.~ are i.i.d, random variables we can drop the subscript j in (3.2). 

Lemma 1. For i.i.d, random variables a~i we have: 

P (lim cos 1 (3.3) 

Proof. Since the a~j's are i.i.d, random variables we may apply the strong law of 
large numbers [5, p. 250]. 

Hence for 

S,,,(co) = ~ a~j(co) (i = k, l) and S,,k, = ~ aki(o))a,j(~o) 
j = l  j = l  

we have 

( 1  ) 
P lim n S,,i(o)) =/3i = 1, 

x n ~ z c  

P lira n S.kl(~o) = /3kl = 1. 
\ l l ~ o z o  

i = k , l ,  

This implies (3.3). [] 
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As a corollary we have: 

Lemma 2. For i.i.d, random variables a o we have: 

lim E(cos ckl:,,) = /3k~ 
~  x//3~ . ~ '  

lim Var(cos Ckl;n) = O. 
n ~ o c  

Proof. Using Lebesgue 's  bounded convergence theorem [5, p. 180] and the fact 
that ]cos ckt:,l -< 1 Vn ~ N yields: 

lim,,_~ E(cos cks;,,) = \X//3---k-U-~l./3j ~//3k ' /3t 

Since Var(cos cks:,) = E(cosZckl:,,) -- (E(cos ckl:,,)) "~ we can use a similar reasoning 
to get the second result. [] 

Note that these lemmas do not depend on the specific probability distribution 
F. The only assumption we have to make is 13~ < oc (i = k, l) to avoid pathological 
cases. 

Finally we mention a result that follows trivally from Lemma 1. 

( )_ P lim,~ Ck~:. = arccos X / ~ - ~ "  ~j/  1. 

4. Rate of convergence 

In the last section we derived analytical expressions for the limit of the mean 
and variance of the cosine of the angle Ck~:,, in case n ~ .  In this section we are 
interested in the rate of convergence.  This rate of convergence yields a notion 
of the discrepancy between mean and variance and their respective limits. 

The next lemma (which is a special case of Theorem 1) gives us this rate in 
case the items are uniformly distributed. 

Lemma 3. Suppose  {ao}jeN.i=k.~ are drawn independent ly  f r o m  a uni form dis-  
tribution on the interval (p, q). This implies: 

3(q2_ p2) (q+ p ) +  O[_1, ~ 
E(cos C~t;n) = 4(q3 _ p 3 )  \ n ]  

and (4.1) 

Var(cos cg~:,,) = O ( 1 ) .  

Proof. The probability density function of (aij) for every ] E N  is given 
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by: 

Hence  

t ( a , j )  = ( q  - p)-', 

_ q 3 _  p3 

p < a i ~ < q ,  i = k , j .  

18k~ = J(q + p)2 

and 

Proof. Define I = {k, l, kl} and 

�9 = o) E f l  I Sni(o9)-18i > e  , i E l .  

Using Chebychev ' s  inequality we have for any E > 0 an M such that 

M 
P(A,:~) <--e~.n, i ~ I. 

Hence  for Z. :___a An:k O A.:l U A.:kl 

3M 
P(Z,,)  <- ~.2, n" 

Since G,, is uniformly bounded by a constant  C we obtain 

If I G.(~o) dP(w)  -< e2. n 
Z~ 

Then 

Theorem 1. Let  B : R 3 ~ R  be a bounded func t ion  with cont inuous  first and 

second order partial derivatives in a ne ighbourhood of  t8 = ([3k, 181, 18J and let aij 
(j = 1 . . . . .  n; i = k, l) be i.i.d, random variables drawn f rom a distribution with 
finite four th  moment ,  and let 

Gn(o)) :=~ B S.t(o)) ,nSnk(W),nSnkl(~o) . 

We now give the proof  of the main theorem of this section. 

and applying Theorem 1 with 

_ X3 
B(X,, X2, X3) Vx , .  x2 

yields the stated result. []  
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This implies Vn ~ N 

f E(Q) = G,,(~o) dP(co) + 0 with Z,, .= the complement  of Z,,. 
z;i 

(4.2) 
Choosing ~ sufficiently small we can apply Taylor 's formula for functions of 
several variables [3, p. 123]. Hence we obtain for all oJ E Z,~ with Di :__a partial 
derivative of a function with respect to the ith component  and 0(to):__a some 
intermediate point 

G,(to) = B(/3) + ~] D;B(/3)(1 S,,~(~)-/3i) 
iEl 

+ ~ ~ D,Dj.(O((o))( 1 Sn,((o) - ,8,)( 1 S.;((o)-/3i).  (4.3) 

Using the Cauchy-Schwarz  inequality yields 

If 
Zn 

--< [ P ( Z . ) f  (1 S.i((o)_~,)2dp((o)] 
n 

"~- = o ( •  i ~ ; .  \n/ 

Thus 

I f  ( l  S,,(to)-/3,)dP(w)l = If (1 Sni(oJ)-~8i)dP(o~)l = 0(~) 
z;i z. 

and this implies 

If ~ D"(#)( 1 s,,(o,)-#,)dp(~)[ = o(�88 
za 

(4.4) 

Also 

If DijB(O((~ 1 Sni(to)- [3i)( 1 Snj(w)- ~j) dP(o~) I <- 

.) 

z~ 
\2  \ I/2 

• (1S.~((o)-~Q dP((o)) 
z~ 
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~M,(f (~ s~,(~)-~,)2 dp (~3)"~ (f (~ s,,, -~,)'2 de(w))'"2 
z,~ z~ 

--O(') n '  i, j e I .  (4.5) 

Combining  (4.2) . . . . .  (4.5) yields 

We can apply the same reasoning to B 2 and hence  

Then we obtain 

Var(G~) = E ( G ~ )  - ( E ( G ~ ) )  2 

[] 

To illustrate the implications of  this theorem we performed some  Monte-Carlo  
experiments .  Coefficients akj and % were drawn independently  from a uniform 
distribution on ( - 1 ,  1) and cos  Ckl was  computed  according to (3.1) for n = 10, 50 
and 100. Sample  s izes  were 1000 in each case.  The results are s h o w n  in Fig. 3. 
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5. Concluding remarks 

We have shown that in ' r andom'  polytopes  the angles between the hyper-  

planes exhibit some surprising asymptot ic  behaviour.  If  we were to use such 
polytopes  in testing and comparing mathematical  programming algorithms we 
might get biased results. A simple observat ion supports  this claim: it is well 
known that Khachian ' s  polynomial  algorithm [13] and any other relaxation 
method [l,  19] require at most  m iterations to find a solution to a sys tem of m 
linear inequalities whenever  the hyperplanes  corresponding to these inequalities 
are mutually orthogonal.  Now,  although the per formance  of these algorithms is 
generally considered to be very poor, tests on certain polytopes,  obtained by 
drawing f rom a uniform or normal distribution with mean zero,  could show a 

very good performance .  
It is important  to note that it is possible to generate hyperplanes  and con- 

sequently angles with a prespecified asymptot ic  cosine v. As an example  consider 
the uniform distribution on (p, p + 1), then f rom (4.1) we see we should take 

P =,+~/ v 
" ~ 3 - 3 v '  

Since the angles tend to be equal for large n, the effects are s trengthened in 

higher dimensions. 
One might argue that we have considered hyperplanes  instead of polytopes.  In 

a strict sense that is true, but for most  mathemat ical  programming algorithms 
that distinction is not relevant.  Angles be tween hyperplanes  that do not intersect  
in a facet  of the feasible region are just as important  as the other angles in the 
nonfeasible stages of the algorithm (e.g. a phase I in LP). Therefore  we can 
omit any reference to right hand side values and the determination of redundant  

constraints ([13] and [22]). 
It is noted that the results of Section 4 also hold for discontinuous probabil i ty 

distributions with finite fourth moment .  Therefore  similar results apply to ai ' s  

which are not full dense. 
Unfor tunate ly  there does not seem to be a way out of difficulties sketched in 

this paper.  Therefore  we have to conclude with the remark  that ' r andom'  
polytopes constructed by generating all coefficients of a linear inequality system 

by drawing f rom a simple distribution, such as the uniform or the normal,  have 
special geometr ic  structure. This obliges the user of such problems to take these 

propert ies  into consideration.  
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