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described; their accuracy and efficiency are analyzed in detail.
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1. INTRODUCTION

Let f : Rn R be a continuous real valued objective function. Most

nonlinear programming methods that have been developed aim for a local

optimum (say, local minimum), i.e. a point x* such that there exists a

neighbourhood B of x* with

f(x*) < f(x) VxEB (1)

In general, however, several local optima may exist and the corresponding
function values may differ substantially. The problem of designing
algorithms that distinguish between these local optima and locate the best
possible one is known as the &lobal oytimization problem, and forms the
subject of this paper and its companion, Part II.

In the absence of reliable codes for the global optimization problem
most problems are not modelled as such. Many problems, however, are of a
global nature. This is especially true for many technical design problems
[Dixon & Szego 1978b, Archetti & Frontini 1978]. Economic applications,
where multimodal cost functions have to be minimized, have also been
reported [Archetti & Frontini 1978]. Another global optimization problem
often encountered in econometrics is that of locating the global maximum of
a likelihood function. Thus, there is no need to dwell on the practical
usefulness of quick and reliable methods to solve the global optimization
problem.

The global optimization problem is to find the global optimum (say
global minimum) x* of a real valued objective function f : R, i.e. to
find a point x* E R such that

f(x*) I f(x) V x E RU (2)

Unless stated otherwise, we will assume f to be twice continuously
differentiable. For obvious computational reasons, one usually assumes that
a set S c Rn, which is convex, compact and contains the global minimum as
an interior point, is specified in advance. None the less, the problem to
find



= min f(
xES

(3)

remains essentially one of unconstrained optimization.

Any method for global optimization has to account for the fact that a

numerical procedure can never produce more than approximate answers. Thus,

the global optimization problem might be considered solved if, for some

c > 0, an element of one of the following sets has been identified [Dixon

1978]

A (c) = {x€ SI Hx—x*I < 1,

A
f(e) = {xEs1 If(x)—f(x01 < e).

A disadvantage of the first mentioned possibility is that small

perturbations in the problem data may have major effects on the location of

x* [Archetti & Betro 1978a]. A third possibility [Betro 1981] is obtained

by defining

gy)
m({zESI f(z) < y})

where m(.) is the Lebesque measure and taking

A ( ) = {xESI f(x)) < e}.

(6)

(7)

We note, however, that this set may contain points whose function values

differ considerably from y*.

A second problem, which is caused by the finite accuracy of numerical

procedures, is that we cannot distinguish between two local minima which

are very close to one another. If we define a stationary point of f as a

point where the gradient g : Rn Rn of f is equal to 0, then each (local)

minimum is known to be a stationary point. We will assume that a positive

constant e can be specified, such that the distance between any two
stationary points exceeds e. Obviously, this implies that there can only be

a finite number of stationary points in S.



Only few solution methods for global optimization have been developed

so far, we refer to [Dixon & SzegO 1978a, 197813] and to [Rinnooy Kan &

Timmer 1984, Boender et al. 1985] for surveys. We shall be concerned with

methods that incorporate stochastic elements. In most stochastic methods,

two phases can be usefully distinguished. In the &lobal phase, the function

is evaluated in a number of randomly sampled points. In the local phase,

the sample points are manipulated, e.g. by means of local searches, to

yield a candidate global minimum.

Generally in turning to stochastic methods, we do sacrifice the

possibility of an absolute guarantee of success. However, under mild
conditions on the sampling distribution and on f, the probability that an
element of A(c), A

f
(e) or A (e) is sampled approaches 1 as the sample size

increases [Solis & Wets 1981]. If the sample points are drawn from a

uniform distribution over S and if f is continuous, then an even stronger
result will turn out to hold: the sample point with lowest function value
converges to the global minimum value with probability 1 (or almost
surely). Thus, the global phase can yield an asymptotic guarantee with
probability 1, and is therefore essential for the reliability of the
method. However, a method that only contains a global phase will be found
lacking in efficiency. To increase the latter while maintaining the former
is one of the challenges in global optimization.

As in the case of deterministic methods, one of the questions in
applying a stochastic method is when to stop. Preferably, a method of this
nature should terminate with some probabilistic information on the quality
of the proposed solution. Several approaches based on different assumptions
about the properties of possible objective functions f and using different
stochastic techniques have been proposed to design a proper stopping rule.

In Section 2, we review some stochastic methods and find that the most
promising methods appear to be variants of the so—called Multistart
technique where points are sampled iteratively from a uniform distribution 
over S (global phase), after which local minima will be found by applying a
local search procedure to these points (local phase). A theoretical
framework which enables the stochastic analysis of this method is developed
in [Boender 1984] (see also [Boender & Rinnooy Kan 1983, 1985]). It turns
out to be possible to develop Bayesian estimates of the number of local
minima not yet identified and of the probability that the next local search
will locate a new local minimum. By specifying the costs and the potential
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benefits of further experiments and weighing these against each other

probabilistically, an optimal Bayesian stopping rule can be determined.

Multistart is still lacking in efficiency because the same local

minimum may be located several times. If we define the region of attraction

of a local minimum x* to be the set of points in S starting from which a

given local search procedure converges to x*, then ideally, this local

search procedure should be started exactly once in every region of

attraction. Several new algorithms designed to satisfy this criterion are

described in Section 3. The methods discussed in this section temporarily

eliminate a prespecified fraction of the sample points whose function

values are relatively high. The resulting reduced sample consists of groups

of mutually relatively close points that correspond to the regions with

relatively small function values. Within each group the points are still

distributed according to the original uniform distribution. Thus, these

groups can be identified by clustering techniques based upon tests on the

uniform distribution. Only one local search procedure will be started in

each group [Boender et al. 1980, 1982].

Unfortunately, the resulting groups do not necessarily correspond to

the regions of attraction of f. It is possible that a certain group of

points corresponds to a region with relatively small function values which

contains several minima. Therefore, the methods which are based on the

reduced sample may fail to find a local minimum although a point is sampled

in its region of attraction. Methods that do not suffer from this

deficiency will be dealt with in Part II of this paper [Rinnooy Kan &

Timmer 1985]. There we also discuss the computer implementation of the

various global optimization methods and its theoretical properties, and we

discuss the results of some computational experiments.



2. MULTISTART

The simplest stochastic method for global optimization consists only

of a global phase. Known confusingly as Pure Random Search [Brooks 1958,

Anderssen 1972], the method involves no more than a single step.

Pure Random Search

Step 1. Evaluate f in N points, drawn from a uniform distribution over S.

The smallest function value found is the candidate solution for y*.

In spite of its evident simplicity, Pure Random Search offers an

asymptotic guarantee in a probabilistic sense. The proof is based on the

simple observation that the probability that a uniform sample of size N

contains at least one point in a subset A c S is equal to [Brooks 1958]

m( A)
inTST • (8)

Thus, any assumption on f guaranteeing that m(Af(e)), m(Ax(e)) or m(ye))

is strictly positive will imply that Pure Random Search locates an element

in the corresponding set with a probability approaching to 1 as N
1)(increases. In fact, if we let 

41) 
be the smallest function value found in

a sample of size N, then we can prove the following result.

THEOREM 1. (cf. [Devroye 1978, Rubinstein 1981]) If f is continuous,

then 41) converges to the global minimum value y* with probability 1 (or

almost surely) with increasing N, i.e.

(1) _Pr lim y
-41 

- = • (9)
N+00

PROOF. Because f is continuous in a global minimum x*, we know that for all

e > 0 there exists a 6 > 0, such that the probability that e

is less than the probability that no element in a sample of size N is

within distance 6 from that global minimum. Since x* is assumed to be in

the interior of S, we can choose 6 small enough so as to ensure that the

set of points which are within distance 6 of x* is completely contained in

S. Hence



and

[141

CO

E P
N=1

y* > cj < (1 -

[141) - y 1 >

00

6.N ... 6
E (1 -  

N=1

Thus, the left-hand side of (11) converges for all e, so that, using the

Borel-Cantelli Lemma [Chung 1974], (9) follows immediately.

A similar guarantee will hold for all methods that follow.

The reader may well wonder to what extent an embarassingly simple

method such as Pure Random Search has any advantage over an equally

simplictic approach such as Grid Search, in which the function is evaluated

in each point of a regular grid over S. The relative merits of these naive

stochastic and deterministic strategies have been extensively analyzed

[Sukharev 1971, Ivanov 1972, Anderssen & Bloomfield 1975, Archetti & Betro

1978b]. The net result of these analyses is that the points of the random

sample cover S more efficiently (according to several probabilistic

criteria) than the grid points do, at least if the dimension of the problem

is not too low. In the studies mentioned above the methods are evaluated

according to the distance between the global minimum and the sample or grid

point closest to it. The advantage of Pure Random Search becomes more

evident through an argument in [Sobol 1982]. Here, it is observed that for

many functions some of the variables (in the n-dimensional space S) hardly

affect the function value; in which case the distribution of the sample or

grid points in the subspace defined by the remaining variables is of

primary interest. However, it is not known in advance which of the

variables are important and which are not. If the (uniform) sample points

are projected into an arbitrary subspace, they still follow a uniform

distribution over this subspace. However, if the grid points are projected

into an arbitrary subspace, they may very well form groups of mutually

close points, that cover the subspace in an unsatisfactory manner.



None the less, Pure Random Search can hardly be taken seriously as a

computational proposal. Several extensions of this method have been

proposed that also start from a uniform sample over S (hence, Theorem 1 can

be applied), but that at the same time involve local searches from some or

all points in the sample. The simplest way to make use of a local search 

procedure P occurs in a folklore method known as Multistart.

Multistart

Step 1. Draw a point from a uniform distribution over S.

Step 2. Apply P to the new sample point.

,Step 3. A termination criterion indicates whether to stop or to return to

Step 1. The local minimum with smallest function value found is the

candidate value for y*.

Although this method is obviously more attractive then Pure Random

Search several inefficiencies still remain. However, let us first consider

the question of a proper stopping rule for this method. Our treatment will

be brief, since the details of our approach are reported elsewhere; it was

initiated in [Zielinski 1981] and extended in [Boender 1984]. It is based

on a Bayesian estimate of the number of local minima W and the relative

size of each region of attraction Oz = m(R
x*
)/m(S), X=1,...,W, where Rx*

is the region of attraction of the local minimum x*, i.e., the set of
points in S starting from which P will converge to x*. If the values of

these parameters would be given, then the outcome of an application of

Multistart is easy to analyze. We can view the procedure as a series of

experiments in which a sample from a multinomial distribution is taken.

Each cell of the distribution corresponds to a minimum x*; the cell

probability is equal to the probability that a uniformly sampled point will

be allocated to Rx* by P, i.e. equal to the corresponding Oz. Thus, the

probability that the k—th local minimum is found bk 
times (k = 1,...,W) in

N trials is

N! 
.11.Oz

II 
k

b.! 
=1

k=1

It is impossible, however, to distinguish between outcomes that are

identical up to a relabeling of the minima. Thus, we have to restrict

(12)



ourselves to distinguishable aggregates of the random events that appear in

(12). To calculate the probability that w different local minima are found

during N local searches, and the i-th minimum is found ai times

(ai > 0, Il.lai=N), let cj be the number of ai's equal to j and let S (w)

denote the set of all permutations of w different elements of {1,2,...,14}.

The required probability is then given by [Boender 1984]

1 N! 

II c.! 11 a.!
1

i=1 i=1

• • •

w ai
II 0

ES ( 
1
. n
=1 i

Formula (13) can be used in a Bayesian approach in which the

(13)

unknowns W, 0 ...,0 are assumed to be themselves random variables for
W

which a prior distribution can be specified. Given the outcome of an

application of Multistart, Bayes's rule is used to compute the posterior 

distribution, which incorporates both the prior beliefs and the sample

information.

After lengthy calculations, surprisingly simple expressions emerge for

the posterior distribution and posterior expectation of several interesting

parameters, some of which are stated in the next theorem.

THEOREM 2. ([Boender 1984]) If w different local minima have been found as

the result of N local searches started in uniformly distributed points, if

we assume a priori for the number of local minima W that each integer

of Woo) is equally probable, and if we assume that given W = W the

relative sizes of the regions of attraction 0 ... 0 follow a uniform

distribution on the (W-1)-dimensional unit simplex, then

the posterior probability that there are K local minima is equal to

(K-1)!KI(N-1)!(N-2)!
(N+K-1)!(Kr-w)!w!(w-1)!(N-w-2)!

ii) the posterior expectation of the number of local minima is

w(N-1)
N-w-2

(14)

(15)
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iii) the posterior expected size of the non-observed regions of attraction

is

w(w+1)
N(N-1) (16)

This theoretical framework is quite an attractive one, the more so

since it can be easily extended to yield optimal Bayesian stopping rules.

As in the previous section, such rules incorporate assumption about the

costs and potential benefits of further experiments and weigh these against

each other probabilistically to calculate the optimal stopping point.

Several loss structures and corresponding stopping rules are described in

Doender & Rinnooy Kan 19851.

None the less, in spite of the scope that Multistart offers for

analysis, the procedure is still lacking in efficiency. The main reason for

this is that it will inevitably cause each local minimum to be found

several times. To avoid all these time consuming local searches, P should

ideally be invoked no more than once in every region of attraction.

A first attempt to modify Multistart in this way can be found in
[Hartman 1973]. In this method, a local search is started only when a point
is drawn whose function value is less than the smallest local minimum value
found so far. It should be obvious that under this rule the global minimum
may not be found even if a point is sampled in R. A far more successful
adaptation of Multistart is provided by the clusterinD methods, which form

the main subject of this paper.

The basic idea behind the clustering methods is to start from a

uniform sample from S, to create groups of mutually close points that

correspond to relevant regions of attraction, and to start P once in every

such region. Two ways to create such groups from the initial sample have

been proposed. The first, called reduction [Becker & Lago 1970] removes a

certain fraction of the sample points with the highest function values. The

second, called concentration [Torn 1978], transforms the sample by allowing

one or at most a few steepest descent steps from every point.

A disadvantage of concentration is that it transforms the sample in an
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unpredictable way. Therefore, the methods based on concentration may fail

in two different ways. Firstly, the resulting groups of points, or

clusters, may contain several regions of attraction, so that the global

minimum can be missed. Secondly, one region of attraction may be divided

over several clusters, in which case the corresponding minimum will be

located more than once. A further disadvantage of concentration is that

nothing can be said about the distribution of the resulting points, which

makes it more difficult to identify the clusters. Better results will be

seen to be possible for methods which are based on reduction. These methods

will be dealt with in the next section.
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3. CLUSTERING METHODS

In this section we aim for solution methods for this global

optimization problem that satisfy the following — partially conflicting —

demands. On the one hand the method must be asymptotically correct, i.e. if

the method would be continued sufficiently long, then the smallest function

value found during this process must converge to the global minimum value.

(If the method is stochastic, convergence in a probabilistic sense will be

required.) On the other hand, the method must be efficient: if the method

is stopped after a reasonable amount of time, it should have produced

results which compare favourably to the results obtainable by other methods

in the same time period.

For reasons given in the previous section, the methods we will

consider are variants of Multistart. The methods are iterative, and fit in

the following framework.

Global framework

Step 1. (Global phase) N points are drawn from a uniform distribution over

S. The function is evaluated in these points, and the points are

added to the (initially empty) sample.

Step 2, (Local phase) A procedure selects a (possibly empty) subset of the

enlarged sample, and a local search procedure P is applied to each

of the elements of this subset. The stationary points, which are

found during these local searches and which were not detected

previously, are added to an (initially empty) set X.

,Step 3. A stopping rule decides whether to return to Step 1 or to stop. If

the method is stopped, then the element of X* with smallest

function value is the candidate solution.

In this section, we assume that the local search procedure P in Step 2

is strictly descent: starting from any point x S, it generates a sequence

of points xk, with

xk+1 = xk akPk (430 =
ak > 0), (17)
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which converges to a stationary point x, such that moreover

f(x + 4k) < f( xk apk) (18)

for all k and all a, a satisfying 0 < a < < ak. Thus, there exists a path
=MI

from x to x along which the function is nonincreasing.

We shall also assume that this path is completely contained in S. As a

result, we can now derive some important properties of the regions of

attraction of P.

Let

L(y) = x SI f < yl (19)

be the (y-) level set of f, and let Lx(y) (with y f(x)) denote the

(connected) component of L(y) containing x. It is not difficult to see that

both these sets contain all their accumulation points and are hence closed.

Theorem 3. If, for any x S and y f(x), a procedure which is strictly

descent is started from a point in L(y), then the sequence xk generated by

this procedure will converge to a stationary point x in L(y).

PROOF. Since all points of the sequence xk are located in S and since S is

convex, the interval [xk, xk+1] is completely contained in S, for every k.

Suppose that there exists a k such that xk E Lx(y) and x10.1 Lx(y). It

follows that there exists an element Tc on the line segment [xk, xk.1.1] with

f(x) > y. Because, if there would not be such an element, then this line

segment would be contained in L(y) and since the line segment is clearly

path-connected (and therefore connected), it would follow from the

definition of a component, that xk and x10.1 belong to the same component of

L(y). However, if f(x) > y, then f(x) > f(xk) which contradicts (18). We

conclude that xk Lx(y) for every k. The sequence xk must converge to a

stationary point X. Since xk Lx(y) for every k and Lx(y) is closed, the

result is immediate.

For some local minimum x*, let y E R be the largest y for which the

interior of Lx*(y) contains x* as its only stationary point (because there
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are only a finite number of stationary points, this y really exists We

define the basin Bx* of x* as the interior of L (Y).x*

THEOREM 4. ([Dixon et al. 1975]) If a procedure that is strictly descent is

started from any point x in Bx*, then the sequence xk generated by this

procedure converges to x*, i.e. c Rx* for strictly descent procedures.

PROOF. For any x C Bx*, Lx*(f(x)) contains x* as its only stationary point.

Through Theorem 3 the result is now immediate.

We note that, although condition (18) cannot be verified

computationally a slight variation of it is more tractable. Let us define a

procedure satisfying (17) to be c-descent if the sequence converges to a

stationary point; if f(xk+1) < f(xk) for all k and moreover

f (xk + p ) < f( xk (i-1) = (20)

Results similar to Theorem 3 and 4 hold for e-descent procedures.

THEOREM 5. If, for some x E S and y f(x), there is no point xl with

x
1 L(y), x

1 L(y) which is within c-distance of an element Lx(y) (i.e.x
Lx(y) is not too close to another component of L(y)), then an c-descent

procedure started from a point in Lx(y) will converge to a stationary point
in L(y).

PROOF. The sequence xk generated by

point x. Suppose that there exists a

xk+1 L(y). Because the procedure

distance between Lx(y) and any other

c, the line segment [xk, xk.1.1] must

the procedure converges to a stationary

k such that xk E L (y) and

cannot leave S, xk.4.1 E L(y). Since the

component of L(y) is known to exceed

contain an interval of length c on

which the function values exceed y. At least one of the points xk + iepk

(i = 1,2,.. FF-Dwill be located on this interval, so that condition (20)

is not satisfied. Hence, xk E L
x
(y) for every k, and since Lx(y) is closed,

x L(y).
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For any local minimum x*, we define

c r
Bx* = ixeB

x*
I 3 x1 with x Bx* and lix—x1 ll < el,

y
e 

= inf f(x),
xEB

e
x*

IxEBx*I f( x) < ye

i.e. B * (e) is the subset of Bx* which consist of points that have ax 
smaller function value than any point in Bx* that is within e—distance of

the boundary of Bx*.

THEOREM 6. If a procedure that is e—descent is started from any point x in

Bx*(e), then the sequence xk generated by this procedure converges to x*.

PROOF. If Bx*(e) is empty, the theorem is clearly true. If Bx*(e) is not

empty, then it containts the local minimum x*. For any k, suppose that

xk B(c) and 
xk+1 

Bx*(e). Then there are two possibilities: either

xk+1 Bx* 
(and x10.1 Bx*(0), or xkil. B. The first possibility cannot

occur because it would imply that f(xk4.1) > f(xk). The second possibility

cannot occur, since the line segment [xk, xic4.1] would then contain an

interval of length e on which the function values exceed f(xk), in which

case (20) is not satisfied for all i. We conlude that xk B
x* 
(e) for all

k. Since x* is the only stationary point in the closure of Bx*(e) (x* is

the only stationary point Bx* and the closure of Bx*(e) is a subset of

Bx*), the procedure converges to x*.

As a final assumption, let us suppose that x, the ultimate point of

convergence for P, is actually a local minimum of f. This assumption seems

to be an innocent one from an empirical point of view [Wolfe 1969, 1971]

if P should get stuck in a saddlepoint, we could always leave it after a

suitable pertubation.

let us now return to the global framework mentioned above and assume

that P is strictly descent. If the subset selected in Step 2 equals the set

of points which are added to the sample in Step 1, then the global
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framework reduces to Multistart. It is not efficient, however, to apply P

to every sample point. Obviously, it would be preferable to apply P to a

sample point if and only if this point is located in a region of attraction

belonging to a minimum that has not yet been found. The set of minima found

would then equal the set of minima found by Multistart, but it would

probably be obtained at less costs. The purpose of our research has been to

develop a method in which P is started exactly once in every region of

attraction in which points have been sampled.

We will first examine the case in which P is only applied to sample

points with relatively small function value. More precisely, we will

consider procedures that start by temporarily removing a prespecified

fraction 1-y of the sample points (0 < y < 1), whose function values are

relatively high. The remaining points form the reduced sample. If 57 1) is

the i-th smallest function value in a sample of size kN (obtained after k

iterations of the global framework), then all elements of the reduced
(sample are element of L(y 1 ) = {xcSI f(x) < 
yykN)
i' }. (Let us note here

that, to facilitate the notation, we shall ignore various necessary integer

round-ups and round-downs as in the case of ykN; they do not affect the

analysis at all.) Again it is not very efficient to actually apply P to

every reduced sample point, i.e. every point in L(y
(ykN)

). Instead, we
will seek for methods in which P is started exactly once in every region of
attraction which contains a reduced sample point.

We now examine the consequences of this approach for the stopping rule
in Step 3, which decides whether or not the search for the global minimum
has been sufficiently thorough. Recall that the Bayesian stopping rules
described in Section 2 only depend on the number of points sampled and the

number of minima that are obtained by starting local searches at these

points. Therefore, they are not only applicable to Multistart, but to every

method which, given a sample, results in the same set of minima as

Multistart. In particular, these stopping rules are applicable to the

methods in which exactly one local search is started in every region of

attraction in which points have been sampled.

For methods in which P is applied exactly once in every region of

attraction containing at least one reduced sample point, the situation is

more complicated. To analyze this situation, for any y with 0 < y < 1 let
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y E R be such that

(PCY -
Y

m({xES f(x) < yy}

m(S) - 1, (21)

i.e., y is the y -quantile of f. Since (I) is a monotonically increasing

continuous function, there exists a unique value y satisfying (21). If we

would apply P to every sample point in L(yi), then the Bayesian analysis,

as described in Section 2, can still be applied. We can simply ignore the

sample points whose function value exceeds y and apply the Bayesian

analysis to the remaining points. The analysis can then be adapted to this

new situation in a trivial way.

However, since we do not know y in advance we cannot apply P to the

sample points in L(y ). Instead, we aim for methods in which P is applied
Y 

to points in the level set L(y
(ykN)
k 

), such that all minima whose regions of

attraction contain a reduced sample point are found. Hence the level above

which the sample points are ignored depends on the sample. Therefore, the

cell probabilities are no longer constant over time and the Bayesian

analysis is formally no longer applicable. However, it is known that

y(ykN) does converge to y with probability 1 [Bahadur 19661. Hence,
(ykN)

may apply the adapted stopping rules as though y does not vary with k.

we

Unfortunately, we will not succeed entirely in our search for a method

in which P is started exactly once in every region of attraction which

contains a sample point, respectively a reduced sample point. In

particular, we will not be able to exclude the possibility that P is not

applied to a (reduced) sample point, although it would have led to a local

minimum which has not yet been found. However, we apply the stopping rules

as though this possibility does not exist, and will justify our use of

these rules by showing that the probability that an error of the above type

is made goes to 0 when the sample size increases.

Now, given kN sample points that have been drawn from a uniform

distribution over S and given a set of stationary points X', we must

determine a subset of the sample points to which P will be applied. To do

so we will use the reduced sample to estimate the components

of L(y
(ykN)

). A local search is then started once in each component that

does not contain an element of X. The rationale of this approach is that

if P, is applied to an element of a component of L(y
(ykN)

), then P is known
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to converge to a local minimum in that component (see Theorem 3

How can the components of L(
Y
(ykN)
k 

) be identified? Intuitively, as a

result of the removal of a fraction of the points with higher function

values, groups of points that are relatively close to each other are

created, each of which corresponds to such a component. The natural way to

identify these groups (and through them, the components) is to make use of

cluster analysis. However, there are several reasons not to use the

ordinary clustering methods. The main reason is that we have more

information about the problem than just the location and the function value

of the reduced sample points. This extra information includes the fact that

the reduced sample points are known to be a subset of a uniform sample and

the fact that the groups searched for correspond to the components of a

level set of a continuously differentiable function. Since this information

cannot be translated into measurable characteristics of the reduced sample

points, it must be ignored or used in a different way.

The methods which we will describe shortly can be viewed as standard

clustering techniques which have been adapted to our specific problem, and

all fit in the following framework. The clusters are created one by one,

and each cluster is initiated by a seed point. Selected points of the

reduced sample are added to the cluster until a termination criterion is

satisfied. Under conditions to be specified, the local search procedure is

started from a point in the cluster.

In the next three subsections, we will describe three methods that fit

in this framework, but differ in the rule by which they select the points

that are added to the cluster and in the corresponding termination

criterion. This difference is mainly due to the different ways in which the

methods exploit the fact that the reduced sample is known to be a subset of

the original sample of uniformly distributed points. The first two of these

methods already appeared in an earlier article [Boender et al. 1982] and

hence will be described only briefly. The analysis of their properties,

however, is new.



19

3.1. Density clustering

Analogously to Torn [TOrn 1976], we will let the clusters in this

approach correspond to the reduced sample points in a subset Ti,

i=0,1,2,..., of S of stepwise increasing volume, where To equals the seed

point of the ,cluster and Ti.4.1 D T., i=1,2,.... A cluster is terminated if

in a step no points are added to the cluster. However, we will adjust

Torn's method in three ways; the choice of the seed points, the shape of

the sets Ti and the increase in volume of these sets in each step.

We first turn to the choice of the seed points. As we will see later,

it is advantageous to choose a local minimum as the seed point. Therefore,

the local minima in X* are first used as seed points. If all local minima

known have been used as a seed point already, and there are still reduced

sample points that have to be clustered, then a local search is started in
.MINNED

the unclustered reduced sample point x with smallest function value. If the
IMMO

resulting local minimum x* was already known, then x is assigned to the

cluster that was initiated by x*, and again a local search is started from

the unclustered reduced sample point with smallest function value. If the

resulting local minimum was not yet known, then it is chosen as the next

seed point.

Let us now consider the shape of the sets Ti. Recall, that the cluster

is initiated by a local minimum x* and that it should correspond

to 
L* 

(y(ykN) 
). This suggests to let Ti correspond to L(y) for stepwisex k

increasing values of y. The actual sets L(y) may be hard to construct,

but since f is twice continuously differentiable, we can approximate these

sets by the level sets 11(y) around x* that are defined by the second order

approximation f of f around x*:

1-(x) = f(x*) + I( — x*) 11(x*)(x — x*). (22)

Hence, in step i we let Ti be the set {xES1 (x—x*)
T
H(x*)(x—x*) < r

for some ri to be determined below, with ri.". > ri, i=1,2,.... (An

approximation of H(x*) may be obtained, for example, as a byproduct of a

quasi—Newton local search procedure.)
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Finally, we derive the rate at which ri should increase with i so as

to ensure proper termination of a cluster. The probability that the cluster

is terminated in step i, equals the probability that the set

A = {xeSixET 
i1
} does not contain any reduced sample points. To-

determine this probability for the case that there are still unclustered
(ykN)reduced sample points in L *(yk ), i.e. the probability of erroneous

termination, we assume that the sets 1,**(y), with

properly approximated by ellipsoids, so that Ti

assumption,

equals the

f(X* ) y 
ytYkN) can

Given this

the probability of erroneous termination in step i, say ak,

probability that none of the kN original sample points is

located in Ai. Using (8) it follows that

(23)

be

Let us choose m(Ai), and hence ri, such that the probability ak that

the cluster is terminated incorrectly in step i, decreases with increasing

k. For instance, if, for some a > 0, m(Ai) = (m(S)alogkN)/kN, then

(1 _ alogkN)kN
ak kN ) (24)

It is not hard to verify that, for some constants cl, c2 > 0 we have that

Ji (1 --P'szili)k c k-a (25)2

for all k. Hence, if we terminate the cluster in step i if no unclustered

reduced sample point exists in Ti with

= n4(ir(1 +)2
detH(x*))

(s\ alogkN)
lin

` kN )
(26)

then the probability that the cluster is terminated incorrectly in step i,

decreases polynomially fast with increasing k.

A stepwise description of this method follows. Let we be the number of

local minima x* with f(x*) < y (ykN) which are known at the start of the

procedure.
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Density Clustering

.Stejo 1.. (Determine reduced sample) Determine the reduced sample by taking

the ykN points with the smallest function values. Set j := 1.

,Step 2. (Determine seed points) Set i := 1. If all reduced sample points

have been assigned to a cluster, stop.

If j < w, then choose the j—th local minimum in X, as the next seed

point. If j > w, then apply P to the unclustered reduced sample

point x with the smallest function value. If the resulting local
ANINI110

minimum x* is an element of X, then assign x to the cluster

initiated by x* and repeat step 2. If x* X , then add x* to X
*
,

set w := w+1 and let x* be the next seed point.

Step 3. (Form cluster) Add all unclustered reduced sample points which are

within distance ri of the seed point x* to 
the cluster initiated by

x*. If no point has been added to the cluster for this specific

value of ri, then set j:= j+1 and go to Step 2, else set i := i+1

and repeat Step 3.

Unfortunately, if the set L (y
(ykN)

) differs substantially from an
x* k

ellipsoid, then this influences both the probability that the cluster is

terminated incorrectly and the probability that the cluster is expanded

incorrectly, in an unpredictable way. To arrive at a satisfactory

clustering method, it is necessary that the shape of the resulting clusters

is not fixed. Intuitively the shape of the clusters should converge to the

shape of the actual sets L
x*
(y
(ykN)
k 
) with increasing k. A method which

satisfies this property is presented in the next subsection.

3.2. Single Linkage Clustering

In the adapted Single Linkage method, the clusters are formed

sequentially, and each cluster is again initiated by a seed point. After a

cluster C is initiated we find an unclustered point x such that

C) = min fix — x1 11
x
1
cC

(27)

is minimal. We add x to C and repeat until d(x,C) exceeds the critical

distance rk.
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Early implementations of Single Linkage and Density Clustering were

the subject of limited computational experiments. These experiments showed

that Single Linkage indeed approximates the sets L* (y°) morex k
accurately than Density Clustering. However, to prove rigorously the

superiority of Single Linkage it turns out that we must slightly adjust the

rule according to which the seed points are selected. The reason is that it

will turn out to be difficult to analyze Single Linkage in the regions near

the boundary of S and in neighbourhoods of the elements of X*. Therefore,

we will define the procedure so as never to start a local search in these

regions. This may imply that no local search is started from any point in a

certain cluster. This, however, is not a serious drawback if we first

redefine S in a slightly different way. For some T > 0, we let QT be the
set of points in S that are within distance T of a point on the boundary of
S, and we let S be the set of points in S which are not within distance T

of a point on the boundary of S, so that ST = T We assume that all

local minima of f occur in the interior of S,.

We will also have to give special treatment to the neighbourhoods of

the elements of X . For some fixed and small 0, let X be the set

{x€S1 fix—xi! < u, for any x E X }. Recall that we assumed that a positive
constant c can be specified, such that the distance between any two

stationary points exceeds c. Hence, we can choose u such that the distance

between any two stationary points exceeds 2u. We will now give a stepwise

description of the adjusted Single Linkage procedure.

Single Linkage

Step 1. (Determine reduced sample) Determine the reduced sample by taking

the ykN sample points with the smallest function values. Let XI be

the set of minima in X, let w be the number of elements of X1, and

set j := 1.

Step 2. (Determine seed points) If all reduced sample points have been

assigned to a cluster, stop.

If j < wr, then choose the j—th local minimum in X1 as the next seed

point; go to Step 3.

Determine the point x which has the smallest function value among
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the unclustered reduced sample points; x is the next seed point.
IMMO

If x E ST and if X E Xu, then apply P to x to find a local minimum

x*; add new stationary points encountered during this search

(possibly including x*) to X.

Step 3 (Form cluster) Initiate a cluster by the seed point which is

determined in Step 2. Add reduced sample points which are within

distance r of a point already in the cluster to the cluster, until

no more such points exist. Set j := j+1, and go to Step 2.

Let us now analyze Single Linkage, and determine an appropriate value

for the critical distance rk. This critical distance will be chosen to

depend on kN only so as to minimize the probabilities of two possible

failures of the method: the probability that a local search is started,

although the resulting minimum is known already, and the probability that

no local search is started in a component of L(y 1 ) which contains

reduced sample points.

Let us first consider the probability that P is applied incorrectly to

some reduced sample point. For a suitable choice of rk, we will prove that

the probability that a local search is started, let alone started

incorrectly, tends to 0 with increasing k. For this purpose we divide S

into three subsets. Let Yu be the set of elements in S that are within

distance u of a stationary point of f. We already defined QT to be the set
of elements in S that are within distance T of a point on the boundary of

S. Finally we let M
t,U Consist of the elements in S that do not belong to

QT or Yu. Note that we defined QT and Yu as open sets, so that M isT,U
closed and therefore compact. We will start our analysis by considering the

elements of M ; the large majority of the reduced sample points belongsT,U
to this set. We wish to determine the probability that P is applied to a

reduced sample pointxwithx=aEM T, . Let Ba,r be the set- U 
{xESI < r}. Suppose that 

Ba'rk 
contains a sample point z with

f(z) < f(a). Clearly, z then belongs to the reduced sample, and if z is

assigned to a cluster then a will be assigned to that cluster too.

Moreover, it is easy to check that we will not apply, the local search

procedure to a before z has been assigned to a cluster. Thus, the

probability that a local search is started in a reduced sample point

x = a.E M T,U, is certainly smaller than the probability that there is no
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sample point z in Ba,rk with f(z) < f(a). To calculate this latter

probability, we need the following theorem.

THEOREM 7. For any T > 0 and u > 0 let a be an element of M , let
T,u

B = {xeSI < r}, and let A = {x €S1 < r and f(x) < f(a)).a,r a r
Then, uniformly in a,

m(Aa r)
lim   > 1.m(B
0 a,r

PROOF. Consider the set

(28)

a,r = 
{xESI < r and g(a) (x-a) + 4cr2 < 01, (29)

where c is a positive constant which is greater than the supremum over S of

the eigenvalues of H(x). From the Taylor expansion of f around a, we know

that for all x€S, with < r, there exists a 0, 0 < 0 < 1, such that

Hence, if x E

) - f(a) = g(a)
T
(x-a) + f(x-a)

T
H(a+6(x-a))(x-a)

< g(a)T(x-a) + fc(x-a)T(x-a)

<g( ) -a) + icr2 (30)

then x Aa,r. Thus, we have proved that Da,r Aa r.a,r'

Now consider an orthogonal matrix U (so that UT

U
T
e -

Hg(a)11

= I), for which

(31)

where e
T 
is the n-dimensional vector (1,0,...,0). Obviously, such a matrix1

U always exists, because condition (31) only fixes the first row of U to be

equal to g(a)/Hg(a)II, the norm of which is 1.

We can now rewrite the set Da ,r as follows

{xES x-a)T 
U
T 
U(x-a) < r and g(a)

T
U
T
U(x-a + r

2
c < 0)D 

=a,r 
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= {xES (U(x-a)) U(x-a) < r and (Ug(a)) U(x-a) + fr2c < 01

= {xES (U(x-a)) U(x-a) < r and lig(a)ile U(x-a) + 4r2c < 01.

(32)

Hence, the matrix U defines a 1-1 correspondence between the elements of

Da ,r and the elements of

Ga, = {zERn I Hzll < r and Hg(a)ile z + r c < 01. (33)

Note that for r sufficiently small, all points x E Rtl  satisfying

< r are contained in S, because it follows from the definition

of M that this is certainly true if r < T. The transformation defined by
T,U

U does not change the distances between points and the angles between
TTvectors, because, for every x1,x2 E Rn, 4x2x2 = 417

T 
Ux2 = (Uxi)

T 
Ux2 = 4z2.

Moreover, m(D ) = m(Ga,r ), since the determinant of U is 1. Since, fora,r 
nr < T, Ba,r = {xER

n
I < r}, we obtain that m(B_ _) = r

n n/2 
4-7).

Since f is continuously differentiable, and M is compact, the minimum
TO/

of Hg(x)II over M exists. Let p be this minimum; p cannot be zeroT,U

because M does not contain any stationary point, so that p > 0. Hence,T,U

if the first coordinate of z, say z(1), is smaller than -fr2c/p, and

if Hz11 < r, then z E G
a,r
. Since the intersection of {zeRn I < r) with

the hyperplane z(1) = 0 is a (n-1) dimensional hyperball with measure
(n-1)f n-1
7 r /1'0 it follows that

n n/2 n-1 f(n-1) 21 r n  r TT crm(Ga r 
n-1\ 2pro. 4- ro.

2 2 /

Thus,
m(A ) m(D 

m(G r)a,r) _ 
>

a,r lim 

"a2r1

lim m(B ) r4,0 m(Bari) r+0 mr4-0 a'r

n+1 
1 cr 

f(n-1) ro +

r4, 0 2pr(1 =
2

(34)

(35)

Since the above reasoning is independent of the choice of a E M the

result is now immediate.
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Actually, the limit considered in (28) is precisely equal to 4. This

can be easily seen from the fact that we can still prove the Theorem (using

a similar argument) if we change the definition of Aa,r into

A = {xES1 fix-all < r and f(x) > f(a)1.a,r
Theorem 7 is valid for any positive T and positive u, so that we can

choose these numbers as small as we like. Note, that if 0 = 0, but a is not

a stationary point, then the limit in (28) still equals 1. However, the

convergence is not uniform in a because fig(a)H can become arbitrarily

small.

Let us now return to the probability that, for some reduced sample

point x, withx=aEM , there existsasample pointzinB 
a,rk 

with
T,U 

f(z) < f(a), which bounds the probability that a local search is started in

a. To calculate this probability, let us first consider the simpler case

wherexis an arbitrary sample point, withx=acM . The remaining kN-1

sample points are still distributed according to a uniform distribution

over S and hence, the probability that none of these kN-1 uniform points is

in Aa'rk, i.e. is within distance rk of a and has a smaller function value

than a, equals (cf. (8))

kN-1- m(A Vm(S)) •a,rk (36)

Moreover, provided that rk tends to 0 with increasing k, we know from

Theorem 7 that, for any a with 0 < a < i there exists a 1(0 such that for
k ko

m(A
a,r 
)
k a

m(B ) "
a
'

r
k

(37)

Hence, for any sample pointx=aEMT,u , the 
probability that there is no

sample point z in B
a r with f(z) < f(a) is smaller than

(1 - 0m03 
kvm(s))kN-1

a r
(38)
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(for sufficiently large k).

Analogously to Subsection 3.1, we can choose rk in such a way that

probability (38) is constant or decreases with k. For instance for some

a > 0, we can choose

r
k 
= 1/ntr(1+-122-U(S 

)alcakN 
(39)

so that, for k large enough, m(A ) > (aalogkN)/kN. Hence, for thisa,rt, --
specific choice of rk we proved that the probability that for some sample

pointx=acM , there is no sample pointzin B with f(z) < f(a) isT,U a ——(3a 'r 
k0(k ) (note that we can omit N in all 0(.) terms since N is a constant).

Since the number of sample points in iteration k is kN, we may conclude

that the probability that there exists a sample point in MT u which has no

other sample point within distance rk with smaller function value

is 0(k1-0a,). It follows that the probability that there exists a reduced

sample point in MT 
which has no other sample point within distance rk,U

1-06with smaller function value must also be 0(k ). Hence, we proved that,

for any a < 4, the probability that a local search is started from any
element of M 

T,U
1is 0(k

1—aa). Obviously, if a > 2, then we can
1 choose --< < --

2' 
so that the probability that a local search is starteda 

from any element of M
T 
_ " in iteration k tends to 0 with increasing k.,U

Moreover, if we let be the number of local searches started from--k
points in M in iteration k, and if we choose a > 4, then it is easy toT,U
show that

CO

E PrUk > 0] < ccs. (40)
k=1

Hence, it follows from the Borel—Cantelli Lemma that even if the sampling

and clustering continues forever, then the total number of local searches

ever started in M
T,u 

is finite with probability 1.

We now turn to the probability that a local search is started in

QT and Yu. It follows from the description of Single Linkage that no local
search will ever bestarted in Q . To analyze the situation in Yu we need

one more assumption: we assume that if we apply P to a point which is

within distance U of a stationary point X, then we will recognize Tc as such

and add it to X
* 
(if necessary). Because we can choose x) as small as we
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want, this assumption is reasonable. Hence, we start P at most once in the

neighbourhood of any stationary point. Since the number of stationary
points is finite, we may conclude that the probability that P is applied to

a point in Yu tends to 0 with increasing k

Thus, we proved the following theorem.

THEOREM 8. If the critical distance rk of Single Linkage is determined by
(39) with a > 2, then the probability that a local search is started by
Single Linkage in iteration k tends to 0 with increasing k. If a > 4, then,
even if the sampling continues forever, the total number of local searches
ever started by Single Linkage is finite with probability 1.

We will now consider the second possible failure of Single Linkage,
i.e. the possibility that no local minimum is found in a component of

(ykN)
L(y ), although this component contains a sample point. We shall prove
that with a probability increasing to 1, such a failure will not occur. In
analyzing this probability, we again encounter the difficulty that the

(ykN)components of L(y
k 

) depend on the specific value of the random
variable y(ykN). As before we therefore focus on the components of L(y ).-4c

To examine the probability that no local minimum is found in a
component of L(yy), say La(yy), although a sample point is contained
in L 

a 
(y 

y
) we will first prove some general results.

Roughly speaking, these results will show that if xi E La(y,) and
x2 c L(yy)\La(yy), then the components of 

L(yk(ykN) 
) containing xl and x2

respectively are sufficiently far apart. The fact that those components
have been defined to be closed sets will play an important role in the
proofs. For any y E R and any a E L(y) let V(y) be the set of elements in
L(y) which are not contained in La(y). Furthermore, let the distance
between two subsets El and E2 of the 0, say d(E1,E2), be defined as the
infimum of the distances between any element of El and any element of E2.

THEOREM 9. For all y E R, there exists a 5 > 0 such that for all
a€ L(Y), d(La(Y),V (Y)) > S.
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PROOF. Since every component of L(y) contains a stationary point (see

Theorem 3), L(y) only consists of a finite number of components. Hence,

V (y) is the union of a finite number of components and is therefore closeda

It follows from the definition of La(y) and V(y) that La(Y) n V(y) = 0.

If Va(y) = 0, then the theorem is trivially true so that we may assume

that V(y) # 4.
The remaining part of the proof is by contradiction; suppose that

d(La(y),Va(y)) = 0. Then there exist a sequence ai in La(y) and a

sequence Oi in V(y) with Hafaill <-k-,i = 1,2,... . Since both La(y) and
V(y) are bounded (by S), both sequences contain a convergent subsequence,

1
ai(j) 

and ai(j) such that Ha
O) 

—10)a H 
<JO) 

for every positive integer
J -- 

j, and

lima

j''

a, lim 
Oi(j)

P"'
(41)

Since both La(y) and V (y) are closed, we have that a L(y) anda a

€ Va(Y) and tIa—II = 0. This, however, contradicts L(y) n V 
a(Y) = 0*

Thus, there exist a 6a such that d(La(y),Va(y)) > 6a. Obviously, 6a

is equal for all a that belong to the same component of L(y). Since L(y)

only consists of a finite number of components, we can choose 6 independent

of a which completes the proof.

THEOREM 10. There exists an c > 0 and a 6 > 0 such that for any

y < y + e, for any a L(y 1) and for any minimum x* L(y) which does not

belong to La(yi), we have that d(La(y),Lx*(y)) > 6.

PROOF. If y = yy, then the result follows immediately from Theorem 9,

since L
x*

 (y) c V (y).
a

Now suppose that y < y . It follows from the definition of a component

that L(y) c L (y 
y 
) and that L (y) c L (y ). Hence, because of Theorem 9a a x* x* y

there exists a 6 > 0 such that1

d(La(y) Lx*(y)) La(y),L(y
y 
)) > d L (y),V )) 61.-- a a

(42)
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The interesting case arises when y > yy. Since f only has a finite

number of stationary points, there exists an el such that L(y.,i+el)

contains no more stationary points than L(y ). Hence, we may assume that

x* L(y ). Suppose that a and x* belong to the same component of

L(yy+ e) for any e > 0. Then, they also belong to the same component of

A = {xES1 f(x) < yy+ 4} for any positive integer i. It is easy to prove

that Ai and its components are open. Hence, if a and x* belong to the same

component of Ai, then there exists a path joining a and x*. Since a and x*

both belong to L(y ) and there exist a 
6, 

such
1 

that d(La(yy),Lx*(yi)) > 61, we have that, for every i, there must exist

an a E A
i 
for whichi 

1
< f( 1) < yy i,

d(cxi,va(yi))

d(a. L 
a 
(y 

y
)) > (43)

The sequence a contains a convergent subsequence a 
i(j) 

such that

lim
3+00 aJ() 

= a and f(a) = y1. This, however, contradicts (43). We may

conclude that there exists an e such that a and x* do not belong to the

same component of L(y + e). Since there are only a finite number of

components and a finite number of minima, we can choose e independent of a

and x*. By Theorem 9 it now follows that there exists a 62 (independent of

a and x*) such that d(La(y.,i+ e),Lx*(y.,i+ e)) > 62. Hence, if

y < y < y + e, then, for all a L(y ) and x* L(y), x* L (y 
y
), we haveY a 

proven that d(La(y),Lx*(y)) > 6. By choosing 6 = min{61 2} the result is
now immediate.

We now return to the probability that no local minimum is found by

Single Linkage in a component L (y 
y
) although there is a sample pointa 

in L (y 
y 
). We shall show first that L (y 

y
) must contain a local minimuma a 

which is in a sense conveniently located. The possibility that
L 
a 
(y 

y
) contains a number of local minima, only one of which may be

discovered, creates some extra difficulties in the reasoning that follows

below.

First, since L (yy) is compact, there must exist a point e E S which
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is the global minimum of f over L 
a 
(y 

y
), i.e. f(e) < f(x) for all

x L 
a 
(y 

y 
). (We assume that the global minimum of f over L (y 

y
) is unique;

a 
this, however, is not essential.) Since P cannot leave a component of a

level set in which it is started (Theorem 3), and since e has the smallest

function value in L (y 
y
), it follows that if P is started in e then ita 

stops in e as well. Hence, e is a local minimum of f over S, so that e is

in the interior of S1.

If f(e) = yy, then the sample point in La(yy) must equal the local

minimum e, so that a local minimum in L
a
(y

y
) has been found.

To analyze the usual situation that f(e) < y
Y, 

it is convenient to

prove the following theorem, which provides useful information about the

location of the local minimum e.

THEOREM 11. If, for any component L(y1) of gyy e is the unique global

minimum of f over L (y 
y 
), and if f(e) < y1, then there exists aa 

neighbourhood E of e satisfying:

E c

if x E E and if x E La(y )\E, then f ) < f(x2

(44)

(45)

if is any stationary point other than e, and if x E E,

then Hx —711 > u; (46)

E n

m(E) > 0

PROOF. Let Ye be the set of points which are within distance u of any

(47)

(48)

stationary point other than e, and let Zl= {X E La(yy) X E Yu u

If Zl = 0, then we define to be yy, else is the infimum of f over Z1.

Now let E be the set fx E L (y ) I f(x) <71. It is not hard to see that Ea
satisfies (44)—(48).

It follows from (48) and (8) that the probability that E contains a
(ykN) 

< ysample point tends to 1 with increasing k. Suppose that y + e,
y y
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for the e mentioned in Theorem 10 and suppose that E contains a reduced

sample point x (the probability that both events occur simultaneously tends

to 1 with increasing k). Let x be the seed point of the cluster to which x

is assigned. There are four possibilities:

X E E, x E L a(y 
y 
)\E, x E L(y1)\L(y1) or x f L(y ).a 

(i) If Tc E, then it follows from (46) and (47) that either the local

minimum e has been located already, or P is applied to x to find a minimum

in L (y ).
a y

(ii) If X E L 
a 
(y 

y
)\E, then f(x) > f(x) by (45). It follows from the

description of Single Linkage that a point x cannot be assigned to a seed
point x which is not a minimum, if f(x) > f(x). Hence, x must be a local

minimum in L (y ).a y
(iii) Suppose that x L(yy). Since all seed points are in L(yy c), and

since there is no local minimum x* with y < f(x*) < yy + e (see the proof
of Theorem 10), it follows that x is not a minimum. However, x cannot tie

assigned to a seed point Tc which is not a minimum if f(x) > f(x). Hence
MINIM

x cannot be outside L(yy), and this case cannot occur.

(iv) Suppose that L(yy)\La(yy). Obviously, the component Is(yy)

contains a minimum x*, since if P is applied to x, it converges to a

minimum in L-(y 
1
) by assumption. Hence, it follows from Theorem 10 thatx 

there is a 6 > 0, such that there is no point in La(yy) within distance 6

of any point in 1.47(y1). It follows that if the critical distance rk of
Single Linkage is smaller than 6, then x cannot be assigned to the cluster
initiated by x.

Thus, if rk tends to 0 with increasing k, and if E is the index of
the iteration in which a local minimum is found in a component L (y 

y
) which

a 
contains a sample point, then we have shown that the probability that E is
less than k tends to 1 with increasing k. Hence, for every e > 0 there
exists a Ito such that Pr [E < k] > 1-c, and we may conclude that E is.....
finite with probability 1.

THEOREM 12. If the critical distance rk of Single Linkage tends to 0 with

increasing k, then, in every component of L(y ) in which a point has been

sampled, a local minimum will be found by Single Linkage within a finite

number of iterations with probability 1.
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Note that we can omit the provision that the componen
t 
L
a
(y1) of

L(y1) must contain a sample point, if we assume that the measure of La

is positive. If no local minimum x* exists with f(x*) = y1, then this

latter assumption is satisfied for every component of L(y ).

3.3. Mode Analysis

Y

Density clustering and Single Linkage are based on very simple

properties of the uniform distribution. In Density Clustering, a cluster is

expanded if a certain region contains a reduced sample point and in Single

Linkage a reduced sample point is assigned to a cluster if it is within the

critical distance from a point which has already been assigned to the

cluster. In principle it should be possible to design superior methods by

using the information of more than two sample points simultaneously. The

mode analysis approach to clustering [Wishart 1969] is an example of an

approach where several points are used simultaneously to determine the

regions in which there is a high density of points to be clustered.

However, the method proposed in [Wishart 19691 is not suitable for our

purpose since it ignores much of the information available, like the fact

that the reduced sample points are a subset of the unform sample. The

technique proposed in [Spircu 1979] (based on [Parzen 1962]) allows one to

estimate the distribution from which the reduced sample points are drawn,

ignoring however that this distribution changes over time through its

dependence on L(y
(ykN)

. This difficulty can be overcome [Ruygrok 1982], but

the resulting method is cumbersome and inferior to the much simpler one

presented below.
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We shall describe a method in which S is partitioned into small
hypercubes or cells. We say that a cell A is full if it contains more than

1 m(A)kN 
2 m(S) (49)

•

reduced sample points (i.e. more than half the expected number of sample
points in A). If a cell is not full it is empty. We say that two cells are
neighbours, or ne4hbourin.s cells, if they contain elements which are
arbitrarily close to each other. We shall let a cluster correspond to a
connected subset of S which corresponds to a number of full cells. These
clusters can be found by applying a Single Linkage type algorithm to the
full cells, such that if two cells are neighbours, then they are assigned
to the same cluster.

A stepwise description follows below. (The sets QT,Yu and Xu are needed and
defined for the same reasons as in the previous subsection.)

Mode Analysis 

,Step 1.. (Determine reduced sample) Determine the reduced sample by taking
the ykN sample points with the smallest function values.

,Step 2. (Define cells) Divide S into v cells.
Step 3! (Determine full cells) For each cell, determine the number of

reduced sample points in the cell. If this number exceeds (49) then
the cell is full, else it is empty.

Step 4.. (Determine seed cell) If all full cells have been assigned to a
cluster, stop.

If an unclustered full cell exists which contains a minimum which
is in X, then this cell is the new seed cell; go to Step 5.
Determine the point x which has the smallest function value among
the reduced sample points which are in unclustered full cells. The
cell which contains x is the new seed cell.

*If x S and if x X
u, then apply P to x to find a local minimum

x*; add new stationary points encountered during this search
(possibly including x*) to X.

Ste; 5. (Form cluster) A cluster is initiated by the seed cell which is
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determined in Step 4.

Full cells which are a neighbour of a cell already in the cluster
are assigned to the cluster, until there are no more such cells. Go
to Step 4.

Since the properties of Mode Analysis do not really depend on v being
integer, we will, for the sake of analysis, assume that S is a hypercube
and that 7v is an integer so that S can be divided in v equal hypercubes.
For some a > 0, we choose v to be equal to kNgalogkN) so that each cell
has measure (m(S)alogkN)/kN.

Intuitively speaking, we can say that Mode Analysis and Single Linkage
will result in similar clusters and similar sets X, since the measure of
the points within the critical distance (39) of a given point equals the
measure of a cell. However, Mode Analysis seems somewhat less dependent on
the particular irregularities of the sample, because it considers a number
of sample points at the same time (alogkN in expectation).

It is not possible to prove the superiority of either of the two
methods rigorously. For instance, consider a one dimensional function, such
that L(y(ykN),it ) consists of two components. Let the distance between both
components be d and let rk equal (m(S)alogkN)/kN, i.e. the critical
distance of Single Linkage and the cell size of Mode Analysis. Let us
assume that the probability that a cell is full is high if the fraction of
the cell that intersects with L( y 1 ) exceeds 1, and that a cell is
probably empty if this fraction is smaller than 1. (We shall see later that
this is true if a is large enough.) Obviously, if d > 2rk, then both
methods will recognize both components as such, and if d < irk, then it is
likely that both methods will fail to detect both components. If
rk < d < 2rk, then Single Linkage always detects both components, whereas,
with small probability, Mode Analysis may fail. However, if Irk < d < rk,
then the probability that Single Linkage will assign all reduced sample
points to the same cluster is considerable, since this will happen if two
reduced sample points exist in the different components which are within
distance rk of each other. For Mode Analysis this probability is smaller,
since it is possible that the region between both components covers an
important part of one of the cells, in which case this cell is probably
empty.
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Clearly, the above arguments loose their relevance if k tends to

infinity, since the distance between the components does not tend to zero

with increasing k and rk does. For k large enough it turns out that Mode

Analysis and Single Linkage are very similar. Actually, it is possible to

adjust the analysis of Single Linkage such that it can be applied to Mode

Analysis to yield similar results. The most important adjustment of the

analysis is needed in Theorem 7, for which we will now given the

appropriate extension.

THEOREM 13. Let S be partitioned into equal hypercubes with edgelength rl.

For any T > 0 and ii > Os let a be an element of MT 
s and let C1 be the

cell which contains a. Then there exists a cell C2 (depending on r1) which

is a neighbour of C1 such that, uniformly in a

m({xeC
2 

I f(x) < f(a)l)
lim
r
1
+0 

m(C
2
)

(50)

PROOF. We will proof this theorem by adjusting the proof of Theorem 7;

notations used in this latter proof have the same meaning here. We can

choose r and r such that r = 2r1/n. Hence, we may assume that C and all1, 1
its neighbours are contained in Base We know that there exists a

transformation z = U(x—a) which maps Ba,r into {zdel Hz11 < r}s such that

the orthogonal matrix U satisfies (31) and such that the image of the

hypercube C1 is a hypercube with edgelength r1 containing the origin.

We first prove that there exists a cell C2 which is a neighbour of C1

of which the image (under the above transformation) is completely contained

{zeRni z(1)in A7 = < 0}. For this purposes note that each hypercube has a

vertex of which the first coordinate is smaller than or equal to the first

coordinate of any other member of the hypercube. Hence C1 has a vertex,

say als which has the property that, for all x Cls

e
T
1
U(a

1 
—a) < e

1 
U(x—a).

-- 
(51)

Since a E C1 and ellga—a) = Os it follows that the image of als U( 1—a) is

in A. Obviously, each vertex (in M ) is shared by 2n cells, and each of
Ts U

these cells can be characterized by the fact whether or not the i—th

coordinate of the elements in the cell is greater than the i—th coordinate



37

of this vertex (i=1,2,...,n). More formally, a cell which has al as a

vertex consists of elements x that can be written as

x= a + E X
1=1 

i
(52)

where ei is the i—th unit vector, and either —r1 < Xi < 0 or 0 < Xi < ri

for every i=1,2,...,n. Now consider a cell, say C22 whose elements satisfy

(52) where

Hence,

X1 < 0 if e
T
Ue > 0,._ 1

X > 0 if e Ue < 0.
i 1 i

e
1 
U(x—a) = e —a + E X

i
e
i

i=1

a1 —a)+ E A
i
e
T
Ue

i=1

(53)

10. (54)

It follows that C2 is completely contained in A. It is easy to show that

C2 is not C1 since, for all x E C2 
we have that

e
T
U(x—a) < e U(a

1 
—a)1 1 '

(55)

while for the elements of C1 the reverse is true. Thus, we have proved that

C2 is a neighbour of C1 which is completely contained in A.

We know from the proof of Theorem 7 that there exist positive

constants c and p, such that the elements whose images are in

1 
{z€01 11z11 < r and z(1) < — 

r2ci
2 p

have a function value smaller than f(a). Since the image of C2 is a

hypercube with edgelength rl, which is completely contained

in {zeRn I lizil < r and z(1) < 0}, simple calculations yield

(56)
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Thus,

2
m({xEC f(x) < f(a))) > rl- (r 

n-1 r c
- • (57)

m({x€C I f(x) < f(a)1)
lim  
r140 

m(C2)

2 1(n-1)n n-1 r cn r - r •
lim  1 1 2p 
r 
1 
+0 r

n

2r cn
i(n+1)

= lim 1   =1. (58)
r140

(Recall that r = 2r
1 
in.) Since the above arguments are independent of a,

the result is now immediate.

To determine the probability that a local search is started by Mode

Analysis, we divide S in the three sets Q, Y
U 
and M again. As in Single

T  TO)
Linkage, no local search is ever started in Q , and, from our earlier

assumption, for any stationary point, only one local search can be started

within distance u of this point.

Now let us consider the probability that P is applied to a reduced

sample pointx=aEM . Obviously, Mode Analysis will not startPfrom aT,UWIMP

point a if the cell containing a has a neighbour which is full and contains

a sample point with a function value smaller than f(a). To determine the

probability of the above event, let us first consider the simpler case

where a is an arbitrary sample point in M .
T,U

Let C1 be the cell in which a is located. Obviously, the remaining

kN-1 sample points are still distributed according to a uniform
1distribution over S. From Theorem 13 we know, that for any 1- < a < 1, there

exists a ko such that if k > ko, then there exists a neighbour C2 of C1

with

111({xEC21 f(x) < f(a)1) a.
m(C

2
) (59)

1Since m(C2) = (m(S)alogkN)/kN, the probability that less than -2-alogkN of

the kN-1 sample points are in {xEC21 f(x) < f(a))1 is smaller than
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1=1

lalogkN-1
(k -1),(3alogkN)

kN
1=0

aalogkN kN-i-1

kN )

Obviously, for k large enough (60) is smaller than

falogkN
E 2(kN)(aalogkN

) (1 
aalogkN\kN-i

i kN kN

(60)

61)

Using Chernoff's inequality [Erdos & Spencer 1974], it follows that we can

chose such that (61) is 0(k-(//10). Hence, for an arbitrary sample point a

in M , we proved that the probability that the cell containing a has no
T U

neighbour with more than ialogkN sample points with a function value

smaller than f(a) is 0(k-a/1°). (Of course, this is not the sharpest

possible bound, but it suffices for our purpose.) Since the number of

sample points in iteration k is kN, the probability that there exists a

sample point a in M
T 
, such that the cell containing a has no neighbour
U

with more than falogkN sample points with a function value smaller than

f(a) is 0(k 10). l-a/ It is not difficult to verify that the same statements

are true with respect to the reduced sample. Hence, if a > 10, then the

probability that a local search is started by Mode Analysis in iteration k

tends to 0 with increasing k. As in Single Linkage, we can use the Borel-

Cantelli Lemma to prove the following analagon of Theorem 8.

THEOREM 14. If the number of cells in Mode Analysis is kNgalogkN) with

a > 10, then the probability that a local search is started by Mode

Analysis in iteration k tends to 0 with increasing k. If a > 20, then, even

if the sampling continues forever, the total number of local searches

started by Mode Analysis is finite with probability 1.

Let us now consider the second possible failure of Mode Analysis, I.e.

the possibility that no local minimum is found in a component La(y1)

although a sample point exists in La(y1). The analysis of this possibility

is similar to the analysis of the corresponding possibility for Single

Linkage. Ignoring details, we just state the final result.
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THEOREM 15. If the number of cells in Mode Analysis is kNgalogkN) with

a > 0, then, in every component L(571) in which a point has been sampled,

local minimum will be found by Mode Analysis within a finite number of

iterations with probability 1.

4. CONCLUDING REMARKS.

The methods that have been described in the three previous subsections

share one major deficiency. Although we know that a region of attraction

cannot intersect with two different components of a level set, it is

possible that a component of L(y1 0) contains more than one region of

attraction. Since only one local search is started in each cluster, it is

therefore possible that a local minimum may not be found although its

region of attraction contains a reduced sample point. In this section we

briefly consider three possible remedies to overcome this problem.

A first remedy is to replace every reduced sample point x by another
point which is the result of a steepest descent step started in x, i.e. a

one dimensional search from x in the direction of the negative gradient in
x. The clustering procedure can then be applied to the resulting

transformed sample as though it was the reduced sample [Boender et al.
1982]. From a theoretical point of view, however, the transformed sample
has the disadvantage that its elements are no longer a subset of the
original uniform sample. Thus, the analysis of the clustering methods that
has been described in the previous subsections is no longer valid.

A second remedy is based on the observation that the negative gradient
at a point which belongs to the region of attraction of a minimum x*, will

generally have a component in the direction of x*. The methods described in

the foregoing subsections can be improved by inspecting the gradient at a

point before assigning it to a cluster. More precisely, if a cluster is
initiated by a seed point x (usually a local minimum), we then approximate

the derivative of f in x in the direction of x by

f(x-i-h(x--x))—f(x
(62)
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for small h, and we reject x for the cluster if this value is positive. In

the case of Mode Analysis, we could inspect the gradient at the reduced

sample point with the smallest function value in a cell before assigning

the cell to the cluster. Although this gradient criterium can be incorrect

and may affect the methods in an unpredictable way, it turns out to be very

useful from a computational point of view. (see [Boender et al. 1982]).

A third possible remedy affects the methods even more deeply. Since we

are only interested in the global minimum, we could reduce the sample even

further. If, for some y E (0,1), we would (re)define the reduced sample to

contain the (kN)Y sample points with the smallest function values, we could

prove much stronger (asymptotic) results. However, the statements are valid

only if all reduced sample points are arbitrary close to a global minimum.

Obviously, at that moment the problem has been solved a long time ago

already. Moreover, the analysis would not yield any insight into the way in
which the resulting methods would function before we arrive in the

asymptotic case.

We conclude that the idea of sample reduction and clustering gives
rise to interesting methods, but does not solve the problem satisfactorily
from a theoretical point of view. In particular we cannot always avoid that
a cluster contains several regions of attraction, so that a (local) minimum
may still be missed. In Part II of this paper we will deal with this

problem in a more fundamental way.
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