Skip to main content
Log in

A strongly polynomial algorithm for a concave production-transportation problem with a fixed number of nonlinear variables

  • Published:
Mathematical Programming Submit manuscript

Abstract

We show that the production-transportation problem involving an arbitrary fixed number of factories with concave production cost is solvable in strongly polynomial time. The algorithm is based on a parametric approach which takes full advantage of the specific structure of the problem: monotonicity of the objective function along certain directions, small proportion of nonlinear variables and combinatorial properties implied by transportation constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.L. Balinski, “The Hirsch conjecture for dual transportation polyhedra,” Collaborative paper, bf CP-83-9, IIASA, Laxenburg, Austria (1983).

    Google Scholar 

  2. M.S. Bazaraa and J.J. Jarvis,Linear Programming and Network Flows (Wiley, New York, 1977).

    MATH  Google Scholar 

  3. P.C. Chen and P. Hansen, “On-line and off-line vertex enumeration by adjacency lists,”Operations Research Letters 10 (1991) 403–409.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.A. Efroymson and T.R. Ray, “A branch and bound algorithm for plant location,”Operations Research 14 (1966) 361–368.

    Google Scholar 

  5. E. Feldman, F.A. Lehrer and T.L. Ray, “Warehouse location under continuous economies of scale,”Management Science 12 (1966) 670–684.

    Google Scholar 

  6. M. Florian and M. Klein, “Deterministic production planning with concave costs and capacity constraints”,Management Science 18 (1971) 12–20.

    MathSciNet  Google Scholar 

  7. G.M. Guisewite and P.M. Pardalos, “A polynomial time solvable concave network flow problem,”Networks 23 (1990) 143–147.

    MathSciNet  Google Scholar 

  8. G.M. Guisewite and P.M. Pardalos, “Minimum concave cost network flow problems: applications, complexity and algorithms,”Annals of Operations Research 25 (1990) 75–100.

    Article  MATH  MathSciNet  Google Scholar 

  9. S.L. Hakimi and C.C. Kuo, “On a general network location-production-allocation problem,”European Journal of Operations Research 55 (1991) 31–45.

    Article  MATH  Google Scholar 

  10. D.S. Hochbaum and J.G. Shantikumar, “Convex separable optimization is not much harder than linear optimization,”Journal of the Association for Computing Machinery 37 (1990) 343–362.

    Google Scholar 

  11. R. Horst and H. Tuy,Global Optimization (Springer, Berlin, 1990).

    MATH  Google Scholar 

  12. B.M. Khumawala and D.L. Kelly, “Warehouse location with concave costs,”INFOR 12 (1974) 55–65.

    Google Scholar 

  13. B. Klinz and H. Tuy, “Minimum concave cost network flow problems with a single nonlinear arc cost,” P.M. Pardalos and D.-Z. DuNetwork Optimization Problems, (World Scientific, Singapore, 1992) pp. 125–143.

    Google Scholar 

  14. H. Konno “Minimum concave cost production system: a further generalization of multiechelon model,”Mathematical Programming 41 (1988) 185–193.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Krarup and P.M. Pruzan, “The simple plant location problem: survey and synthesis,”European Journal of Operations Research 12 (1983) 36–81.

    Article  MATH  MathSciNet  Google Scholar 

  16. H.W. Lenstra Jr., “Integer programming with a fixed number of variables,”Mathematics of Operations Research 8 (1983) 538–548.

    MATH  MathSciNet  Google Scholar 

  17. L. Lovász and H.E. Scarf, “The generalized basis reduction algorithm,”Mathematics of Operations Research 17 (1992) 751–764.

    MATH  MathSciNet  Google Scholar 

  18. T.L. Magnanti and R.T. Wong, “Network design and transportation planning: models and algorithms,”Transportation Science 18 (1984) 1–55.

    Google Scholar 

  19. A.S. Nemirowsky and D.D. Yudin,Problem Complexity and Method Efficiency in Optimization (Wiley, New York, 1983).

    Google Scholar 

  20. P.M. Pardalos and S.A. Vavasis, “Quadratic programming with one negative eigenvalue is NP-hard,”Journal of Global optimization 1 (1991) 15–22.

    Article  MATH  MathSciNet  Google Scholar 

  21. P.M. Pardalos and S.A. Vavasis, “Open questions in complexity theory for nonlinear optimization,”Mathematical Programming 57 (1992) 337–339.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.F. Shapiro,Mathematical Programming Structures and Algorithms (Wiley, New York, 1979).

    MATH  Google Scholar 

  23. R.M. Soland, “Optimal facility location with concave costs,”Operations Research 22 (1974) 373–382.

    MATH  MathSciNet  Google Scholar 

  24. E. Tardos, “A strongly polynomial minimum cost circulation algorithm,”Combinatorica 5 (1985) 247–255.

    Article  MATH  MathSciNet  Google Scholar 

  25. T.V. Thieu, “Solving the lay-out planning problem with concave cost”, in:Essays in Nonlinear Analysis and Optimization (Institute of Mathematics, Hanoi, 1987) pp. 101–110.

    Google Scholar 

  26. H. Tuy, “Concave minimization under linear constraints with special structure,”Optimization 16 (1985) 335–352.

    MATH  MathSciNet  Google Scholar 

  27. H. Tuy, N.D. Dan and S. Ghannadan, “Strongly polynomial algorithms for certain concave minimization problems on networks,”Operations Research Letters, 14 (1993) 99–109.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand, “Strongly polynomial algorithm for a production-transportation problem with concave production costs,”Optimization 27 (1992) 205–228.

    Google Scholar 

  29. H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand, “Minimum concave cost network flow problems with a fixed number of nonlinear arc costs and sources,”Journal of Global Optimization 6 (1992) 135–151.

    Article  Google Scholar 

  30. H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand, “Strongly polynomial algorithm for two special minimum concave cost network flow problems,”Optimization 32 (1995) 23–43.

    MATH  MathSciNet  Google Scholar 

  31. H. Tuy and B.T. Tam, “An efficient solution method for rank two quasi-concave minimization problems,”Optimization 24 (1992) 43–56.

    MATH  MathSciNet  Google Scholar 

  32. H.M. Wagner and T.M. Whitin, “Dynamic version of the economic lot size model,”Management Science 5 (1959) 89–96.

    MathSciNet  Google Scholar 

  33. S.W. Wallace, “Decomposition of the requirement space of a transportation problem into polyhedral cones,”Mathematical Programming Study 28 (1986) 29–47.

    MATH  MathSciNet  Google Scholar 

  34. W.I. Zangwill, “A Backlogging Model and a multi-echelon model of a dynamic economic lot size production system—a network approach,”Management Science 15 (1969) 509–527.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuy, H., Ghannadan, S., Migdalas, A. et al. A strongly polynomial algorithm for a concave production-transportation problem with a fixed number of nonlinear variables. Mathematical Programming 72, 229–258 (1996). https://doi.org/10.1007/BF02592091

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592091

Keywords

Navigation