Skip to main content
Log in

{0, 1/2}-Chvátal-Gomory cuts

  • Published:
Mathematical Programming Submit manuscript

Abstract

Given the integer polyhedronP t := conv{x ∈ℤn:Axb}, whereA ∈ℤm × n andb ∈ℤm, aChvátal-Gomory (CG)cut is a valid inequality forP 1 of the type λτAx⩽⌊λτb⌋ for some λ∈ℝ m+ such that λτA∈ℤn . In this paper we study {0, 1/2}-CG cuts, arising for λ∈{0, 1/2}m. We show that the associated separation problem, {0, 1/2}-SEP, is equivalent to finding a minimum-weight member of a binary clutter. This implies that {0, 1/2}-SEP is NP-complete in the general case, but polynomially solvable whenA is related to the edge-path incidence matrix of a tree. We show that {0, 1/2}-SEP can be solved in polynomial time for a convenient relaxation of the systemAx<-b. This leads to an efficient separation algorithm for a subclass of {0, 1/2}-CG cuts, which often contains wide families of strong inequalities forP 1. Applications to the clique partitioning, asymmetric traveling salesman, plant location, acyclic subgraph and linear ordering polytopes are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Balas, “The asymmetric assignment problem and some new facets of the traveling salesman polytope on a directed graph”,SIAM Journal on Discrete Mathematics 2 (4) (1989) 425–451.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Camion, “Characterizations of totally unimodular matrices,”Proceedings of the American Mathematical Society 16 (1965) 1068–1073.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Chopra and M.R. Rao, “The partition problem”,Mathematical Programming 59 (1993) 87–115.

    Article  MathSciNet  Google Scholar 

  4. G. Cornuéjols, G.L., Nemhauser and L.A. Wolsey, “The uncapacitated facility location problem”, in: P.B. Mirchandani and R.L. Francis, eds.,Discrete Location Theory (Wiley, New York, 1990) pp. 119–171.

    Google Scholar 

  5. M. Deza, M. Grötschel and M. Laurent “Clique-web facets for multicut polytopes,”Mathematics of Operations Research 17 (4) (1992) 981–1000.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Edmonds, “Maximum matching and a polyhedron with 0.1-vertices,”Journal of Research of the National Bureau of Standards B. Mathematics and Mathematical Physics 69 (1965) 125–130.

    MATH  MathSciNet  Google Scholar 

  7. J. Edmonds and H.L. Johnson, “Matching: a well-solved class of integer linear programs,” in: R.K. Guy et al., eds.Combinatorial Structures and their Applications (Gordon and Breach, New York, 1970) pp. 89–92.

    Google Scholar 

  8. M. Fischetti and P. Toth, “A polyhedral approach for solving hard ATSP instances,” Working paper, University of Bologna (1994).

  9. M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, San Francisco, 1979).

    MATH  Google Scholar 

  10. A.M.H. Gerards and A. Schrijver, “Matrices with the Edmonds-Johnson property,”Combinatorica 6(4) (1986) 365–379.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Grötschel, M. Jünger and G. Reinelt, “A cutting plane algorithm for the linear ordering problem”,Operations Research 32 (1984) 1195–1220.

    MATH  MathSciNet  Google Scholar 

  12. M. Grötschel, M. Jünger and G. Reinelt, “On the acyclic subgraph polytope,”Mathematical Programming 33 (1985) 28–42.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Grötschel, M. Jünger and G. Reinelt, “Facets of the linear ordering polytope,”Mathematical Programming 33, (1985) 43–60.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization,”Combinatorica 1 (1981) 169–197.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Grötschel and W.R. Pulleyblank, “Weakly bipartite graphs and the max-cut problem,”Operations Research Letters 1 (1981) 23–27.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning polytope,”Mathematical Programming 47 (1990) 367–387.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Müller, “On the transitive acyclic subdigraph polytope,” in: G. Rinaldi and L.A. Wolsey, eds.,Proceedings of Third IPCO Conference (1993) pp. 463–477.

  18. G.L. Nemhauser and L.A. Wolsey,Integer and Combinatorial Optimization, Wiley, New York, (1988).

    MATH  Google Scholar 

  19. M.W. Padberg and M.R. Rao “Odd minimum cut-sets andb-matchings,”Mathematics of Operations Research 7 (1) (1982) 67–80.

    MATH  MathSciNet  Google Scholar 

  20. A. Schrijver,Theory of Linear and Integer Programming (Wiley, New York, 1986).

    MATH  Google Scholar 

  21. P.D. Seymour, “Decomposition of regular matroids,”Journal of Combinatorial Theory B 28 (1980) 305–359.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caprara, A., Fischetti, M. {0, 1/2}-Chvátal-Gomory cuts. Mathematical Programming 74, 221–235 (1996). https://doi.org/10.1007/BF02592196

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592196

Keywords

Navigation