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A Superquadratic Infeasible-Interior-Point Method
for Linear Complementarity Problems

Stephen Wright*and Yin Zhang!
February 8, 1994

Abstract

We consider a modification of a path-following infeasible-interior-point algorithm
described by Wright. In the new algorithm, we attempt to improve each new iterate by
reusing the coefficient matrix factors from the latest step. We show that the modified
algorithm has similar theoretical global convergence properties to the earlier algorithm,
while its asymptotic convergence rate can be made superquadratic by an appropriate
parameter choice. ’

1  Introduction

We describe an algorithm for solving the monotone linear complementarity problem (LCP),

in which we aim to find a vector pair (£, y) with
! :;"I.B-*-q, (I7y) _>..0~ ITy=0‘,' (1)

where ¢ € R™ and M is an n x n positive semidefinite matrix. The solution set to (1) is
denoted by S, while the set S¢ of strictly complementary solutions is defined as

S ={(z"y") € S|z"+y" >0}

Our algorithm generates positive, not necessarily feasible iterates (z*,y*) and includes the
infeasible-interior-point algorithm of Wright [10] (which is in turn based on earlier work of
Zhang [12] and Wright [8]) as a special case. As in [10], the algorithm extends immediately
to mixed monotone LCP with few complications.
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To motivate our method, we consider the following locally convergent algorithm for solv-
ing the system of nonlinear equations

F(z)=0,

where F : RY — R" is continuously differentiable.

Choose 7 € (0,1), 1 >0, 2% € RY: Set k « 0;

loop: N
compute d* = =V F(z*) 1 F(2%); z « zF + d¥;
for :=0,1,---,/ (improvement loop)
compute d = -V F(z*)"1 F(z);
it [[FE+d) < iF)
then z —z+d
else z¥*! « 7 k — k + 1; go to loop;
end for
2"l 20 k — k+ 1; go to loop.

On each iteration, this method takes a single Newton step and follows it up with a number
of Newton-like steps calculated with the old Jacobian V F(z¥). Simple analysis shows that if
z* is an isolated solution to the system F(z) = 0 with VF(z*) nonsingular, and if ||2° — z*||
" is small enough, then {z*} converges to z*. Moreover, the inner loop (with iteration index
1) eventually executes for all [ iterations before control passes back to the main loop and,
assuming that VF(z) is Lipschitz continuous at z*, the convergence has Q-order I + 2 (see,
for example, [6]). Note that for each value of k, the Jacobian VF(z*) is evaluated and
factored only once and, in many contexts, the steps d calculated in the improvement loop
are not expensive to compute.

Our algorithm, which we describe in Section 2, is identical to tha,t of [10] in that it takes
steps of two types — safe steps, which ensure global convergence, and fast steps, which ensure
fast local convergence. As in our model algorithm above, each step is followed by an attempt
to improve the new iterate without recomputing and refactoring the main coefficient matrix.
The inner loop terminates when it fails to make significant progress, or after [ iterations,
whichever comes first.

The global convergence properties of the algorithm are at least as good as the algorithm
of [10] in which no attempt at improvement is made. The global convergence and complexity
analysis is identical to [10]. We state the relevant results, omitting most of the details, in
Section 3. In Section 4, we prove some technical results about the steps computed within the
inner improvement loop, and relate them to steps computed with an exact Jacobian. Our
main local convergence result is proved in Section 5. We include some preliminary numerical
results in Section 6.

[n the remainder of the paper, we use R’ to denote the nonnegative orthant in R™.
Subscripts on matrices and vectors indicate components, while superscripts on matrices and
vectors and subscripts on scalars denote iteration numbers (usually k).
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2 The Algorithm

To describe the step between successive iterates, we define for any vector pair (z,y) €
R% x R% the following quantities:

p=zxTy/n, r=y— Mz —gq, e=(1,1,---,1)7,

and, for any vector x € R,
h X = diag(z) = diag(z1, T2, -, Zn).
When (z,y) = (z*,y*) (that is, the k-th iterate of the algorithm), we use 7%, u, and X* to
denote r, u, and X, respectively.
During the &-th iteration of the main loop, each search direction (u,v) and step length
& is calculated as follows.

Given (x,y) >0, ¥ € (0,1), B €[0,1), & € [0, 1), solve

M -1 ul r _ %)
Yk x* v | | =XYe+ope |’ (
Set
¢ = arg 1;1[3)11_] ple) £ (z + cu)T (y + av)/n, (3)

where & is the largest number in [0, 1] such that the following inequalities are satisfied
for all o € [0, &}:

(r+au)(y+av) > (1-B)1—a)Ty, ifr#0 (4a)
(2, + ou;)(y; + av;) = (/) z+oun)(y+ov), j=1,--,n (4b)

The inequality (4b) ensures that the componentwise products x;y; approach zero at ap-
proximately the same rate. They stay in a loosely defined neighborhood of the central path,
where z;y; = p for all = 1,---,n — hence the term “path-following.” The inequality (4a)
ensures that when the current point is infeasible, the decrease in infeasibility ||7|| on the
current step is at least as great as the decrease in the complementarity gap p, modulo a
factor of (1 — 3).

The basic form of our algorithm, given below, is the same as the one described in Wright
[10], except for the addition of the improve procedure.




Given :/ = (07 %)’ Ymin and Tmax with 0 < Ymin < Ymax S %? o€ (0‘ ]3)7
p € (0,%), and (x°,y°) with 23y? > Ymaxpo > 0;

tO — 11 Yo < Ymax, k — O? Yy & l;

while yp > 0
solve (2)-(4) with (z,y) = (z*,4*), 5 =0, B = 7%, ¥ = 7uin + 7*(Ymax — Yomin);
it (¢f +au)T(y* + av)/n < pus
then #j, — /?, te—ti+ 1,y <%
else solve (2)-(4) with (z,y) = (X, 3*), & € [5, 1],
B — 0,1 — te, vy — Y3
end if
g — &, 0 — 7, v — (1l — ), (z,y) — (zF, %) + an(u,v);
improve ((x,y),t,v.7, (%, y*));
tegr «— b Vkgr & Vs Yeg1 < 7, ($k+1’yk+l) = (JE, y), k—k+ I;
end while.

ot

=0,y =n;

We refer to the steps that are computed with & = 0 as fast steps, because they lead to
rapid local convergence, while the steps with & € [5, 1] are safe steps, because they ensure
global convergence. , '

The improve procedure, which reuses the coefficient matrix in (2) to improve the new
iterate, takes a combination of safe and fast steps, just like the main algorithm. The main
difference is that the procedure is terminated if an improvement in p of at least a factor of
T € (p, 1) is not achieved. The user supplies the parameter 7 and the nonnegative integer /,
where [ is the maximum number of steps that can be taken in improve.

»

improve ((z,y). t, .7, (z*, y"))
Given 7 € (p,1), 1 20,

for:=1,2,---,1
if # = 0 then return;
solve (2)”(4) with ¢ = 0, /9 = ;Yta ¥ = Ymin + '?t(')'max — Vet o
if (z + éu)T(y + av)/n < pu
then t —t+ 1,9 «7;
else solve (2)-(4) with & € [5, 3], B=07=m;
if (x + &u)T(y + av)/n > Ty then return;
end if '
v v(1 = &), (2,9) — (2,9) + &y, v);
end for.

In the special case / = 0, improve is vacuous and the algorithm reduces to the method
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of [10]. We refer the reader to that paper for the intuitive motivation behind the use of safe
and fast steps.

The inclusion of improve does not alter some of the fundamental properties of the
iteration sequence (z*, y*). We still have

r* = I/k'l'o (5)
and also the following result, which is similar to Lemma 3.1 of [9).

Lemma 2.1 Suppose that the initial point is infeasible, that is, 1 # 0. Then the positive
constant j3 defined by

(1-7%)

=3

/A=

k=1

18 such that

k
N alir
i 2 Bugpo = /3:: 0::/10, Vk > 0.
-
We also have the following result, which shows that the algorithm either terminates finitely
at a solution of (1) or else generates an infinite sequence {(x*, y*)} of strictly positive iterates.
The proof is a simple modification of {10, Lemma 3.2] and is omitted.

- Lemma 2.2 For all iterates generated by the algorithm, we have either (z*,y*) > 0 or else
pi = 0. :

We assume throughout the remainder of the paper that finite termination does not occur,
that is, all iterates (¥, y*) and all the intermediate points (z,y) generated in the improve
procedure are strictly positive.

3 Global Convergence -

The analysis of global convergence and polynomial complexity is nearly identical to that of
(10, Section 3]. We need only note that (5) still applies and that all iterates (z*, y*) satisfy
rj‘yf > Yminttks J = 1,---,n. The intermediate points generated by improve have the same
properties. The technical results from [10, Section 3] can therefore be applied to show that
nontrivial progress is made at each safe step. The presence of improve and the fast steps
cannot hinder (and very often speed) the convergence.

In this section we summarize the main results from {10, Section 3] and state the sole
assumption required for global convergence, which is as follows.

Assumption 1 S # 0.

Theorem 3.1 [f a safe step is taken at iteration k, then there is a constant w > 0 such that
the step length oy has

1
w

ax 2




If the initial point (£° y°) is chosen as

(2% 9°) = (&se,€pe), | (6)
where

€z 2 |27l o &y 2 Hy*”co, & 2 ltalico, €y 2 ”Me“oofx = ”M‘Bonom (7)
for some (7, y%) € S, then w = O(n?).

Proof. See [10:’ Lemma 3.4, Theorem 3.5], where a different definition of w is used. [ |
The main global convergence result is as follows.

Theorem 3.2 The complementarity gap pi converges geometrically to zero.

Proof. Asin Wright {10, Theorem 3.6], we can show that if a safe step is taken at iteration
k, we have

; 1
(% + ) (o + o)/ < (1= =) i,

while if a fast step is taken, we have
(=" + cxu) (v* + cwv)/n < ppe.
Since the complementarity gap may be decreased further by improve, we have ppy <
(z* + u)T (¥* + arv)/n and therefore
1 -
P ] Hk,s

Pes1 < max (l -
4w

from which the result follows. , : |
Finally, we state the polynomial complexity result.

Theorem 3.3 [10, Corollary 3.7] Let ¢ > 0 be given. Suppose that the starting point is
defined by (6). (7), where po = £.€, < 1/€™ for some constant 7 > 0 independent of n. Then
there is an integer K, with

K, = O(n*log(1/¢))
such that pu, < e for all k > K, .

4 Technical Results

[n the remainder of the paper, we turn our attention to the latter stages of the algorithm.
We show that the algorithm eventually takes only fast steps (that is, the then branch of the
main conditional statement is executed). Moreover, the improve routine eveutually takes
fast steps on all | of its iterations, so that a total of I + | fast steps are taken for each
factorization of the coefficient matrix in (2).




In this section, we prove some results about the steps generated in this fast phase of the
algorithm. In particular, we look at the effects of the inexact coefficient matrix in (2) on the
steps calculated within improve.

We start by defining the two assumptions for the local convergence analysis, which will
be implicitly assumed to hold throughout the remainder of the paper.

Assumption 2 S°¢ # 0.
Assumption 3 § is bounded.

For monotone LCP, a sufficient condition for Assumption 3 is the existence of a strictly
feasible pair (Z,§) such that § = Mz + ¢, (Z,7) > 0. This can be seen from the fact that for
any (z*,y") €S

(2" =) (y" = §) = (=" = 5)"M(2" - %) 2 0,

implying
Ty + T2 < 73,

By choosing any particular strictly complementary solution (z*,y*), we can define index
sets B and N by
B={jlz;>0}, N={jly>0}.

, It is well known that the global convergence of the algorithm guarantees that the iteration-
. sequence {(z*,y*)} approaches the solution set S (see the error bound result of Mangasar-
ian [2], for example). Therefore, Assumption 3 implies the boundedness of the iteration
sequence {(z*,y*)}, as given in the following lemma.

Lemma 4.1 There is a positive constant Cy such that ||(z*,y*)|| < C5 for all k > 0.

The next two results are simple modifications of results from Wright [10, Section 4].
Since we will apply these results to intermediate points genera.te({ by improve as well as to
the main iterates (z*,y*), we state them in a more general form than in {10]. The proofs
are, however, not affected. Boundedness of the iteration sequence is not necessary for either
result, and neither is Assumption 3. '

Lemma 4.2 ([10, Lenuna 4.1]) Let (x,y) > 0 be such that

1

r=y—-Mc—qg= pr° for some v € [O, 5],

and p = xTy/n > ,@V,uo for this value of v. Then for some constant Cy > 0 we have

lenll < Cap, lysll < Cap. (8)

Lemma 4.3 Let (z,y) be any point with the properties defined in Lemma 4.2, and suppose
in addition that x;y; > Ymingt. Let (4, 0) be the scarch direction obtained by solving

] = [ —XYe+ ope ] ’ (())

S~}

el




where & € [0,1). Then there exists a positive constant Cs such that

lanll £ Csp, 9]l < Csp. (10)

If in addition & = 0, there is a constant Ce > 0 such that

laall < Coprs  Non|l < Cope. (11)
Proof. Follows from Lemma 4.2 and Theorem 4.5 of [10]. n

We now turn to the “approximate” fast steps computed by (2), where (z,y) is either
the current iterate (z*,y*) or some intermediate point generated in the call to improve at
iteration k. It is obvious from the algorithm definition that we have

p=zly/n < p (12)

We also assume that the point (i,y) is not too far from (z*,y*) in the sense that there is a
constant x > 1 independent of k such that

I(z* — =, y% =yl < xpx- (13)

The following result describes some characteristics of the actual search direction (u,v)
calculated from (2), partly in terms of the ezact search direction (%, 9) that satisfies (9).

Lemma 4.4 Let (z,y) be a vector pair satisfying the assumptions of Lemma 4.3 and, in
addition, the properties (12) and (13). Then if & = 0, there are positive constants Cr, Cy,
and Cq independent of k and y such that the following bounds are satisfied:

lu—afl < Crxp, v —3l < Crxp, (14)
I, )l < Caxpes - (15)
lan — unll < Coxppr,  lop — vBll < Coxpus. (16)

Proof. From (2), we have that

ERIIHNE A
M -1 B r
Bl

] - { —XYe+ (Y* - ;‘/)'a+(xk ~ X)3 ] '

while from (9), we have

<) R

and therefore

£

(18)

§ardl

[o]]




From (17) and (18) we obtain

M -1 U—u _ 0 19
vE X || 5-v | T | (Y =Va+ (Xt = X)5 |- (19)

NOW from (13) and Lemma 4.3, there is a constant Cy independent of k£ and x such that
I(Y* = Y)a + (X* = X)3|| < Crxpps. (20)

Defining ~
Dk — (Xk)—-ll?.(yk)l/'z’

and multiplying the lower block in the system (19) by (X*Y*)~1/2, we obtain
D*(a —u) + (D¥) V(5 — v) = (X*Y*)V2[(Y* - Y)a +(X’° — X)3]. (21)

Using the upper block of (19), we have (¥ — v) = M(@& — u), and so it follows from positive
semidefiniteness of M that
(@ —w)T(F—v) > 0. (22)

By taking the Euclidean norm of both sides of (21), and using (22), we have
1D*(@ — w)l? + (D*)7 (3 = o)I* < (X*YH) 22NV = Yz + (X5 - X)a|l%,
Therefore

1D* (& = w)]
(D5~ @ = vl

HXEYET2NYE = Ve + (X© = X)),
HXEYE) TR = Ve + (X* ~ X))l

IAN A

SR
Now since £y} > Yminik, we have

YT = max ()™ < v

Hun

Therefore from (20) we have

S = ~ ~1/2 1/2
“[)k(u - U)“ S (’7X711u:1n/ ﬂ#k/ o

Taking any j = 1,---,n, we find that

(y)/?

~ 5 =1f2 :
s~ )| < 1D*(@ — w)ll < Crxvaad“mini”.
J




Hence,

" 172 1/2
1L —— - J Y =1
4 —u| S max G CTX Vmin MHE
<  max ——-?-:-’Ii--——(-1 =L
= =l (ahyk)s2 TX Ymin HHE
03 = -1/ 1/2
S 1/2 p C’7X7m.in/ iulu’k/
/2 172
g TminMk
o~ < Cr

\/ﬁX#»

for C7 defined in an obvious way. We have proved the first inequality in (14); the proof of
the second inequality is similar.
For (16), we repeat the logic above to obtain for ¢ € N that

_ (‘E’i)llz ~ =12 12
la; —u;] < W(’7X7m}n/ uizy!
2

ok
€T -1/2  1/2

S (.c"yz)‘/l 77X7min Hig
Jv7

Capre =~ 12 172
S 172 1 2("7.}(711):"{ u,’"k/

/2, 1/

minMk

< O
= \/T—Z-X##k,

where Cy is defined appropriately. The bound for ||og — vg|| follows similarly.
To prove (15), we have from Lemma 4.3 and (14) that '

() < 1@ B + i = 0 = D)l < 2(Cs + Cali + 2Crxp < Caxh

where we have defined (s = 2(Cs + Cs + C7) and used the assumption that x > 1. [

We now state the main result of this section, in which we obtain an estimate for the step
length & along a (possibly approximate) fast step direction (u, v). The point (z, y) considered
in this theorem represents either the main iterate (x*,y*) itself or one of the intermediate
points generated by improve during iteration k. For the purpose of this result, we define
the following positive constants, all of which are independent of & and x:

»_710 = (Cg(Cs+ Cs) + C7(Cy + Cs)
Cio = 2(Cs5Cs+ Cio + C7Cs)
Cra = 200
(1 - '7)(711133: - 711:111)
Ciz = 2C3C + CyCr 4+ CF),
Cia = Ciu+ Cig/n.
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Theorem 4.5 Let (x,y) be a point that satisfies the assumptions of Lemma 4.4, and in

addition
. n
M S min (1, m) . (23)

Let t be a positive integer such that for v defined by

Y = Ymin + '7‘_1 (7max - "/min)

we have z;y; > ypu for j =1,---,n, and suppose for this value of t that

i Crax*EE < p. , (24)

—t —

Then if a fast step is attempted from the point (x,y) with

~

o= 07 ﬁ = '7t7 :7 = Yin + '7t(’)’max - 711ﬁxx)a

and the search direction (u,v) is calculated from (2), the resulting step length & obtained

from (2), (o’) and ({) satisfies

a>1-C 12X2'uk
Moreover, the fast step is accepted with
(c + &u)T(y + o) /n < cnngf- : , (25)

Proof. The proof is in three stages. First, we show tha.t the tests (4) are satisfied for all
« in the range

[0, I —Cra 2’;-’;] . (26)

Second, we show that u(«) defined by (3) is decreasing on the mterval a € [0,1]. In the
third stage, we show that

p(a) < Crax %u < pps (27)

which proves the result.
We first consider the condition (4a). From the left-hand side, we obtain

(z + au)T(y + aw) |
= (r+ ot + a(u— ) (y + ot + afv — 7))
= ;cTy(l —a)+ aTo + oz + )T (v — )+ oy + m‘;)T(u —u) (28)
+a?(u — @) (v — B).

Now, using Lemma 4.1 and the inequalities (8), (10), (11), (14), (15), and (16), we have

IftT’l—)' S 2(75(-76/42 S 2(,75(7(;/1.#};,
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and
(v~ @)7(y + ad)| Nuy — anli(lynll + llowll) + les — @sli(lysll + 19511
Cox i (Cs + Cept) + Crxp*(Ca + Cs)

CIOXP'PL',

AN VAR VA

where we have used g < 1 and g < i to derive the last inequality. Similarly, we have
(v — 5)7(z + @)} < Croxpak,
‘while for the reml‘zﬁnhlg term in (28) we have from Lemma 4.4 that
u — @)T(v — 8)] < 2C7Cox e < 2C7CoX* prpt-

Hence, since x > 1, we have from the definition of Cio that

(2 + o) (y + ) — (1 = @)eTy| £ Croxlme. (20)
Since A = 7', we'have that (4a) is satisfied provided that ’

Crox*ppe < (1 = @)F'np,

which is certainly true provided that |

> C10X2ﬂl}."

l — o
- ny

From: the definition of (72, since 1 — 5 and Ymax — Yumin both lie in the range (0,1), we have

(.710X2Iik < (-712X2ﬂk

n"y‘ - :{t ’ ’
so the inequality (4a) certainly holds for all « in the range (26). .
Turning to the second inequality (4b), we have by an argument similar to the one above

that
(£; 4 cu;)(y; + av;) > z59;(1 — ) = Crox’ppr 2 Yu(l — o) — Crox? ttttk

while from (29), we have

(z + au)T(y + av)/n < (1 — a)p + Crox’pps/n.

Hence, the inequality (4b) holds provided that

Fu(l — @) + Crox’pur(3/n) < vu(l — @) = Crox*puk,

which is certainly true whenever the inequality
(v = (1 — @) 2 2C10x°pk (30)

12
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holds. Since

10 M :7 = [’7min ah :Yt—l(’)'max = "Ymin)] - ['Ymin + :Yt(')'max - '7111111)] = '7t-1(1 - :7)('7max - 7miu),

we find that (30) holds whenever

2Ch0x?
l—a> — _mX Kk ’
Y (l - 7)(’7max - 7min)
which, by definition of ("y2, is true for « in the range (26).

For the second part of the proof, we show that u(a) defined by (3) is decreasing on the
range « € {0, 1]. Taking the derivative, we have

np'(a) = (xTv+y7u) + 20uTv
= ("o +yTa)+ 2T (w-9) +yT(u—a) + 20uTv
= —xTy+ueT(v—-0)+yT(u—a)+ 2auTv. o (31)

However, we can use Lemma 4.1 and relations (8), (14), and (16) to obtain

lzT(v =) < lzslllve — sl + llzwllllon — onl
< CiCoxppr + CaCrxp?
< (C3Cs + CaCryxpptis | (32)

where we have used g < i in the last inequality. A similar bound can be obtained for
lyT(u — @)]. For the final term in (31), we have

luTv| < CIx*w? < CixPup. | (33)

2

Substituting these relations in (31) and using the definition of Ch3, We obtain

np'(a) < [~n + CraxPuilp.

It follows from (23) that the term in brackets is negative and hence p'(a) < 0 for all « € [0, 1].

Finally, we observe that the step length & actually selected by the procedure will be at
least as long as the upper bound of (26), so using (32), (33), and the definitions of Cy3 and
("14, we have '

( + au)(y + aw)

< 2Tyl =& + T (v = 9) + |y (u — @)] + [uT ]
< (J:Ty)C]zXZ% + 2(C3Cy + CaCr)x e + Cax’ppx
<

(xm%mz + Cha/n)x?

]

kv
(Iry)%;('nxz-




Therefore (25) holds. Acceptance of this step follows from (24), since we have (z + &u)7(y +
av)/n < pp. .

We close this section with a result that is important in defining the onset of the algorithm’s
fast phase.

Lemma 4.6 There is a constant 7 < | such that

Bein o p B8 yk > 0. (34)

=ty - St !
'yk+l 7&

» Proof. When the safe branch of the main algorithm is taken at iteration k, we have from
the proof of Theorem 3.2 that

(o + &)t +qo)/n < (1= =)
4w
while the value of ¢ is unaltered. It is possible that in the subsequent call to improve,
the value of ¢t will be incremented. Whenever this happens, we are guaranteed that the
complementarity gap u decreases by a factor of at least p, so the ratio p/7* will also decrease
by a factor of at least p/¥ < |. Hence, when the safe branch is taken, we have

Pk+1 (1 — _1_) .
Ftr = 4w/

When the fast branch is taken, we have t «— ¢t + 1 and
(" + au)" (v* + av)/n < pu,

so the ratio u/3' decreases by a factor of at least p/4. The comments above ensure that the
subsequent call to improve can only accentuate this decrease, so in this case we have

Feer o P Fk »
Pout G

The result is obtained by defining

p=max|{1l——,—|.
4w’ v

5 Local Convergence

In this section, we state and prove our two main local convergence results. First, we define a
threshold value of g /9* below which both the main algorithm and the procedure improve

take only fast steps. Second, we show that the resulting superlinear convergence has Q-order
I +2.
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Theorem 5.1 Define

C"
x = 2(Cs + Cs) exp (1 j”p), (35)
and let K, be the smallest indez such that v, < 1/2,
~ 2 MK .
CHXI_;?EE}:T < P, (36)
and ‘ .
~ < min (1 n ) (37)
: ¢ Smin |1, ——— :
HE = Crax?

Then the fast branch is taken in the main algorithm and, moreover, I fast steps are taken in
the call to improve.

Proof. Existence of K, is guaranteed by Lemma 4.6. We choose any k > K;. Our proof
proceeds by showing first that the step taken from (z*,y*) in the main algorithm is a fast
step. We then prove by induction that / fast steps are taken inside the procedure improve.
Our main tool in both cases is Theorem 4.5.

For the first part of the proof, we apply Theorem 4.5 with

(£.y) = (25, 9%), t=t, 1= - (38)

Note that the point (.1: y) satisfies the assumptions of Lemmas 4.2 and 4.3 (by definition of -

Ky, %, v, etr) and the conditions (12) and (13) (trivially). Clearly also =z y" > Yrpr for
all 7 = 1,.--.n, and the condition (23) also holds. Because

2 Mk

¥ 2k ) ~ vy
(.44,‘(2!":; = Crx"— < q Zﬂ L < Crx?
Y ok 7

EK;
3 T = P
the condition (24) also holds. Hence the conditions of Theorem 4.5 are satisfied by the
choices (38), and therefore a fast step is taken by the main algorithm.
We turn now to the procedure improve. Our aim is to show inductively that if (z,y) is
the current vector pair at the commencement of the :-th iteration of this procedure, then

i—1

12*, %) = (o, 9l < | 2(Cs + Co) T+ Csp)| s (39)

=1

Moreover, we show that a fast step is taken from this vector (z,y) during the i-th iteration
of improve. Note for future reference that

t—1

11 i1 (7
log TI(1 + Csp') = 3 log(1 + Csp') < 3 Cap' < 1 jpp,
=1 =1 =1

and so :
i-1

2(Cs + Cs) [T + Csp') < x, i=1,---,1.

(=1
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Cousider the case 1 = 1, that is, the first iteration of improve. We aim to use Theorem
4.5 again, so we start by checking that the point just generated by the main algorithm
satisfies the assumptions of this theorem. In other words, the choices

must be shown to satisfy these assumptions. It is easy to see that the assumptions of Lemmas

4.2 and 4.3 and the condition (12) are satisfied. To see (13), note that the fast step just

taken at iteration k of the main algorithm was computed with an ezact coefficient matrix,
that is, we have (&, 9) = (u,v). Hence we can apply Lemma 4.3 to deduce that

(=, 5%) = (& Il < Hl(w 0)ll = 1I(% )]l < 2(Cs + Co)pu.

Thus the bound (39), and therefore also (13), holds for this point (z, y) The conditions (23)
and x;y; > 7/1 clearly hold, while (24) also holds because

X 7‘,“_,_, .<_('14X f‘l(f‘TSP'
Hence Theorem 4.5 applies, and we have shown that a fast step is taken on the first iteration
of improve.

We now consider the general iteration ¢ of the internal loop of improve. We assume that
- our assertions hold for iterations 1 through ¢ — 1. Let (z~,y™) denote the value of (z,y) at
the start of iteration : — 1, and let (u™,v~) be the search direction calculated during this
iteration, while as before (x,y) is the current point at the start of iteration :. To obtain an
estimate of ||(z*, ¥*) — (&, y)|l, we note by our inductive hypothesis (39) that

=2
li(<*.y )— 7,y ) < 12(Cs + Co) TI(L + Cap)| pise
=1 g

We now apply Lemma 4.4 to the step (u™,v™) taken during iteration i —1, with x replaced
by 2(Cs + Cs) ITiZ2(1 + Csp'), to find that

1%, y*) = (2, )]
< ) = Ty I+ T y7) = ()l

1—2
2(Cs + Co) TT(1 + CopYur + (™, 7|
=1
=2 1—2
2Cs + Cs) TT(1 + Csp' s + Cs [2((75 +Co) TI(1 + Csp’)] p
=1 =1
=2
< 2Cs + Co) T](1 + Csp’)] (1+ Csp™™ ") -
=1

IA

IA

The final inequality follows from the fact that p= < p*~Tug, since (z7,y7) is arrived at by
taking 7 — 1 fast steps (one step in the main algorithm, followed by : — 2 iterations of the
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improve loop), at each of which a reduction factor of at least p is achieved. We have now
shown. that the bound (39) continues to hold at iteration ¢. It is easy to check that the
remaining conditions required by Theorem 4.5 hold. We mention only (24), which holds for
t = t; + ¢ because

I-‘ O ~ 2 Mk 2 MK

Hence, we can apply Theorem 4.5 again to deduce that a fast step is taken at iteration ¢,
and our result is proved. -

Our final resiilt is to show high-order convergence of the sequence {u;} to zero. We show
that this convergence has a Q-order of at least 7 4 2, that is, for any ¢ > 0

] Hk+1
limsup —= =0

k—oo  Hyp

An equivalent characterization of the Q-order I + 2 convergence is the inequality (40) below
(see Potra [7]).

Theorem 5.2 The subsequence {pr}, k = 0,1,---, converges to zero with Q-order I + 2,
that is,

limi mfl 08 Bk >1+2 (40)
k—oo  log px -

Pfoof Counsider k > K;. Since a fast step is taken by the main algorithm and all J
iterations of improve, and since Theorem 4.5 applies at all 7 + 1 steps, we can apply the
inequality (25) 7 + 1 times to bound g4 in terms of yg. The process yields

141 2(1+1) #}lcﬂ ’
~I41, 2(1+1 .
ka1 S (’14 X ,7(1+1)zk+1(l+1)/'2’ . (41)
It follows from Lemma 4.6 and (41) that
YI+1, 2(1+1) I+1
Hi+ < ( 1_4[ IX ‘ (flk) -0, (42)
i ¥ (1+1)/2 »-/tk

that is, {ux} converges to zero at least Q-superlinearly.
By taking logarithms, we obtain from (41) that

Gl 20+
log pti41 < log (—;,(—H;V;—) + (I +2)log pp — (I + 1)tk log7.

We will assume that & is sufficiently large such that gy < 1. From the above,

log pr+1 TR g AR ¢
—— >+ 2+ — 1 [ . — (I 4+ DlogHy . 43
log g = + 2+ log F1U+1)/2 [log pr — (1 + 1) 0g7|0g 1k (43)
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Obviously, as k — oo, the second term in the right-hand side vanishes. If we can show that
the third term also goes to zero, then the conclusion (40) follows. Since t, < (I + 1)k + 1,
it suffices to prove

k
lim
k—oo log ui

Suppose otherwise. Then there exist £ € (0,1) and a subsequence {p}x: C {ur} such that
for all k € K
: k 1
<
log p ~ log €

" From (42), there exists a positive integer .J such that for all £ > J, pry1 < %yk. Hence, for
all k> J and & € K,

=0. (44)

, or equivalently £* < puy.

That is, for all k > .J and k € K, 2¥ < u;27/¢7. This is clearly a contradiction. =

6 Numerical Examples

We include some preliminary numerical results that compare the behavior of our algorithm
with the method of [10], in which improve is vacuous (I = 0).

Our test problems have M = AAAT, where A € R™*" is dense with elements drawn
from a uniform distribution in [—1, 1], and A is a diagonal matrix with diagonal elements
Ay = 10%, where (; is drawn from a uniform distribution in [0,1]. A solution (z*,y*) is
generated so that even-numbered components of ™ and odd-numbered components of y~
are zero, and q is chosen so that the nonzero components of both vectors are uniformly
distributed in [0, 1]. ,

The algorithmic constants have the following values: o

Ymin = 10-—6, Ymax = -002, Tmin = 10_37 Omax = -1,
¥ = .25, p = .99%.
We also modify the algorithms slightly so that only safe steps are attempted when the current
value of u is greater than | (that is, the fast step branch of the conditional statements in
both the main algorithm and improve is bypassed). The value of & for the safe step at
iteration k is chosen as
T = ulid(‘ﬂu}m ﬂk/\/T—l, amax),

where mid() denotes the median of its three arguments. Termination occurs when g <
1019,

Performance of the algorithm for 7 = .8 and 7 = .9 is shown in Tables 1 and 2, respec-

tively. We tabulate the number of factorizations (which equals the number of iterations of
the algorithm), together with the total number of linear system solutions performed, and the
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total number of corrector steps taken in improve. The behavior on these random problems
is not too sensitive to the choices of the parameters / and 7; the choices [ =3 and 7 = .8
would probably be good choices in general.

Table 1: Performance of the algorithm for 7 = .8

n=10 n=5 n=100

factorizations 24 38 38
| I =0 solves 36 56 54
o corrector steps 0 0 0
factorizations 20 33 34
I =1 solves 39 99 97
corrector steps 10 11 10
factorizations 18 31 32

I =2 solves - 65 110 105
corrector steps 14 17 15
factorizations 18 31 31

I =3 solves 72 112 109
corrector steps 17 20 19
. factorizations 17 30 31

I =5 solves T4 114 113
corrector steps 22 23 23

Table 2: Performance of the algorithm for 7 = .9

_ n=10 n=50 n'=100
factorizations 20 33 33
I =1 solves 59 99 93
corrector steps 10 11 12
factorizations 18 31 32
I =2 solves 65 110 105
corrector steps 14 17 15
factorizations 17 31 31
[ =3 solves T4 114 109
corrector steps 20 21 19
factorizations 17 30 31
I =5 solves 76 114 115
corrector steps 23 24 24




7 Final Comments

In this paper, we analyze an infeasible-interior-point algorithm that reuses matrix factors
to accelerate convergence. In addition to the usual global convergence properties, the new
‘algorithm possesses a local convergence rate of Q-order [ + 2.

The idea of reusing matrix factors was utilized in a number of works on interior-point
methods. Among them, Mehrotra [3] and Zhang and Zhang [11] are most closely related
to the current work. Mehrotra [3] also obtained a @Q-order of I + 2 convergence result, but
it is for a feasible-interior-point algorithm. Moreover, his algorithm is in the Mizuno-Todd-
Ye [5] predictor-corrector framework, thus always requiring two matrix factorizations per
iteration. Zhang and Zhang [11] analyzed an infeasible-interior-point algorithm with / =1
that asymptotically requires only one matrix factorization per iteration. However, they only
obtained Q-order 2 convergence instead of Q-order 3.

The higher-order convergence rates are probably of theoretic interest only. In practice, it
is difficult to observe on computer a convergence rate higher than cubic. As can be seen from
our preliminary numerical results, however, the approach of reusing matrix factors does have
the tendency to reduce the number of factorizations required for solving LCP problems at a
price of increasing the number of back solves. Since at each iteration matrix factorization is
the dominant work in comparison to back solves, the potential reduction in computational
work could be significant for large-scale LCP problems. For linear programming, the practical

~ effectiveness of reusing matrix factors is already well documented [1, 4].
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