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ABSTRACT

A highly regarded method to obtain an orthonormal basis, Z, for the null space of a matrix A7 is
the QR decomposition of A, where @ is the product of Househclder matrices. In several optimi-
zation contexts A(z) varies continuously with z and it is desirable that Z(z) vary continuously
also. In this note we demonstrate that the standard implementation of the QR decomposition
does not yleld an orthonormal basis Z(z) whose elements vary continuously with z. We suggest

three possible remedies.
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1. Introduction

The question we are addressing in this short note is this: Let B be a ball around a point
z' ¢ R®. Suppose that A(z) is an n by ¢ matrix of rank ¢ whose elements vary continuously
with z on B. Is it possible to construct, stably and efliciently, a matrix Z(z) with elements which

vary continuously with z in B and with the additional properties

(1.1) A(2)TZ(z) = 0,
(1.2) Z(2)TZ(z) = I(spp?

Several techniques for nonlinearly constrained optimization problems require the availability
of a matrix Z(z) with properties (1.1) and (1.2). (See, for example, Bartels and Conn[1982], Cole-
man and Conn[1982a,b], Kaufman([1975], Murray and Wright[1978], Murray and Overton[1980],
Tanabe[1981], and Wright[1979]). Theoretical results given in Coleman and Conn[1982a,b] expli-
citly require that the elements of Z(z) vary continuously in a ball around z°*, where z* is a solu-
tion to the nonlinear programming problem. Kaufman assumes differentiability of Z(z). The
other references are not as explicit in their dependence on continuity however it would appear
that possible future theoretical developments concerning projected quasi-Newton methods would
also require that Z(z) vary continuously. Surprisingly, the standard implementation of the QR
factorization of A(z), using Householder matrices (elementary reflectors), does not necessarily

yield a matrix Z(z) with continuously varying elements.

In section 2 we support this claim in detail. We suggest three possible remedies in section 3.

2. The Standard Implementation
A well-accepted procedure to obtain an orthonormal basis for the null space of AT is given

by Gill and Murray[1974]: Construct an orthogonal matrix @ = (Q, @,) such that

(2.1) TA =R,

where R is ¢ by ¢ and upper triangular, and

(2.2) QfA =o.
We can then identify Z with @,. Unquestionably, the most popular method for obtaining such a
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Q is the formation of a product of Householder matrices. Let us consider the simple case when ¢

= 1and A = a = (46,,8,,...,6,)T. The textbook rule for constucting Q is

T
Q«—1I- 2::“ , where u = a + sgn(ay)|| a|]-¢,

and sgn(a,) = 1if a, > O,

=-1if 4, < 0.

(The vector (1,0,...,0)7 is denoted by €. ) Now suppose that each component ¢;(z) is a continu-
ous function of z in B. We wish to examine the continuity of @ with respect to a(z). To do this

it is useful to partition @ in the following way:

0 n qfl
o 'O 6
T
(Note that @, = (gli] and the columns of @, = (%}] are orthonormal bases for the range
£

space of a(z) and null space of a(z)T, respectively.) It is straightforward to show that

uTu =2||a]||{|]|a]]+egn(a;)a,}, and hence

_ -ggn(a,)a,

ST
-sgn(a,)a; .
4 = ——i—l—m—J—, for Jj>1,
Qi = L for is£j, and
T el Il a]]+sgn(ar)ar}’ ’

— G,‘z
Qi=1

“Alall{Ilall+sgm(a)a}

It is clear that ¢;; and Q are continuous with respect to a(z), however g,, is discontinuous at the

plane a; = 0. It follows that @, is discontinuous at the plane a, = 0.

Therefore we cannot, in general, assume continuity of @, when @ is computed in the stan-
dard way - this is unfortunately true even for B of arbitrarily small radius. Note that when
t =1 the only situation that is troublesome (for B of arbitrarily small radius) is when

a1(z*) = 0. This observation leads us to the first of three possible strategies described in section

3.
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We note that the elements of @, do not change continuously with z. However, this is of no
great concern since a continuously varying orthonormal basis for the range space of A(z) is trivi-
ally available given @,. It is only necessary to monitor the signs of the diagonal elements of R

and the corresponding columns of @,. Such a simple solution is not available for Z(z).

3. Variations of the Standard Method

a. Row Orderings

For simplicity of presentation, we initially restrict ourselves to the case ¢ = 1. Suppose that
z* is the point of convergence and || a(z*)|| 5% 0. Hence there is an ordering of the rows of
akz’) such that a,(z*) # 0. Therefore, if this ordering is used for all z in B then sgn(a,(z)) is
equal to sgn(a,(z°)) for | | z—z* | | sufficiently small. Considering the formula for @ given given

above, it is clear that in this case @ varies continuously.

We now turn to the general case where A(z°) is an n by ¢ matrix of rank ¢. Consider the
@R decomposition of A where @ is the product of a sequence of elementary reflectors: Let
a,-(")(z’) be the i** component of column j at the start of the j** step of the QR decomposition
of A(z'). Provided the rows of A(z’) are suitably ordered, and using linear independence,
a/(z*) # 0. Hence if this ordering is used for all z in B, then for | | z—z° || suitably small,
sgn(a,m(z)) is equal to sgn(a}j)(z')) and it follows that @ will vary in a continuous way.

Therefore, maintaining a continuous matrix Z(z) in a neighbourhood B of z* is possible (for
B of sufficiently small radius) by suitably ordering the rows of A(z) and applying the standard
QR decomposition rules. Unfortunately, a suitable ordering is not known a priori: However, it is
clear that any of a number of row-interchange tests could be employed such that interchange

would not occur for | | z-z* | | sufficiently small.

b. Maintaining The Sign Bit

The source of our problems is the sign bit used in the standard rule for computing Q. Is it



necessary? That is, can we always define Q as

2uuT 1
(30) Q«—I-——F— whereu=a+ ||a]|]|e"?

u'u
There are two apparent difficulties. Firstly, if a = —| | a | | ¢!, then u is the zero vector - let us
ignore this problem temporarily. Secondly, if a is 'close’ to —| | a | | ¢!, then it would appear that

disastrous cancellation may occur in the computation of u and hence @ will be inaccurate. Par-
lett[1980, p.91] disputes the second claim and suggests that disastrous cancellation will not occur

under these conditions if u is computed as follows:

(3.1) s+ Y a6}

i>1
-8
3.2 Yy —————————,
G2 we GO

(83) uj+ea;j=2.,n

Formula (3.1)-(3.3) does not involve the subtraction of nearly equal small quantities and thus we

do not risk disastrous cancellation.

Therefore the following strategy seems appropriate: If a; > 0, then compute u; by
(34) u,+~—a;+ |]a]]l.

If a, < 0, then compute u, by (3.1) - (3.2). In either case we can obtain @ by (3.0).

Unfortunately, our problems are not over. Indeed the first difficulty, that @ is not defined at
@ =-|| a|]|¢', is rather troublesome. The kernal of the problem is this: @ (as defined by (3.0))

does not have a limit point at @. Hence it is impossible to make an appropriate definitlon of

Q(@). For example, consider that for i#7, i5#1, j5#1, || 6 | | 5] a1],

0 — _ _ug(llall-a)
T alllall+e)  [lall(l]a]l|*af)
Hence
(35) Wm oog) = lim 24,4,
. a_’_el 7] a—»—el II&I'Z’
where a4 = (az,...,a,)T. But if a approaches —e! along the line (~1,¢,€,...,€), then Qi; — ﬁ

However, if a approaches —¢! along the line (~1,¢, . . ., €0,¢, .. .,€0,, . . ., ¢€), where the zeroes



occur in positions ¢ and j, then @;; — 0.

Observe - these difficulties occur only when a(z’)= t |]a(z*)|]e'. Also, if
a(z*)=+|]a(z")||e* and |]|a(z’)]|] > 0, then there is a ball around z’ for which
a(z) # -] | a(z*) || €', and vice versa. Therefore, if a(z*) % —| | a(z*) | | ¢', then formula (3.0)
can be used for all z in a ball B around z*. The elements of @ will vary continuously on B pro-
vided the radius of B is sufficiently small. Alternatively, if a(z*) # + | | a(z") | | ¢!, then (3.0)

can be replaced with

T
(3.0") Q*—I—2uu;‘u,whereu=a—||a||el.

If a,< O,then we can compute u; by

(34) w—ar-|la]le

If a, > 0, then we can compute u, by

-8
ot ||all]”

The elements of @ will vary continuously provided the radius of B is sufficiently small.

(3.2) u,+

+

Unfortunately, one does not know, a priori, if a(z®) =" || a(z*)|]e’. However, it is

clear that several switching rules could be employed in conjunction with (3.0) and (3.0") - if

z¥ — z° the switching rule would become inactive for sufficiently large k.
For example, let {z¥} be a sequence which converges to z‘. Denote a(z¥) by oF. A
corresponding sequence of elementary reflectors could be defined by

E
Ok-1"01
(36) 0k -~ B
|1a*]]
3.7) if 6, > -6 then o + 0_, else o + sgn a¥),
E

(38) u* —a*t + 04| | a*||e!, (computed as above),

2uf(u®)T
(uk)Tuk *

To begin, choose 0, = sgn(af). The parameters ¢ and § are introduced in an attempt to main-

(39) Qk — I -

tain the previous sign bit o4_;. This, in turn, results in the elements of Z(z) (or Qy(z)) behaving

in a continuous manner. The parameter § must satisfy § < 1, and should be positive in order to
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express a reluctance to change signs: say 6 = .9.

The analysis and procedures described in this section are given under the assumption that

t = 1. The extension to the general case is straightforward and we will not go into detail.

c. Elementary Rotation Matrix

The third strategy that we investigate shares some features with the approach described
above but is based upon elementary rotation matrices rather than reflectors. If ¢;, g, are two

unit vectors with ¢; % —g¢, then the elementary rotation matrix sending ¢, into g3 is

(3.10) P = 1—(41,42)0(41,42)r

1 1 T .
1+ 27) 1) , and ¥ = ¢y ¢ . Some properties of P are

where D = (_(

(i) PTP=1, (i) Pu=y4q,, (i) lmP=1.

91243

Also, it can be readily verified that P rotates vectors in the plane, spanned by the vectors ¢; and
g2, through an angle of cos () with vectors orthogonal to this plane left untouched. Property (iii)
is not shared by general elementary reflectors; it is this property which avoids the need for two
definitions of the same transformation which are typically used to implement an elementary
reflector stably. In fact if @ is of the form (3.0), with any nonzero vector u, then

|| @ -1]|2=2 - hence Q is never close to the identity transformation.

In the special case ¢, = Tzﬂ— and ¢, = ¢, the formula for P simplifies to
G, al
a a
G11) P = II~I| [1all
_a —
_— P
[lal]l

where & = (a5, . .., a,)7,



= 1 aal
P=I-(—)——= and Y= —F—"7+.
1+97 || a||? [1ell
This formula is briefly discussed by Parlett[1980, p.92, ex. 6-3-6], Note that P as defined in (3.11)

can be stored and applied to a vector with the same efficiency as an elementary reflector. In fact

only trivial modifications to existing @R codes are required to change from reflectors to rotators.

The elementary rotator P is not defined by (3.10) at points satisfying ¢ = ae!, @ < 0: A
strategy similar to that employed in part b must be used here also. That is, formula (3.10) can be
used in a ball around z°*, provided a(z®) % || a(z*) || e’ W a(z’)5# + || a(z’)] | €', then P
can be defined by (3.10) with the signs of the first row and column reversed and the definition of

P changed to

5 1 da”
P=I-(—)—7—"—".
LTI
It is clear that the elements of P will vary continuously in a ball B around z* provided the

radius of B is sufficiently small.

4. Concluding Remarks

We have suggested three different strategies for maintaining a continuous orthonormal basis
for the null space of a matrix AT which varies continuously with z. The first method has the
attraction that the standard QR decomposition implementation can be employed. However, it has
the disadvantage that row interchanges may be necessary in order to maintain continuity of Z(z).
Nevertheless, if the element of maximum modulus is initially pivoted into the first row (in the

case ¢ = 1) it seems highly unlikely that many subsequent interchanges would be necessary.

The second procedure (b.) does not require interchanges. It is based on the observation (
Parlett[1980]) that disastrous cancellation need not occur when u is computed without the ’sign
bit’ provided the computation is done correctly. Discrete changes are necessary only in the
extreme case when a(z) oscillates between + || a||e' and —|| a||e' - a highly unlikely
scenario. On the negative side, this procedure cannot use a standard black box @R decomposi-

tion routine.
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Finally, the third procedure (c.) has all of the advantages and some of the disadvantages
attributed to method . The elementary rotator (as described in c.) has some additional geometric
appeal however. If the vector a is 'close’ to + || a ||e' (~|| a||e'), then a is rotated into

+||a]||e* (-]|a]]e'). The opposite is true for elementary reflectors.

One may also require that Z(z) have additional smoothness properties such as Lipschitz
continuity or perhaps differentiability. It is clear that the strategies discussed in this note will
allow Z(z) to inherit all of the smoothness of A, in a ball around z*, provided the rank of A(z°)
is t.

Another popular way to obtain the QR decomposition of a matrix A is by using a sequence
of Givens transformations. In the dense case the Givens procedure is more expensive than the
elementary reflector approach. However, if A is sparse and the transformations are computed
properly this may be the preferred method. An efficient way to compute and use Givens transfor-
mations in the sparse case is reported by Gentleman [1973] with further motivation and error
analysis given in Gentleman [1975]. More discussion on the use of Givens transformations in the
sparse situation may be found in George and Heath [1980]. Unfortunately, continuity difficulties
also occur when Givens transformations are used. To see this suppose that ¢ = 1 and both
a,(z) = 0 and a,(z) — 0, where we assume that elements 1 and n define the Givens transforma-
tion that introduces a zero into position n. Depending on the manner in which a, and g, con-
verge, the corresponding Givens matrices may jump around wildly - this spells trouble for the
continuity of Z(x). Continuity of Z(x) can be achieved in conjunction with the use of Givens

transformations however, if a row interchange strategy (a.) was followed.
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