Skip to main content
Log in

Combining simulated annealing with local search heuristics

  • Simulated Annealing
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We introduce a meta-heuristic to combine simulated annealing with local search methods for CO problems. This new class of Markov chains leads to significantly more powerful optimization methods than either simulated annealing or local search. The main idea is to embed deterministic local search techniques into simulated annealing so that the chain explores only local optima. It makes large, global changes, even at low temperatures, thus overcoming large barriers in configuration space. We have tested this meta-heuristic for the traveling salesman and graph partitioning problems. Tests on instances from public libraries and random ensembles quantify the power of the method. Our algorithm is able to solve large instances to optimality, improving upon local search methods very significantly. For the traveling salesman problem with randomly distributed cities, in a square, the procedure improves on 3-opt by 1.6%, and on Lin-Kernighan local search by 1.3%. For the partitioning of sparse random graphs of average degree equal to 5, the improvement over Kernighan-Lin local search is 8.9%. For both CO problems, we obtain new best heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Martin, S.W. Otto and E.W. Felten, Large-step Markov chains for the traveling salesman problem, Complex Syst. 5(1991)299–326.

    Google Scholar 

  2. O. Martin, S.W. Otto and E.W. Felten, Large-step Markov chains for the TSP incorporating local search heuristics, Oper. Res. Lett. 11(1992)219–224.

    Article  Google Scholar 

  3. O.C. Martin and S.W. Otto, Partitioning of unstructured meshes for load balancing, Concurrency: Practice and Experience 7(1995)303–314.

    Article  Google Scholar 

  4. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.),The Traveling Salesman Problem (Wiley, 1984).

  5. M.W. Padberg and G. Rinaldi, A branch and cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Rev. 33(1991)60.

    Article  Google Scholar 

  6. G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA J. Comput. 3(1991)376–384.

    Google Scholar 

  7. S. Lin, Computer solutions of the traveling salesman problem, Bell Syst. Tech. J. 44(1965)2245.

    Google Scholar 

  8. S. Lin and B. Kernighan, An effective heuristic algorithm for the traveling salesman problem, Oper. Res. 21(1973)498.

    Google Scholar 

  9. S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Science 220(1983)671.

    Article  Google Scholar 

  10. V. Cerny, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm, J. Optim. Theory Appl. 45(1985)41.

    Article  Google Scholar 

  11. H. Muhlenbein, M. Georges-Schleuter and O. Kramer, Evolution algorithms in combinatorial optimization, Parallel Comp. 7(1988)65.

    Article  Google Scholar 

  12. J. Hopfield and D. Tank, Neural computation of decisions in optimization problems, Biol. Cybern. 52(1985)141.

    Google Scholar 

  13. D.S. Johnson and L.A. McGeoch, The traveling salesman problem: A case study in local optimization, to appear inLocal Search in Combinatorial Optimization ed. E.H.L. Aarts and J.K. Lenstra (Wiley, New York, 1995).

    Google Scholar 

  14. F. Barahona and A. Casari, On the magnetisation of the ground states in two-dimenional Ising spin glasses, Comp. Phys. Commun. 49(1988)417.

    Article  Google Scholar 

  15. A. Pothen, H. Simon and K.P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Math. Anal. Appl. 11(1990)430–452.

    Article  Google Scholar 

  16. T. Bui, C. Heigham, C. Jones and T. Leighton, Improving the performance of the Kernighan-Lin and simulated annealing graph bisection algorithms, in:26th ACMIEEE Design Automation Conf. (1989) p. 775.

  17. D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, Optimization by simulated annealing: An experimental evaluation, part I (graph partitioning), Oper. Res. 37(1989)865–892.

    Google Scholar 

  18. B. Kernighan and S. Lin, An effective heuristic procedure for partitioning graphs, Bell Syst. Tech. J. 49(1970)291.

    Google Scholar 

  19. Z. Li and H.A. Scheraga, Monte Carlo—minimization approach to the multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. 84(1987)6611–6615.

    Article  Google Scholar 

  20. E.B. Baum, Towards practical “neural” computation for combinatorial optimization problems, in:Neural Networks for Computing, ed. J. Denker, AIP Conference Proceedings 151 (1986).

  21. H. Crowder and M.W. Padberg, Solving large-scale symmetric traveling salesman problems to optimality, Manag. Sci. 26(1984)495.

    Article  Google Scholar 

  22. M.W. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman problem by branch and cut, Oper. Res. Lett. 6(1987)1–7.

    Article  Google Scholar 

  23. W. Cook, V. Chvátal and D. Applegate, in:TSP 90, ed. R. Bixby, Workshop held at Rice University (1990).

  24. A.L. Beguelin, J.J. Dongarra, A. Geist, R.J. Manchek and V.S. Sunderam, Heterogeneous network computing, in:SIAM Conf. on Parallel Processing (1993).

  25. J. Dongarra, A. Geist, R. Manchek and V. Sunderam, Integrated PVM framework supports heterogeneous network computing, Comp. Phys. (April 1993).

  26. D. S. Johnson, Local optimization and the traveling salesman problem, in:17th Colloguium on Automata, Language, and Programming (Springer, 1990).

  27. S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies, J. Statist. Phys. 34(1984)975.

    Article  Google Scholar 

  28. M. Hanan and J.M. Kertzberg, A review of the placement and quadratic assignment problems, SIAM Rev. 14(1972)324.

    Article  Google Scholar 

  29. B.W. Kernighan, Some graph partitioning problems related to program segmentation, Ph.D. Thesis (1969).

  30. A.E. Dunlop and B.W. Kernighan, A procedure for placement of standard-cell VLSI circuits, IEEE Trans. Comp.-Aided Design CAD-4(1985)92.

    Article  Google Scholar 

  31. Y. Fu and P.W. Anderson, Application of statistical mechanics to NP-complete problems in combinatorial optimization, J. Phys. A: Math. Gen. 19(1986)1605.

    Article  Google Scholar 

  32. M.K. Goldberg and R. Gardner, On the minimal cut problem, in:Progress in Graph Theory, eds. J.A. Bondy and U.S.R. Murty (1984) p. 295.

  33. M. Berger and S. Bokhari, A partitioning strategy for non-uniform problems on multi-processors, IEEE Trans. Comp. C-36(1987)570.

    Google Scholar 

  34. C.M. Fiduccia and R.M. Mattheyses, A linear-time heuristic for improving network partitions, in:Proc. 19th Design Automation Workshop (1982) p. 175.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, O.C., Otto, S.W. Combining simulated annealing with local search heuristics. Ann Oper Res 63, 57–75 (1996). https://doi.org/10.1007/BF02601639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02601639

Keywords

Navigation