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ABSTRACT

Large scale optimization problems often require an approximation to the Hessian
matrix. If the Hessian matrix is sparse then estimation by differences of gradients
is attractive because the number of required differences is usually small compared
to the dimension of the problem. The problem of estimating Hessian matrices by
differences can be phrased as follows: Given the sparsity structure of a symmetric
matrix A, obtain vectors dy,dy,...,d, such that Ad,,Ad,, ..., Ad, determine A
uniquely with p as small as possible. We approach this problem from a graph
theoretic point of view and show that both direct and indirect approaches to this
problem have a natural graph coloring interpretation. The complexity of the
problem is analyzed and efficient practical heuristic procedures are developed.
Numerical results illustrate the differences between the various approaches.
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1. Introduction

Optimization algorithms which use second order information require the
computation or estimation of the symmetric matrix of second derivatives v2f(z)
for some problem function f: R*—R. In large scale problems the Hessian matrix
v?2f(z) is often sparse and then estimation of the Hessian matrix by differencing
the gradient 7 f(z) becomes attractive because the number of differences needed
is usually small relative to the dimension of the problem. For example, if v/ (z)
is tridiagonal then Powell and Toint [1979] show that only 2 gradient differences
are needed to estimate y72f(z). For a general sparsity structure, however, it is
not easy to estimate the Hessian with a small number of gradient differences, and
thus we address the following problem: Given a function f:R"™—R and
knowledge of the sparsity structure of the Hessian matrix v2f(z), how many
gradient differences are needed to estimate vif(z)?

We assume that it is desirable to evaluate the gradient w7 f(z) as a single
entity rather than separately evaluate the components 8,f(z),...,0, f(z) of the
gradient. This would certainly be true if the components have expensive common
sub-expressions. The Hessian matrix can be estimated by noting that (with the
appropriate differentiability assumptions) the product v2f(z)d can be estimated,
for example, by forward differences,

Vi (z)d = [v/f(z+d) - vf(z)] + o(||d]]),
or by central differences,
v/ (2)d = Y4 v /(z+d) - vf(z-d)] + o(] |d]|]?).

The problem of estimating a sparse Hessian matrix can thus be formulated as fol-
lows: Given knowledge of the sparsity structure of a symmetric matrix A of
order n, obtain vectors dy,dy,...,d, such that Ad,,Ad,, . . .,Ad, determine A
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uniquely. Note that since A is associated with the Hessian matrix v2f(z), the
sparsity structure of A should represent the sparsity structure of v2f (z) for all z
of interest. Moreover, since in a minimization problem the Hessian is usually posi-
tive definite at a minimizer, the sparsity structure should not impose any restric-
tions on the diagonal elements of A. Also note that since each evaluation of Ad
is associated with the estimation of 2f(z)d by differencing the gradient, and
since the evaluation of the gradient can be costly, we are interested in obtaining
difference vectors d,,d,,...,d, with p as small as possible.

If symmetry of the matrix A is ignored, then Curtis, Powell, and Reid[1974]
and Coleman and More [1981] have suggested several possible methods. Curtis,
Powell, and Reid observed that if the directions partition the columns into
groups such that columns in a group do not have a nonzero in the same row posi-
tion, then the elements of A can be determined directly. Based on this observa-
tion, Curtis, Powell, and Reid proposed an algorithm designed to form a small
number of such groups - each group corresponding to a direction - the CPR
method. Coleman and More used the connection of the partition problem with a
certain graph coloring problem to suggest improved partition algorithms based on
graph coloring heuristics. Their numerical results show that the problem of
estimating a sparse Jacobian matrix can be successfully attacked as a graph
coloring problem, and that the improved algorithms are optimal or nearly
optimal on practical problems.

It should be noted that direct methods based on a partition of the columns
is not the only way to go in the unsymmetric case. An example of Eisenstat
[1980] (see Coleman and More [1981]) demonstrates that allowing columns to
intersect within groups and allowing columns to reside in several groups may
reduce the number of directions needed by a direct method. In addition, indirect
procedures are possible. For example, Newsam and Ramsdell [1981] proposed an
indirect algorithm for the unsymmetric case which never requires more than p,,,
directions, where p_,,, is the maximum number of nonzeroes in any row. It is not
difficult to show (see Coleman and More [1981]) that at least p_,, directions are
required to determine a general matrix A uniquely, so their algorithm is optimal.
On the negative side, this method needs to solve n least squares problems in
order to extract A from Ad;,Ad,, . .., Ad,; in addition, the specific procedure
described by Newsam and Ramsdell leads to ill-conditioned systems. A direct
method, on the other hand, obtains A directly from the difference vectors
Ady,Ady, . . ., Ad,. In view of the optimal or nearly optimal behavior of direct
algorithms based on a partition of the columns of A, it is not clear that this
indirect method is competitive.

Powell and Toint [1979] were the first to show that exploiting symmetry can
result in significant gains for many sparsity structures. For example, consider an
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arrowhead structure. A matrix of order 5 with this structure has the form

rXXXXX\

X X

A=1]X X

X X

\ X X )

For this structure n directions are needed if symmetry is ignored (since one row
is dense), but only 2 directions are needed if symmetry is used. That is, if

dy=(100,...,0T, dy=(0,1,1,...,1)7,

then the first direction determines the first column of A, and by symmetry, the
first row. The second direction gives the remaining diagonal elements.

Powell and Toint [1979] proposed several algorithms which exploit sym-
metry. In particular, two methods were detailed: a direct method and an indirect
lower triangular substitution procedure. The possibility of a more general indirect
method was also discussed but was not pursued at length.

In this paper we analyze, from a graph theoretic point of view, direct and
indirect methods for the determination of a symmetric matrix. From this van-
tage point the problems can be cleanly stated, their complexity analyzed, and
improved algorithms can be obtained.

Section 2 is devoted to a discussion of direct methods for the symmetric
problem. Direct methods based on partitions of the columns of A are considered
and the corresponding partition problem is characterized as a restricted coloring
problem on the adjacency graph of A. We call this restricted problem the sym-
metric coloring problem. Although direct methods based on partitions of the
columns of A are quite natural, Section 2 ends with an example which shows
that the use of more general covers of the columns of A can yield significant
reductions in the number of evaluations of Ad needed to estimate A.

The symmetric coloring problem is analyzed in Section 3. We show that it is
possible to relate the symmetric chromatic number of a graph G to the chromatic
number of certain super-graphs of G. As a consequence of this relationship, we
prove that the decision problem for the symmetric coloring problem is NP-
complete. This result is established by showing that if there is a polynomial algo-
rithm for the symmetric coloring problem on bipartite graphs then there is also a
polynomial algorithm for the general coloring problem. The graph theory needed
to understand this paper is introduced as needed; for background material on
NP-complete problems, see Garey and Johnson [1979)].

Algorithms for the symmetric coloring problem are analyzed in Section 4.
We consider a generalization of the sequential algorithm for general graph
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coloring, and the graph-theoretic version of the algorithm proposed by Powell
and Toint [1979] for determining column partitions of symmetric matrices. We
compare several algorithms for the symmetric coloring problem and conclude that
on our test problems the Powell-Toint method usually requires the least number
of evaluations of Ad to determine A. Our numerical results also show that algo-
rithms which ignore the symmetry of A are not competitive.

Section 5 contains a result which strongly suggests that the direct determi-
nation of a symmetric matrix may not be the road to follow. It is shown that if
A is a symmetric band matrix which is dense within the band, then symmetry
cannot be used to reduce the number of evaluations of Ad needed by a direct
method based on partitions of the columns of A.

In Section 6 we focus on the second approach introduced by Powell and
Toint: triangular substitution methods. Again we show that there is a natural
graph-theoretic interpretation of the problem. In effect, the problem reduces to
another restricted coloring problem on the adjacency graph of A. We call this
restricted problem the triangular coloring problem.

The triangular coloring problem is analyzed in Section 7. We show, in partic-
ular, that if there is a polynomial algorithm for the triangular coloring problem
on bipartite graphs then there is also a polynomial algorithm for the general
coloring problem. The proof techniques used in this section are similar, but more
direct, than those used in Section 3.

Section 8 contains numerical results for both direct and triangular substitu-
tion methods for determining symmetric matrices. We conclude that triangular
substitution methods require the least number of evaluations of Ad to determine
a symmetric matrix A. Moreover, we show that there is an algorithm that is
always nearly optimal on our problems.

We end the paper with some observations on possible directions for future
research in this area.

2. Direct Determination of Symmetric Matrices.

As shown in the introduction, the problem of estimating a sparse Hessian
matrix can be phrased as follows: Given the sparsity structure of a symmetric
matrix A, obtain vectors dy,d,,...,d, such that Ad,Ad,, . .., Ad, determine A
uniquely. In this section we are mainly concerned with direct methods for deter-
mining A based on partitions of the columns of A.

A partition of the columns of A is a division of the columns into groups
Cy,Cg,...,C, such that each column belongs to one and only one group. A parti-
tion of the columns of A is consistent with the direct determination of A if

whenever ¢;; is a nonzero element of A then the group containing column j; has
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no other column with a nonzero in row §. A partition is symmetrically consistent
if whenever g;; is a nonzero element of A then the group containing column j
has no other column with a nonzero in row ¢, or the group with column ¢ has no

other column with a nonzero in row j.

Given a consistent partition of the columns of A, it is straightforward to
determine the elements of A with p evaluations of Ad by associating each group
C with a direction d with components §; = 0 if j does not belong to C, and
6; 7% 0 otherwise. Then

Ad = E 61 aJ-
JEC
where a,,a,,...,a, are the columns of A, and it follows that if column ; is the
only column in group C with a nonzero in row ¢ then

(Ad)l = 5;' G5

and thus ¢;; is determined. In this way, every nonzero of A is directly deter-

mined.

If A is symmetric, it is possible to determine A while only requiring that the
partition be symmetrically consistent. Thus, given a symmetrically consistent
partition of the columns of the symmetric matrix A, if column j is the only
column in its group with a nonzero in row s then a;; can be determined as above,
while if column ¢ is the only column in its group with a nonzero in row j then
a;; can be determined. Hence, every nonzero of A is directly determined with p
evaluations of Ad.

The concept of a consistent partition was introduced by Coleman and More
[1981] in their study of direct estimation methods for general matrices. As we
shall see in Section 6, this concept is also of use in methods for the indirect esti-

mation of symmetric matrices.

Powell and Toint [1979] have considered partitions of the columns of A with
the property that two columns in a group are allowed to have a nonzero in row ¢
only if column a; belongs to a previous group. It is clear that such partitions are
symmetrically consistent. Moreover, the following example of Powell and Toint
[1979] shows that the required number of groups can be reduced if we use general
symmetrically consistent partitions. If

X X X X
X X X
X X X

X X X
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then 4 groups are necessary if we consider partitions which satis{y the conditions
of Powell and Toint but {1,5}, {2,6}, {3,4} is a symmetrically consistent parti-
tion of the columns of A.
Partition Problem: Obtain a symmetrically consistent partition of the columns of
the symmetric matrix A with the fewest number of groups.

We are interested in partitions with the least number of groups because each
group involves one evaluation of Ad, and this in turn requires the evaluation of
the gradient.

How difficult is the partition problem? To approach this problem it is useful
to express the partition problem in the language of graph theory.

A graph G is an ordered pair (V,E) where V is a finite and non-empty set of
vertices and the edges E are unordered pairs of distinct vertices. The vertices u
and v are adjacent if (u,v) is an edge with endpoints u and v. A p-coloring of a
graph G is a function

¢:V—-{12..,p}

such that ¢(u) #£ ¢(v) if v and v are adjacent. A coloring ¢ induces a partition
of V with components

C;={u€V:g(u)=1i},

and such that vertices in the same component are not adjacent. The chromatic
number X(G) of G is the smallest p for which G has a p-coloring.

We want to associate the partition problem with a coloring of a suitable
graph. In the unsymmetric case the appropriate graph is the graph G,(A) with
vertex set { a,ay,...,a, } where a; is the j-th column of A and edge (a;,a;) if
i 7% j and columns a; and a; have a nonzero in the same row position. In graph

theory terminology, G,(A) is the intersection graph of the columns of A.

An important observation is that ¢ is a p-coloring of G,(A) if and only if ¢
induces a consistent partition of the columns of A. Thus the chromatic number
of G,(A) is the smallest number of groups in a consistent partition of the
columns of the matrix A.

In the symmetric case, the appropriate graph is the graph G,(A) with vertex
set {ay,as,...,a, } and edge (g;,a;) if and only if § 7 j and a;; 2 0. In graph
theory terminology, G,(A) is the adjacency graph of the symmetric matrix A.

A coloring ¢ of G,(A) does not necessarily induce a symmetrically consistent
partition of the columns of a symmetric matrix A; it is necessary to restrict the
class of colorings.
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Definition. A mapping ¢: V — {1,2,...,p } is a symmetric p-coloring of a graph
G = (V,E) if ¢ is a p-coloring of G and if ¢ is not a 2-coloring for any path in
G of length 3. The symmetric chromatic number X (G) is the smallest p for
which G has a symmetric p-coloring.

A path in G of length ! is a sequence (vg,vy,...,v;), of distinct vertices in G
such that v;_; is adjacent to v; for 1 < ¢ < I. Thus, if ¢ is a symmetric p-
coloring of G then the situation

O========0-====--0--=-===~ 0

Red Blue Red Blue

is not allowed.

As a simple illustration of these concepts, consider the variation on the
arrowhead structure of Section 1 which adds the main sub-diagonal and the main
super-diagonal to the structure. A matrix of order 6 with this structure has the
form

(X X X X X X))

X X X

X X X X
A=|x X X X

X X X X

X X X |

For this structure it is not difficult to show that X(G,(A)) =3, that
X,(G,(A)) = 4, and that X(G,(A)) = n. In general, however, determining the
chromatic number of G,(A) or the symmetric chromatic number of G,(A) is a
hard problem. This point is discussed further in Section 3.

In most cases, G,(A) is the square of G,(A). In graph theory, the square G2
of a graph G = (V,FE) is the graph with vertex set V and edge (u,v) if and only
if there is a path in G between u and v of length I < 2. A motivation for this
definition is that if A is a symmetric matrix with a;; > 0 and a; > 0 then

G, (A = G,(A?).

The following result establishes the connection between G,(A) and G,(A).

Lemma 2.1. If A i3 a symmetric matriz with nonzero diagonal elements then

Gy(A) = G,(A)?
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Proof: If (q;,a;) is an edge of G,(A) then there is an index r such that a,; %0
and a,; 7% 0. Hence (g;,4;) is an edge of G,(A )2. Conversely, if (a;,a;) is an
edge of G,(A)? then there is a path (a;,a;,¢;) in G,(A) of length | < 2. If the
path has length / =1 then (g;,q;) is an edge of G,(A) and hence, g;; 7 0.
Since a; 7 0, it follows that (g;,a;) is an edge of G,(A). If the path has length
| = 2 then a; 5% 0 and ¢;; # 0. Since A is symmetric, (g;,4;) is an edge in
G,(A). =

We can now express the partition problem for symmetric matrices as a
graph coloring problem.
Theorem 2.2. Let A be a symmetric matriz with nonzero diagonal elements. The
mapping ¢ s a symmetric coloring of G,(A) if and only if ¢ induces a symmelrs-
cally consistent partition of the columns of A.
Proof: Suppose that ¢ is a symmetric coloring of G,(A). Since ¢ is a coloring, ¢
induces a partition of the columns of A. If this partition is not symmetrically
consistent then there is a nonzero ¢;; and columns ¢, 7% ¢; and @, 7% g; such
that a; and a, are in the same group with a; # 0, and a; and a, are in the
same group with a;, % 0. Since ¢ is a coloring of G ,(A), we must have that
a; # a;. Also, since a; and @, are in the same group ¢(a;) = #(a,), and simi-
larly, ¢(q;) = ¢(a,). Now, if

P = (a,,q;,0;,a,)

is a path of length I < 3 then ¢(a;) = ¢(a;). However, this contradicts the fact
that ¢ is a coloring of G,(A) and (ag;,q;) is an edge. On the other hand, ¢ is a
2-coloring of P so | £ 3. This contradiction shows that the partition must be
symmetrically consistent.

Conversely, assume that ¢ induces a symmetrically consistent partition of
the columns of A. To show that ¢ is a coloring of G,(A) assume that a;; 0
with ¢ 7 j but that ¢(a;) = #(e;). Then columns a; and a; are in the same
group, and since a; 7% 0 and ay; 7-‘- 0, the partition is not symmetncally con-
sistent. Hence, ¢ is a coloring of G,(A). To show that ¢ is a symmetric coloring
of G,(A) let

P = (a,,q;,0;,a,)

be a path of length { = 3. Then q;; % 0. If q; is the only column in its group
with a nonzero in row ¢ then since a,, # 0 we must have ¢(a;) # ¢(a,). Simi-
larly, if a; is the only column in its group with a nonzero in row ; then
#(a;) # ¢(a,). Hence, ¢ is not a 2-coloring of P. B

In view of Theorem 2.2, the partition problem is equivalent to the following
problem.
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Symmetric Graph Coloring Problem: Obtain a minimum symmetric coloring of
G,(A).

We are now faced with the question -- how difficult is the symmetric graph
coloring problem? It is known that the coloring problem for arbitrary graphs is
NP-complete. This makes the existence of a polynomially bounded algorithm for
solving the unsymmetric graph coloring problem an unlikely prospect. Is the
symmetric graph coloring problem also NP-complete? We consider this question
in the next section.

As a final note for this section, we remark that although we have concen-
trated on direct methods based on partitions of the columns of A, other direct
methods are possible. In a general direct method, the groups Cy,Cy, . . ., C, are
a covering of the columns of A in the sense that each column of A belongs to at
least one group. To show that the use of a general covering of the columns of A
may lead to a decrease in the number of evaluations of Ad needed to determine
A consider a matrix of the form

Ay D
@) A=|p 4

where A, and A, are dense matrices of order 2n, and D is a diagonal matrix
with nonzero diagonal elements. The groups

{1,2,...,2n}, {j2n+1+;},1<j <2n, {2n2n+1},

are a covering but not a partition of the columns of A. However, for each
nonzero ¢;; there is a group containing column j such that no other column in
this group has a nonzero in row §, or a group containing column ¢ such that no
other column in this group has a nonzero in row j, and thus A can be deter-
mined directly with 2n+ 1 evaluations of Ad. On the other hand, we show in
the next section that at least 3n evaluations are needed if we use partitions of
the columns of A. Moreover, since the partition

{7.8n+j}, {n+j},{2n+,}, 1< j<n
is symmetrically consistent, this shows that the symmetric chromatic number of

G,(A) is 3n. Examples of this type suggest that it may be worthwhile to investi-
gate more general coverings of the columns of A.

3. The Symmetric Chromatic Number.

In this section we investigate the relationship between the symmetric
chromatic number and the standard chromatic number of a graph. In particular,
we show that determining the symmetric chromatic number of bipartite graphs is
just as hard as determining the chromatic number of a general graph.
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Let A be a symmetric matrix with nonzero elements on the diagonal. In
Section 2 we proved that the chromatic number of G,(A4 )? is the smallest possible
number of groups in a consistent partition, and that the symmetric chromatic
number of G,(A) is the smallest possible number of groups in a symmetrically
consistent partition. The following result shows that the use of symmetrically
consistent partitions is likely to yield a smaller number of groups.

Theorem 3.1. Let G be a graph. Then
X(G) £ X,(G) < X(G?).

Proof: Just note that if ¢ is a symmetric coloring of G then ¢ is a coloring of G,
and that if ¢ is a coloring of G2 then ¢ is a symmetric coloring of G. B

Theorem 3.1 establishes the simplest kind of bounds on the symmetric

chromatic number of a graph G. Other bounds are possible. Also note that
Theorem 3.1 suggests that the symmetric chromatic number of G is related to
the chromatic number of certain graphs which lie between G and G? in the usual
graph inclusion sense: If G, = (V,E,) and Gy = (V,,E,) then G, is a subgraph
of G, (written G, C G,) if V, C Vyand E, C E,.
Definition. Let G = (V,E) be a graph. A graph G, = (V,E,) is a symmetric
completion of G if V, = V and if E, is obtained by requiring that £, contain
E, and that if (v;,v9,v3,9,) is a path in G of length 3 then E, must contain
(vl’v:}) or (vZ’v4)'

Given a graph G there are many possible symmetric completions G,, but in
all cases G C G, C G2 Also note that if G, is a symmetric completion of G' and
(u,v) is an edge in G, then E, must contain all edges of the form (w,,v) for w,
adjacent to u, or all edges of the form (u,w,) for w, adjacent to v. To prove
this, note that if (w;,u,v,w,) is a path in G of length 3, and if E, does not con-
tain (w,,v) for some w,, then E, must contain all edges of the form (u,w,).

Theorem 3.2. Let G be a graph. Then
X,(G) = min {X(G,): G, a symmetric completion of G }.

Proof: We first claim that if ¢ is a coloring of a symmetric completion G, then ¢
is a symmetric coloring of G. As a consequence, it follows that

(31)  XJ[(G) < X(G,)

for any symmetric completion G,. Suppose that ¢ is a coloring of a symmetric
completion G,. Then ¢ is a coloring of G. To show that ¢ is a symmetric color-
ing of G let (v,,v5,v3,v,) be a path in G of length 3. Then E, contains (v,,v;) or
(vq,v,). If E, contains (vy,v3) then ¢(v;) # #(v3), and if E, contains (vy,v,) then
¢(vy) # ¢(vy). Hence, ¢ is a symmetric coloring of G. This proves our claim and
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establishes (3.1).

We now claim that if ¢ is a symmetric coloring of G then ¢ colors some
symmetric completion G,. A consequence of this claim is that

(32)  X(G,) < X(G).

Let ¢ be a symmetric coloring of G and let (v,v4,v3,v4) be a path in G of length
3. Then ¢(v,) 7% @(vs) or ¢(vy) 7% ¢(vy). In the first case complete G by adding
(vy,v5) to E, and in the second case add (v,,v,). Hence, ¢ is a coloring of G,.
This establishes our second claim and shows that (3.2) holds. B

Theorem 3.2 is very useful in the determination of the symmetric chromatic
number of a graph. As an application of this result we show, as promised at the
end of Section 2, that if A is of the form (2.1) where A, and A, are of order 2n,
then

(3:3)  X,(G,(A)) 2 3n,

and thus any symmetrically consistent partition of the columns of A needs at
least 3n groups. The proof of (3.3) requires the notion of a clique: A subgraph
Go = (Vo,Ey) of G is a clique if each pair of distinct vertices in V), are adjacent.
The clique is snduced by Vy; the size of the clique is | V.

To establish (3.3) we first need to note that the size of a clique is a lower
bound on the chromatic number of the graph. Now consider a symmetric comple-
tion G, of G,(A) and note that a; for 1 < j < 2n, and a; for 2n < j < 4n
are cliques of size 2n in G,(A) and hence in G,. We claim that G, has a clique
of size 3n. To establish this claim, note that for each edge (g;,a5,, ;) of G,(a)
we must have that a; is adjacent to each a; for 2n < j < 4n, or that ag,,; is
adjacent to each a; for 1 < J < 2n. Hence, at least half of the vertices
ay, ...,as, are adjacent in G, to all of the vertices a; for 2n < j < 4n, or
half of the vertices ag,, . . . , @4, are adjacent in G, to all of the vertices a; for
1 < j < 2n. In either case, G, has a clique of size 3n and thus X(G,) > 3n.

This establishes our claim, and then Theorem 3.2 yields (3.3).

As another application of Theorem 3.2 we show that the determination of
the symmetric chromatic number is a difficult problem even if the graph is bipar-
tite: A graph G is bipartite if and only if G is 2-colorable. Equivalently, a graph
G = (V,E) is bipartite if and only if V is the union of two disjoint sets V, and
V, such that any edge in G has one endpoint in V; and the other in V.

Theorem 38.8. Let G = (V,E) be a graph. If X(G) > 3 then there is a bipartile
graph B with |V |(1+ | E'|) vertices such that

(3.4)  X/(B)=X(G).
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Proof: Let vy, . . ., v, be the vertices of G, and let ey,...,e,, be the edges of G.
For each edge ¢, = (v;,v;) define a bipartite graph B; with vertices

{v,-,vj,w{’), o wd)
and edges

(vl"wl:(l))’ (vjiwk(l))) k= 1,.,n.

Now define a bipartite graph B by setting
V(B)= V(@) U{uf:1<k<n, 1<1<m)

and

E(B) = IL"JI E(B).

We now show that (3.4) holds for this bipartite graph B. To prove that
(3.5) X (B) < X(G),

define a symmetric completion B, by setting E(B,) = E(B)|JE(G). Since
X(G) > 3, it is clear that X(B,) = X(G), and hence Theorem 3.2 shows that
(3.5) holds. Next we establish that any symmetric completion B, satisfies

(3.6)  X(G) < X(B,)-

To show this first note that if G is a subgraph of B, then (3.6) trivially holds.
On the other hand, if (u,v) is an edge of G but not an edge of B, then since
(u,w,-(l),v,wl(')) is a path in B of length 3, we must have that w) and wJ(') are
adjacent in B,. This implies that the n vertices

{w{’),wé”,...,wﬂ(”}

form a clique in B, and hence, n < X(B,). Since X(G) < n, we have shown that
(3.6) holds. Theorem 3.2 and inequality (3.6) now imply that X(G) < X,(B). In
view of (3.5), this yields (3.4). W

The proof of Theorem 3.3 provides a polynomial algorithm for obtaining the
bipartite graph B. Thus the techniques of Theorem 3.3 can be used to show that
if there is a polynomial algorithm for determining the symmetric chromatic
number of a bipartite graph then there is also a polynomial algorithm for deter-
mining the chromatic number of a general graph. These techniques also show
that the decision problem for the symmetric chromatic number problem on bipar-
tite graphs is NP-complete.
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4. Algorithms for Symmetric Graph Coloring.

The literature on graph coloring algorithms is extensive, but there are no
algorithms for the symmetric graph coloring problem. In this section we intro-
duce some possible algorithms and investigate their behavior.

Let us first consider coloring algorithms for the standard coloring problem.
These algorithms can be described best with the help of some additional graph
theory terminology: Given a graph G = (V,E) and a non-empty subset W of V,
the subgraph G[W] induced by W has vertex set W and all edges (u,v) such that
(u,v)EE with w and v in W.

Algorithm. Let G = (V,E) be a graph with vertices ordered v,,v5, . . ., v, and
set

V,,={v1,vz,...,vk}.

For k = 1,2,...,n the sequential coloring algorithm sets ¢(v;) to the smallest posi-
tive integer such that ¢ is a coloring of G[V}].

Additional information and references for sequential coloring algorithms are
provided by Coleman and More [1981]. At this point we just note that the
numerical results of Coleman and More show that there are sequential coloring
algorithms which yield optimal or near optimal results on graphs of the form
G,(A) for m by n matrices A with a wide variety of sparsity patterns.

A symmetric coloring of a graph G = (V,E) can be obtained by applying a
sequential coloring algorithm to G2 If G = G,(A) for a symmetric matrix A
then Lemma 2.1 shows that this is equivalent to applying a sequential coloring
algorithm to G,(A). This approach has been studied by McCormick [1981], but
as already noted, this approach is not usually appropriate because in many cases
X(G?) is considerably larger than X,(G).

A reasonable approach to the symmetric coloring problem is to extend the
idea behind the sequential coloring algorithm.

Algorithm. Let G = (V,E) be a graph with vertices ordered v,,v5, . . . ,v,. For
k = 1,2,...,n the symmetric sequential coloring algorithm sets ¢(v;) to the smal-
lest positive integer such that ¢ is a symmetric coloring of G[V}].

The behavior of the symmetric sequential coloring algorithm is dependent on
the ordering of the vertices. To illustrate this point, consider the bipartite graph
with vertices

(41) V= {“171‘27”1’”2’ <oy Uy }
and edges
(42) E={():1<i<2, 1<j<n}.
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The symmetric sequential coloring algorithm with the ordering

{01,02, e ey vn,ul,uz}

requires 3 colors, but requires n colors with the ordering
{ul,uz,vl,vz, B /A } .

This example shows that the symmetric sequential coloring algorithm may
require a,nX,(G) colors for some positive constant ;. This result is in contrast
to the results obtained by Coleman and More [1981] for the unsymmetric coloring
algorithm. They showed that if G = G,(A) for some m by n matrix A, then
any reasonable sequential coloring algorithm requires, at worst, a,m"?X(G) colors
for some positive constant as.

Our numerical results for various types of symmetric sequential coloring
algorithms show that at the k-th stage these algorithms tend to produce a large
number of 2-colored paths of length 2. Thus the number of forbidden colors for
v, increases, and then we may obtain poor results. This is illustrated by the
above example. If ¢(u;) = ¢(u,) and we assign a color to v;, then (u;,v;,u5) is a
2-colored path of length 2 and hence we cannot have ¢(v;) = ¢(v;) for j 7 i.

We have obtained better results with the algorithm of Powell and Toint
[1979). As originally proposed, the Powell and Toint algorithm determines a
symmetrically consistent partition. Due to the equivalence established in
Theorem 2.2, this method implicitly determines a symmetric coloring. Translation
of their partitioning procedure into a symmetric coloring algorithm requires the
concept of the degree of a vertex: Given a graph G = (V,E) the degree of a ver-
tex v is the number of edges with v as an endpoint.

Algorithm. Let G = (V,E) be a graph.
Fork=12,...,
a) Let U, be the un-colored vertices. If U, is empty then terminate the
algorithm.
b) Sort the vertices of G[U.] in decreasing order of degree in G[Uy].

¢) Build a vertex set W, by examining the vertices in Uy in the order
determined in a), and adding a vertex v to W, if there is not a path in
G|U,] between v and some vertex in W of length | < 2.

d) For each v € W, let ¢(v) = k.

This is the graph-theory version of the direct Powell-Toint method. Note
that the coloring ¢ produced by this algorithm is such that if a vertex w is adja-
cent to vertices v, and v, with ¢(v,) = ¢(v,) then



$(w) < ¢(vy) = ¢(vy).
As a consequence, ¢ is a symmetric coloring of G.

It is certainly possible to envision modifications to the Powell-Toint algo-
rithm. For example, we can modify step ¢ by allowing the assignment of a vertex
v to W, if this does not lead to the creation of a 2-colored path of length 3 at
step d. Thapa [1982] has proposed a modification along these lines. We have
not considered any such modifications because there is no guarantee that they
will perform better than the original algorithm. For example, the modified algo-
rithm of Thapa needs n colors on the bipartite graph G defined by (4.1) and
(4.2), while the Powell-Toint algorithm only needs 3 colors.

Numerical results for some of the coloring algorithms mentioned above can
be found in Table 4.1. The graphs G used in the numerical results are of the
form G,(A) where A is a sparse symmetric matrix of order n. The sparsity pat-
terns used are those in the Everstine [1979] collection where the dimensions n
range from 59 to 2680. In addition to the dimension n of the problem, we have
included the density matd of the matrix A, the maximum number mazr of
nonzeroes in any row of A, and the number of colors required by the algorithm.
The totals for Table 4.1 appear in Table 4.2.

The sl algorithm of Table 4.1 is a sequential coloring algorithm on G2. The
ordering used is known in the graph theory literature (Matula, Marble, and Isaac-
son [1972]) as the smallest-last ordering. To define this ordering for a graph
G = (V,E), assume that the vertices v ,,, ..., v, have been selected, and
choose v, so that the degree of v, in the subgraph induced by

V-Avsn- - 0}

is minimal. Thus the sl algorithm is a sequential coloring algorithm on G2 with
the smallest-last ordering for G2. Software for the sl algorithm is described by
Coleman and More [1982].

The sequential coloring algorithm with the smallest-last ordering can be
guaranteed to work well for many graphs. Given a graph G = (V,E) and a
nonempty WCV, let §G[W]) be the smallest degree of G[W]. The sequential
coloring algorithm on a graph G with the smallest-last ordering for G requires no
more than

(4.3) max{1+ §G[W]): W C V}

colors. This is not difficult to show; just note that the color assigned to v does
not exceed 1 + d, where d; is the degree of v, in G[{vy,v,, . . . ,v}]. For more
information on the smallest-last ordering, see Coleman and More [1981,1982], and
Matula and Beck [1981].



n matd(%)  mazr sl ssl  dpt
59 7.67 6 6 5 6
66 7.35 6 6 5 6
72 4.28 5 5 3 3
87 7.15 13 13 9 10

162 4.50 9 10 9 10

193 9.38 30 32 27 27

198 3.55 12 12 10 9

209 3.99 17 17 13 13

221 3.34 12 12 9 10

234 1.52 10 10 5 5

245 2.43 13 13 10 10

307 2.68 9 11 11 10

310 2.55 11 11 10 9

346 2.69 19 20 16 15
361 2.27 9 11 11 10

419 2.03 13 15 12 12

492 1.30 11 11 10 9

503 2.38 25 25 20 20

512 1.34 15 16 14 13

592 1.46 15 15 12 11

607 1.39 14 17 13 13

758 1.04 11 12 10 10

869 .96 14 15 13 11

878 97 10 11 11 11

918 .88 13 14 11 11

992 1.70 18 22 20 18

1005 .85 27 27 19 20
1007 .85 10 11 11 11
1242 .68 12 14 12 12
2680 .35 19 19 14 14

Table 4.1. Direct Methods.

mazr sl ssl  dpt
408 433 355 349

Table 4.2. Totals for Table 4.1.

The ssl algorithm of Table 4.1 is a symmetric sequential coloring algorithm
on G with the smallest-last ordering for G2. The dpt algorithm is the Powell-
Toint [1979] algorithm described above.

The above discussion on the smallest-last ordering shows that the number of
colors required by the s/ and ssl algorithms is bounded by

(44)  max{1+§GHW])): W C V}.
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Unfortunately, (4.4) can be a poor upper bound on X, (G). For example, if G is
the bipartite graph with vertices (4.1) and edges (4.2) then X,(G) = 3 but (4.4) is
n + 2.

The results of Tables 4.1 and 4.2 show that the sl algorithm produces
optimal or nearly optimal results as a coloring algorithm for G?. This can be
verified by noting that mazr is a lower bound on the chromatic number of G2
The sl algorithm, however, does not produce nearly optimal results as a sym-
metric coloring algorithm for G.

On these problems the dpt and ssl algorithms never require more colors than
the sl algorithm. On the other hand, the dpt and ssl algorithms only represent a
20% improvement over sl; it would have been reasonable to expect a 50%
improvement over an algorithm which disregards symmetry. Also note that on
these problems the dpt algorithm is, in general, superior to the ssl algorithm.

One final point. It is not possible to determine if the results produced by ss!
and dpt are nearly optimal because we do not have a good computable lower
bound on the symmetric chromatic number of G.

5. Direct Methods and Band Matrices.

Let A be a symmetric band matrix with bandwidth 8. Assume furthermore
that A is dense within the band so that

(51)  a;#0 < || <B.

The purpose of this section is to present one result -- unfortunately, a negative
one. We prove that

(5'2) Xa( Gc(A )) = X(Gn (A )2) =20+1.

Since Coleman and Mor¢ [1981] have shown that if A satisfies (5.1) then there
are algorithms for coloring G,(A4) = G,(A)? which are optimal, this result shows
that symmetry is not important to direct methods based on a partition of the
columns of A.

It is best to phrase our results in terms of band graphs: A graph G = (V,E)
is a band graph with bandwidth B if there is an ordering of the vertices vy,v,,...,,
such that

(vi,0;)€EE <> 0< [i-j| < 8.

The ordering vy,v,,...,9, is a natural ordering of the band graph.

The notion of a band graph was introduced by Coleman and More [1981] in
their study of coloring algorithms for graphs of the form G,(A). In this connec-
tion, note that if A is a symmetric matrix and (5.1) holds then G,(A4) is a band
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graph with a bandwidth of 23. Also note that if A is a symmetric matrix then
G,(A) is a band graph with bandwidth J if and only if there is a permutation of
the rows and columns of A such that the permuted matrix satisfies (5.1).

We have already noted that the size of a clique is a lower bound on the
chromatic number of a graph. In particular, if G is a band graph then G? has a
clique of size 23+ 1 whenever | V| > 28+ 1, and thus 24+1 < X(G?). We now
extend this result.

Lemma 5.1. Let G = (V,E) be a band graph with bandwidth 8, and assume that
| V| > 30+ 1. Then every symmetric completion G, of G has a clique of size
20+ 1.

Proof: The proof is by induction on the size of the clique. Clearly, any set of
B+ 1 vertices induces a clique in G and hence in G,. For the induction step we
assume that for some indices { and m,

(53)  { Vps 1,9ps me 1rvager o 1S TS m < B,
or

(54) {vm,...,vﬂ+ l—l’vﬂ+m""?v2ﬂ+m}’ 1 S l S m S ﬂ+1,

induces a clique in G, of size ¢ = 28+ [-m+ 1. We now show that there is a
clique in G, of size ¢ + 1 and of the required form.

If | = m then the cliques induced by (5.3) or (5.4) are of size 28+ 1, so
assume that | < m. Also assume that the clique is of the form (5.3); the proof
for the case when the clique is of the form (5.4) is similar. Finally, assume that
there is an index k such that

(5.5) (Ve,vp4 m)EE, | Sk < m-1.
If there is no such index & then
{v, .. %% m - -5 V2841 )
induces a clique of size ¢ + 1 in G, and we are done. Now consider vertices

,

r oy U

yy M r <A+, f+rm+1< s <28+ m.
It follows that
(vluvr’vﬂ+ mYs)

is a path in G of length 3, and in view of (5.5), we must have that
(56) (vr’vc)EEo’ m Sf' Sﬂ+lv ﬂ+m+133 S2ﬂ+m
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Since (5.6) trivially holds when s = S+ m, it follows that

{vm,...,vﬂ+l,vﬁ+m7 s )v2ﬂ+m}

induces a clique in G, of size o+ 1 and of the form (5.4). Thus, in all cases there
is a clique of size o+ 1. W&

Theorem 5.2. Let G = (V,E) be a band graph with bandwsdth 8. If | V| > 36+1
then

X,(G) = X(G?) = 23+1.

Proof: Since the size of a clique is a lower bound on the chromatic number of a
graph, Lemma 5.1 shows that 28+1 < X(G,) for every symmetric completion
G, of G. Hence, Theorems 3.1 and 3.2 yield that

(5.7) 20+1 < X,(G) < X(G?).
To complete the proof, just note that the mapping ¢ defined on V by
é(v;) = ¢ mod (26+1)

is a coloring of G2, and hence, X(G?) < 28+ 1. This bound and (5.7) establish
our result. W

6. Triangular Substitution Methods

The result of Section 5 shows that direct methods may not be able to take
advantage of the symmetry of the matrix A. In this section we explore a type of
indirect method which is able, in particular, to produce the desired results for
banded matrices. We consider the lower triangular substitution methods of
Powell and Toint [1979]; upper triangular substitution methods are entirely
analogous, but following Powell and Toint, we only consider the lower triangular
methods.

Let A be a symmetric matrix and let L be the lower triangular part of A;
that is, L is a lower triangular matrix such that A — L is strictly upper triangu-
lar. A lower triangular substitution method is based on the result of Powell and
Toint [1979] that if C;,C,, . . ., C, is a consistent partition of the columns of L
then A can be determined indirectly with p evaluations of Ad. It is not difficult
to establish this result. With each group C associate a direction d with com-
ponents 6; 7 0 if j belongs to C and é; = 0 otherwise. Then

Ad = }] b;0;
JEC
where ay,ay, . . ., a, are the columns of A. To determine g;; with ¢ > j note

that if column j is the only column in group C with a nonzero in row ¢ > j
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then

(61) (Ad)' = 61'(1,'1' + Z 6[0[; .
I1>1,leC

This expression shows that a;; depends on (Ad); and on elements of L in rows
! > i. Thus L can be determined indirectly by first determining the n-th row of
L and then solving for the remaining rows of L in the order n-1,n-2, ..., 1.
Another consequence of (6.1) is that computing a;; requires, at most, p; opera-
tions where p; is the number of nonzeroes in the ¢-th row of A. Thus computing
all of A requires less than

n

Y o}

i=1
arithmetic operations, and this makes a triangular substitution method attractive
in terms of the overhead. On the other hand, computing all of A with a direct
method requires about 7 arithmetic operations where 7 is the number of nonzeroes
in A. Another difference between direct methods and triangular substitution
methods is that in a triangular substitution method the computation of a;;
requires a sequence of substitutions which may magnify errors considerably, while
in a direct method there is no magnification of errors. Note, however, that Powell
and Toint [1979] show that magnification of errors can only occur when the ratio
of the largest to the smallest component of d is large.

Powell and Toint [1979] also noted that the number of groups in a consistent
partition of the columns of L depends on the ordering of the rows and columns
of A. Thus, if 7 is a permutation matrix and L, is the lower triangular part of
=T An then we may have

X(Gy(L ) < X(Gy(L))-

For example, if A has an arrowhead structure, then it is possible to choose the
permutation 7 so that the chromatic number of G,(L,) is any integer in the
interval [2,n]. Since Powell and Toint were unaware of the existence of the
smallest-last ordering in the graph theory literature, it is interesting to note that
the algorithm proposed by Powell and Toint [1979] for choosing the permutation
matrix 7 is the smallest-last ordering of G,(A). We have already seen in Section
4 that the smallest-last ordering is a useful ordering in connection with sequential
coloring algorithms. There are good reasons for choosing this ordering to define
the permutation matrix m; we shall return to this point later on in this section.

In graph theory terminology, the lower triangular substitution method of
Powell and Toint consists of choosing the smallest-last ordering for the vertices of
G,(A) and then coloring G,(L,) with a sequential coloring algorithm. If column
4§ is in position n(j) of the smallest-last ordering of G,(A) then the permutation
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matrix 7 can be identified with the smallest-last ordering by setting the j-th
column of 7 to the m(j)-th column of the identity matrix. Thus the vertices of
G,(L ) have the induced ordering

(62) a,r(l),a,,(z), ooy a,(,,) .

Powell and Toint used the sequential coloring algorithm with this ordering to
color G,(L,). There is no compelling reason for using the sequential coloring
algorithm with this ordering and, in fact, our numerical results show that the use
of other orderings in the sequential coloring algorithm tends to reduce the
number of evaluations of Ad needed by the triangular substitution method.

To further explore the properties of triangular substitution methods, we

characterize a coloring of G,(L,) as a restricted coloring of G,(A) in the follow-
ing sense.
Definition. A mapping ¢: V—{1,2,...,p} is a triangular p-coloring of a graph
G = (V,E) if ¢ is a p-coloring of G and if there is an ordering v,,v,, . . . , v, of
the vertices of G such that ¢ is not a 2-coloring for any path (v,-,v,,,vj) with
k > max(s,7). The triangular chromatic number X (G) of G is the smallest p
for which G has a triangular p-coloring.

For some graphs it is not difficult to determine X,(G). For example, if G is
a band graph with bandwidth 8 then X,(G) =1+ J. Band graphs thus show
that the triangular chromatic number of a graph can be considerably smaller
than the symmetric chromatic number of a graph. Our next result shows that
the triangular chromatic number of G,(A) is the smallest number of evaluations
of Ad needed to determine a symmetric matrix A with a triangular substitution
method.

Theorem 6.1. Let A be a symmetric matriz with nonzero diagonal elements. The
mapping ¢ is a triangular coloring of G,(A) sf and only if ¢ is a coloring of
Gy(L ) for some permutation matriz «.

Proof: It is sufficient to show that ¢ is a triangular coloring of G,(A) with the
ordering ay,a, . . ., a, of the vertices of G,(A) if and only if ¢ is a coloring of
Gy(L).

First assume that ¢ is a triangular coloring of G,(A) and let (a;,a;) be an
edge of G,(L). Then (a;,a;) is an edge of G,(A) or there is an index
k > max(i,j) such that (a;,a;) and (a;,a;) are edges of G,(A). Since ¢ is a tri-
angular coloring of G,(A), we must have that ¢(q¢;) 7% ¢(a;). Hence ¢ is a color-
ing of G,(L).

Now assume that ¢ is a coloring of G,(L). Then ¢ is a coloring of G,(A)
because G,(A) is a subgraph of G,(L) whenever A has nonzero diagonal ele-
ments. If (a;,a;,8;) is a path in G,(A) with k¥ > max(s,s) then (g;,q;) is an
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edge of G,(L) and hence ¢(a;) % #(a;). Thus ¢ is not a 2-coloring of (a;,a;,a;).
n

An important consequence of Theorem 6.1 is that it shows that triangular
substitution methods are implicitly trying to solve a restricted graph coloring
problem.

Triangular Graph Coloring Problem: Obtain a minimum triangular coloring of
G,(A).

From the graph coloring point of view, it is clear that we may think of algo-
rithms which determine a triangular coloring of G,(A) directly instead of first
determining an ordering 7 and then coloring G,(L,). We shall not pursue this
type of algorithm in this paper; we restrict ourselves to triangular substitution
methods.

The following result can be used to justify the choice of the smallest-last
ordering to define the permutation matrix .

Theorem 6.2. Let G = (V,E) be a graph with the vertices ordered vy,v,, . . . , v,.
For any W C V let §(G[W]) be the smallest degree in the subgraph induced by W,
and let d(w; W) be the degree of w in G|W]. If

Vi ={v,vg...,0%},
. then
(6.3) max{§G[W]): W C V} < max{d(v;V;):1 <k <n}.

Equality holds in (6.3) if vy,vq, . . ., v, 13 a smallest-last ordering.

Proof: Given W C V, let k be the smallest index such that G[W] C G[V,].
Then v, € W and hence

HG[W]) < d(v; W) < d(w;Vy).
Thus (6.3) holds. Moreover, if v;,v,, . . . , v, is a smallest-last ordering then
d(v; Vi) = 6(G[Vi]),

so that equality holds in (6.3) for a smallest-last ordering.

It is interesting to interpret this result of Matula [1968] in terms of matrices.
In this case 1+ d(v;;V}) is the number of nonzeroes in the k-th row of the lower
triangular part of the adjacency matrix. Thus, for any ordering 7 of the columns
of a symmetric matrix A, the smallest-last ordering minimizes the maximum
number of nonzeroes in any row of L,. This result was established independently
by Powell and Toint [1979].

Another interesting consequence of Theorem (6.2) can be obtained by noting
that if ¢ is a triangular coloring of G, and if vy,v,, ..., v, is the associated
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ordering of the vertices of G, then ¢ requires at least
(6.4) max{ 1+ d(v;Vi):1 < k< n}.

colors. This is not difficult to prove. If | = d(v;;V}) then there are ! vertices in
V, adjacent to v;. Without loss of generality, assume that v,, . . .,y are adja-
cent to v,. Hence, (v;,v;,v;) is a path in G for 1 < i < j <[ Since ¢ is a
coloring of G we must have that ¢(v;) 7 é(v;) for 1 < ¢ </, and since ¢ is a
triangular coloring of G we must also have that

o(v;) # dlv;), i#5, 6j=12...,1
Thus ¢ needs at least 1+ { colors, as we wanted to show.

We have shown that any triangular coloring of G requires at least (6.4)
colors. Since equality holds in (6.3) for a smallest-last ordering, we also have that

(6.5) max {1+ d(v;V;):1 < k < n} < X/(G)

holds for a smallest-last ordering. Clearly, we do not want an ordering which
violates this inequality, so from this point of view the smallest-last ordering is
quite satisfactory.

Theorem 6.3. Let G = (V,E) be a graph. Then
X(G) < max{1+ §G[W]): W C V} < X(G) < X(G?).

Proof: The first inequality is a standard upper bound on the chromatic number of
a graph due to Szekeres and Wilf [1968]. This inequality is also a consequence of
the result that the number of colors required by a sequential coloring algorithm
with the smallest-last ordering is bounded by (4.3). The second inequality is an
immediate consequence of Theorem 6.2 and the fact that (6.5) holds for a
smallest-last ordering. The third inequality follows since if ¢ is a coloring of G?
then ¢ is a triangular coloring of G. B

7. The Triangular Chromatic Number.

We have shown that the triangular chromatic number of G,(A) is the
chromatic number of G,(L,) for some permutation matrix =. In this section we
consider the problem of determining the chromatic number of G,(L) for an arbi-
trary lower triangular matrix L and the problem of determining the triangular
chromatic number of a general graph G. We show that both of these problems
are just as hard as the general graph coloring problem.

We first prove that given a p-colorable graph G with p > 3, we can con-
struct a lower triangular matrix L so that G,(L) has the same chromatic
number as G.
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Theorem 7.1. Let G = (V,E) be a graph. If X(G) > 3 then there is a lower tri-
angular matriz L of order | V |+ | E | such that

(7.1)  X(Gy(L)) = X(G).

Proof: Let vy, . . ., v, be the vertices of G, and let e,...,e,, be the edges of G.
Now define an m by n matrix B by setting

by =b; =1, by=0, kF#i,j,

for each edge ¢, = (v;,v;) of G, and let

I,
(72) L=|p

where I, and I, are the identity matrices of order n and m, respectively. It
should now be clear that G is a subgraph of G,(L) and that (7.1) holds. B

Theorem 7.1 extends a result of Coleman and More¢ [1981] in which it is
shown that (7.1) holds for a general matrix. It is interesting to note that the
lower triangular matrix (7.2) is quite sparse; it has at most 3 nonzero elements
per row. Theorem 7.1 shows that even if we were able to determine the correct
permutation matrix x, determining the chromatic number of G,(L,) is still an
intractable problem. In particular, any polynomial algorithm for determining the
chromatic number of a graph is bound to fail on graphs G,(L ) where L is of the
form (7.2).

We now prove that the determination of the triangular chromatic number is
a difficult problem even if the graph is bipartite.

Theorem 7.2. Let G = (V,E) be a graph. If X(G) > 3 then there is a bipartite
graph B with | V| (14 | E |) vertices such that

(7.3) X/(B) = X(G).
Proof: The proof is very similar to that of Theorem 3.3. Let v, ..., v, be the

vertices of G, and let e,...,e,, be the edges of G. For each edge ¢ = (v;,v;)
define a bipartite graph B, with vertices

{v;,v;,w{), o wlY

iU
and edges

(v;,w{"), (vj,w,,(’)), k=1,.,n.
Now define a bipartite graph B by setting

viB)= V(@)Y {w:1<k<n, 1<1<m}
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and

E(B) = IGI E(B).

We now show that (7.3) holds for this bipartite graph B. To prove that
(74)  Xx{B) < X(G),

let ¢ be a coloring of G, and extend ¢ to a coloring of B be setting ¢(w,,(’)) to
any color that does not agree with ¢(v;) or ¢(v;). Since X(G) > 3 this is possi-
ble. We now show that the extended ¢ is a triangular coloring of B for any ord-
ering of the vertices of B which orders the vertices of G first. To establish this
claim note that the only paths in B of length 2 are of the form

(75) (viawk(l);vj)) € = (U,','UJ‘)EE,
or of the form
(76) (wi(r))vk’wj(,)) .

If the path is of the form (7.5) then #(v;) 7% #(v;) because ¢ is a coloring of G
and (v;,v;) is an edge of G. Thus ¢ is not a 2-coloring of paths of the form (7.5).
On the other hand, ¢ can be a 2-coloring for paths of the form (7.6) because the
vertices of G are ordered first. Hence ¢ is a triangular coloring of B and thus
(7.4) follows. To complete the proof we now show that

77)  X(G) < X(B).

If X(B) > n then (7.7) holds trivially, so assume that X(B) < n. Let ¢ be an
optimal triangular coloring of B and let 7 be an ordering of the vertices of B
associated with the triangular coloring ¢. We now show that ¢ is a coloring of
G. Assume that ¢(v;) = #(v;) for some edge ¢ = (v;,v;) of G. Since (v,-,w,,('),vj)
is a path in B and ¢ is a triangular coloring of G we must have that

(7.8)  mwl) < max{n(v;),7(v;)}, 1<k < n.

Moreover, since (w,"),v;,w,")) and (w,.(‘),vj,w,(’)) are paths in B and (7.8) holds,
then

¢(w,(’)) £ ¢(w,(')) , r#s, rs=12...,n.

Thus ¢ uses at least n colors. This contradicts the assumption that X (B) < n,
so we must have that ¢(v;) # ¢(v;) whenever (v;,v;) is an edge of G. Thus ¢ is a
coloring of G and as a consequence (7.7) holds. @

The similarity between the proofs of Theorems 7.2 and that of Theorem 3.3
is apparent. In particular, we have used the same bipartite graph B in both



- 26 -

proofs, and we have shown that
X(B) = X (B) = X(G).

The main difference between the two proofs is that in Theorem 3.3 we argue in
terms of completions while in Theorem 7.2 we use colorings. It should be clear,
however, that we can definc a triangular completion of a graph and prove a result
analogous to Theorem 3.2.

8. Numerical Results

We have examined several algorithms for determining symmetric matrices;
the direct methods of Section 4 and the triangular substitution methods of Sec-
tion 6. We have already determined that the Powell-Toint direct method had the
best overall performance of the direct methods. In this section we present numeri-
cal results for the triangular substitution methods and compare their performance
with the Powell-Toint method.

The numerical results for the algorithms under consideration appear in
Table 8.1. The totals for Table 8.1 are in Table 8.2. The graphs used in these
results are the same as those in Section 4. They are graphs G of the form G,(A)
where A is a sparse symmetric matrix of order n with a sparsity pattern from
the Everstine [1979] collection.

All of the triangular substitution methods that we consider use the smallest-
last ordering to define the permutation matrix = and then use a sequential color-
ing algorithm to color G,(L,). They only differ in the ordering used by the
sequential coloring algorithm.

For each problem Table 8.1 presents the dimension n of the problem, the
density matd of the matrix L,, the maximum number of nonzeroes mazr in any
row of the matrix L., and the number of colors required by the coloring algo-
rithms.

The dpt algorithm of Table 8.1 is an implementation of the Powell-Toint
direct method described in Section 4. The sipt algorithm is the triangular substi-
tution method of Powell and Toint [1979]. As noted in Section 6, this algorithm
uses the sequential coloring algorithm with the induced ordering (6.2) to color
G(L,). The sisl algorithm uses the sequential coloring algorithm with the
smallest-last ordering to color G(L ).

Tables 8.1 and 8.2 show that triangular substitution methods are able to
determine the symmetric matrix A with fewer evaluations of Ad. Also note that
triangular substitution methods represent an improvement of 45% over the slo
algorithm of Section 4. Thus triangular substitution methods fulfill the expected
improvement over a method that disregards symmetry.



n matd(%) mazr dpt _ slpt _ slsl
59 4.68 4 6 4 4
66 4.43 3 6 3 3
72 2.84 3 3 3 3
87 4.15 5 10 6 7

162 2.56 5 10 6 6

193 4.95 12 27 17 17

198 2.03 5 9 6 6

209 2.23 7 13 9 9
221 1.89 ) 10 7 6
234 .98 3 5 6 4
245 1.42 6 10 7 7
307 1.50 6 10 8 7
310 1.43 5 9 7 7
346 1.49 7 15 12 11
361 1.27 5 10 7 7
419 1.13 7 12 8 8
492 75 5 9 6 6
503 1.29 9 20 14 13
512 77 7 13 10 10
592 81 6 11 9 8
607 .78 6 13 9 8
758 .59 5 10 7 7
869 .54 6 11 8 7
878 .04 5 11 7 7
918 .49 6 11 8 7
992 .90 10 18 14 14
1005 48 10 20 14 13
1007 47 5 11 7 7
1242 .38 7 12 8 8
2680 .19 7 14 11 9

Table 8.1. Direct and Triangular Substitution Methods.

mazr dpt  slpt  slsl
182 349 248 236

Table 8.2. Totals for Table 8.1.

Since Theorems 6.2 and 6.3 yield that mazr is a lower bound on X/(G),
these numerical results show that the triangular substitution methods slpt and
slsl are nearly optimal on these problems. On the average, the slsl algorithm is
less than two colors away from X{G). In the same vein, note that the slo algo-
rithm is, on the average, less that one color away from X(G?).

Finally note that with the exception of one problem, the slsl algorithm
never performs worse than the slpt algorithm.
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9. Concluding Remarks.

We have analyzed direct and indirect methods for determining symmetric
matrices. The emphasis is on methods which can be efficiently and reliably imple-
mented in a computing environment. We have found that the triangular substitu-
tion method slsl requires the least number of evaluations of Ad to determine A,
and that slsl is always nearly optimal on our test problems.

Although triangular substitution methods can determine A in nearly optimal
fashion, recall that we mentioned at the beginning of Section 6 that the cost of
obtaining A and the errors involved in determining A are higher with triangular
substitution methods than with direct methods. Thus, it seems that it would be
useful to study direct methods further. In this vein, note that the example at the
end of Section 2 shows that general direct methods can provide vast improve-
ments on direct methods based on partitions of the columns of A.

It may also be worthwhile to study triangular substitution methods further.
A topic of interest is the existence of other reasonable choices for the ordering
that defines the permutation matrix 7. We have obtained good results if = is
chosen via the incidence degree ordering of Coleman and More [1981]. If the
sequential coloring algorithm with the smallest-last ordering is then used to color
G|[L,], then this algorithm needs a total of 233 colors for the problems of Section
8. We have not presented detailed numerical results for this algorithm because
the theoretical justification for the incidence degree ordering is not strong
enough.

There are other open questions which deserve further study and which could
lead to useful improvements on current algorithms. For instance, it would be
interesting to investigate the ratio

Xo(G)

g

X(G)

p

Our numerical results suggest that p > 1, but we have been unable to establish
this conjecture. Similarly, we don’t know if p < 2 always. Note that band graphs
show that 2 — p may be arbitrarily small.
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