
Minimum-Perimeter Domain Assignment �Jonathan Yackely Robert R. Meyerz Ioannis ChristouzAbstractFor certain classes of problems de�ned over two-dimensional domains withgrid structure, optimization problems involving the assignment of grid cellsto processors present a nonlinear network model for the problem of parti-tioning tasks among processors so as to minimize interprocessor communica-tion. Minimizing interprocessor communication in this context is shown to beequivalent to tiling the domain so as to minimize total tile perimeter, whereeach tile corresponds to the collection of tasks assigned to some processor.A tight lower bound on the perimeter of a tile as a function of its area isdeveloped. We then show how to generate minimum-perimeter tiles. By us-ing assignments corresponding to near-rectangular minimum-perimeter tiles,closed form solutions are developed for certain classes of domains. We con-clude with computational results with parallel high-level genetic algorithmsthat have produced good (and sometimes provably optimal) solutions for verylarge perimeter minimization problems.1 IntroductionMany computations performed by systems of parallel processors involve a collectionof tasks which are related by a rectangular grid structure (i.e., as in �gure 1, eachtask has at most four \neighbor" tasks). Examples include the problem of deter-mining the characteristics of uid ow [8], solving obstacle problems using parallelsuccessive overrelaxation [3], and edge detection in computer vision [16]. We as-sume initially that all grid cells are squares of uniform size as in �gure 1, and thatthere is a task associated with each cell that uses only its own data and values fromneighboring cells that share an edge. For cells on the boundary of the given region,boundary conditions may be used in the computations. If the grid cells are assignedto the processors (that is, the computation for each cell is done by a particular pro-cessor), then sharing data with neighboring cells may involve communicating withother processors.�This research was partially supported by the Air Force O�ce of Scienti�c Research undergrant F49620-94-1-0036, and by the NSF under grants CCR-8907671 and CCR-9306807.yComputer Science Department, UW Oshkosh, 800 Algoma Blvd., Oshkosh, WI 54901.zCenter for Parallel Optimization, Computer Sciences Department, University of Wisconsin,Madison, Wisconsin 53706. 1



1 1 1 8 8 81 1 1 8 8 82 2 2 7 7 72 2 2 4 4 5 5 7 7 73 3 3 4 4 5 5 6 6 63 3 3 4 4 5 5 6 6 6Figure 1: Assigning the grid cells of a domain to processorsThe term \tile" will refer to a connected group of cells assigned to the sameprocessor. (In the combinatorics literature [11, 12], such a con�guration is called apolyomino.) We say a set of cells is connected if for every pair of cells ci; cj there is apath of cells in the set from ci to cj such that adjacent cells on the path share an edge.(We will show that, in order to achieve the lower bounds on perimeter derived in x3,the cells assigned to each processor must be connected.) To measure interprocessorcommunication, we measure the length of the tile borders because only across thetile borders may data pass between di�erent processors. In �gure 1 we have placedprocessor identi�cation numbers in the cells to indicate the assignment of cells toprocessors. For the case depicted in the �gure there are eight processors, eachassigned six cells for load balancing. Each processor's tile has a perimeter of ten,so the total length of the tile borders is 80 (the results in section 3 show this isthe minimum possible total border length for any load-balanced assignment). Ingeneral the processors' tiles can be of di�erent shapes even if their loads are equal.This paper discusses the nonlinear network ow problem of minimizing totaltile perimeter subject to workload balancing constraints; a formal statement of thisproblem is presented in x2. In x3, we develop lower bounds on individual tile perime-ter and total tile perimeter (these bounds are used to establish the optimality ofparticular solutions for certain cases). x4 develops optimal tiles of cells for indi-vidual processors, and x5 provides combinations of these tiles producing optimalassignments that attain the lower bound on total perimeter. In x6 we investigatea database application in which domain boundaries are treated di�erently becausea di�erent style of communication is assumed; this results in a modi�cation of theobjective function. A genetic algorithm that proved very e�ective in this databaseapplication is discussed in x7, and extensions of this approach to the minimumperimeter and other problems are also considered. Our conclusions and some fu-ture research directions are contained in x8.2 Problem StatementSuppose that we wish to allocate the cells of a domain among N processors. LetA denote the number of cells (area) of the domain. Given a processor p, let Apdenote the number of cells (or area) assigned to p. (Ap may also be thought of2



as the workload assigned to processor p since there is an equal amount of com-putation associated with each cell.) Load balancing is achieved by specifying anappropriate Ap for each processor. (In typical applications, the speci�ed processorloads are equal or di�er by at most 1. It is assumed that PpAp = A.) We useP(T ) to denote the perimeter of a con�guration T of cells. The notation P(Tp) isused to denote the perimeter of the tile(s) held by processor p. (The cells assignedto processor p are not necessarily connected, and therefore may comprise severaltiles rather than a polyomino.) The objective function C that we wish to minimizemeasures interprocessor communication and is de�ned as follows: C := Pp P(Tp).(As we will see below, this objective can also be represented as a sum of quadraticterms, each of which corresponds to the assignment of adjacent cells to di�erentprocessors.) This model is motivated by the assumption that total interprocessorcommunication may be expressed as the sum of the communication associated withthe domain boundary (if there is any such communication) and the communicationassociated with \interior" borders between tiles (the total length of which is de-termined by the manner in which cells are assigned to processors). With respectto communication corresponding to the domain boundary, there are at least twopossible simplifying assumptions that mesh with the models to be detailed below.One could assume that the computation associated with the boundary cells (i.e.,those cells with edges on the boundary of the domain) requires no communicationacross boundary edges. Alternatively one could assume some �xed amount of com-munication proportional to boundary edges for each boundary cell. In either casethe total amount of communication corresponding to the domain boundary is aconstant. Thus, the total communication is given by k1B + k2�, where B is thetotal length of the domain boundary, � is the total length of the border betweentiles (note that in � each piece of the \interior" border is counted twice, once foreach tile), and k1 and k2 are scale factors relating boundary and border lengthsto communication. Since B is constant, minimizing this expression is equivalent tominimizing k2B+k2�, which in turn is equivalent to minimizing B+�, the total tileperimeter,Pp P(Tp). This equivalent geometric problem, formally stated below, isa nonlinear semi-assignment problem:Given: N processors, a domain comprised of grid cells, and a load Ap for eachprocessor.Problem: Find an assignment that solvesmin C =Pp P(Tp)s.t. every cell is assigned to a single processor,and processor p is assigned Ap cells (for every p = 1; 2; : : : ; N ).Algebraically, letting c denote the total number of cells, this problem is mosteasily formulated as a quadratic assignment problem:3



min cXi;i0=1 NXp;p0=1 kii0xpixp0i0(1) s:t:8><>:Pci=1 xpi = Ap p = 1 : : :NPPp=1 xpi = 1 i = 1 : : : cxpi 2 B = f0; 1gwhere kii0 = (1 if i, i' are adjacent cells0 otherwiseIt is easily seen that the number of assignments satisfying the balancing con-straint is�AA1��A� A1A2 ��A� A1 �A2A3 � � � ��A� A1 �A2 � � � � �AN�1AN � = A!QNp=1 (Ap!) :Complete enumeration of these assignments is not feasible even for relatively smallproblems. For example, given a domain consisting of 25 cells, 5 processors, and aload of 5 for each processor, there are more than 623� 1012 possible assignments.The processor assignment problem is related to the graph partition problemwhich is NP-complete (see Garey and Johnson, page 209 [4]). Yackel showed that theproblem is NP-hard if the domains are allowed to be arbitrary rectilinear grids [17].The complexity of the problem restricted to rectangular domains is unknown.3 Lower BoundsIn this section we will develop a lower bound on the measure C and discuss conditionsunder which this lower bound is attained. To do this we introduce the concept of\semi-perimeter" for a con�guration C, denoted by S(C), de�ned as the width plusheight of the smallest rectangle enclosing the compact form of the con�guration C,where all of the space between slices has been removed (see for example, �gure 2,in which the cells of a con�guration are labeled with the index p).p p pp p pp p p p p pp p pp p pFigure 2: Compact and non-compact forms of a con�guration(As discussed below, semi-perimeter is also half of ordinary geometric perimeterfor most con�gurations of interest, including minimum-perimeter tiles.)4



For example, the semi-perimeter of the con�guration is 4+3 = 7 and its perimeter is 14. The term \slice" is used to refer to a row or columnof either the domain or of a con�guration, depending on the context. S(C) is thusthe number of slices intersecting C. A tight lower bound on S(C) as a function ofthe number of cells in C (equivalently, the area of C) will be developed, yielding atight lower bound on P(C), hence a lower bound on C.We introduce the notion of \slice-convexity" of a con�guration. (In the poly-omino literature, such con�gurations are simply called \convex" even though theyneed not be convex in the usual mathematical programming sense. To emphasizetheir possible non-convexity, we will use the term \slice-convex".)De�nition 1 A con�guration is slice-convex if for any two cells c1; c2 of the con-�guration in the same slice, the smallest rectangle containing c1 and c2 lies entirelyin the con�guration.Lemma 2 For any con�guration C, P(C) � 2S(C). Furthermore, P(C) = 2S(C)if and only if C is a slice-convex con�guration.Proof: There are at least two edges forming part of the con�guration border ineach slice of C. Therefore each slice of C contributes at least 2 to the perimeter ofC, but exactly 1 to S(C). Since S(C) is the number of slices of C, P(C) � 2S(C).For a slice-convex con�guration, each slice of the con�guration contains exactly 2con�guration borders in the dimension corresponding to the slice, so that for a slice-convex con�guration P(C) = 2S(C). For a con�guration that is not slice-convex,there is a slice with more than 2 con�guration borders, therefore P(C) > 2S(C).When considering minimum-perimeter con�gurations in the following sections,lemma 2 allows us to restrict our attention to those which are slice-convex.In order to develop this lower bound, we �rst consider how much area canbe enclosed by a given perimeter. Let A�(S) be the function mapping S to themaximum area achievable with semi-perimeter S.Theorem 3 Given a semi-perimeter S, the maximum area tile with semi-perimeterS is an S2 � S2 square if S is even, and is an �S�12 �� �S+12 � rectangle if S is odd,i.e., A�(S) = 8<: �S2 �2 if S is even�S�12 � �S+12 � if S is odd :Proof: For a con�guration C let Sx(C) and Sy(C) denote the number of columnsand number of rows in the con�guration respectively. Given any con�guration Cwith semi-perimeter S and area A, there is a rectangular con�guration C0 withdimensions Sx(C) � Sy(C), and area Sx(C)Sy(C) � A. Therefore we need onlyconsider rectangles as candidates for maximum area con�gurations. To �nd the5



rectangle of maximum area with semi-perimeter S, we maximize SxSy subject toSx + Sy = S. Of all pairs of integers with a certain sum, the pair with the greatestproduct is the one with the numbers closest together. If S is even, this is achievedby setting Sx = Sy = S2 , and if S is odd, it is achieved when Sx and Sy di�er by 1.By \inverting" the function A�(S), we obtain a function S�(A) which is de�nedas the function mapping area A to the minimum semi-perimeter of all con�gurationsof A cells. We also de�ne P�(A) := 2S�(A) as the function mapping an area A tothe minimumperimeter of all con�gurations of A cells. (We show below that S�(A)is attained by a slice-convex tile, so that by slice-convexity (lemma 2) its perimeteris 2S�(A).) A result equivalent to proposition 4 appeared in the context of graphembedding in a paper by Rosenberg [15]. We restate the result here in terms ofperimeter and provide a simpler and more intuitive proof.Theorem 4 S�(A) = i lA1=2m + (2� i) jA1=2kwhere i is the smallest positive integer such thatlA1=2mi jA1=2k2�i � A:Proof: We may bound the semi-perimeter of any con�guration of A cells frombelow by �nding the smallest semi-perimeter S that satis�es A�(S) � A, since thisimpliesA > A�(S�1), which means that a semi-perimeter of S�1 is not compatiblewith an area of A.Consider the following sequence of rectangles:Q0 : 0�0 Q1 : 1�0 Q2 : 1�1 Q3 : 2�1 Q4 : 2�2 Q5 : 3�2 Q6 : 3�3 : : :We call these rectangles \quasi-squares" since the dimensions of each rectangledi�er by at most 1. Note that the areas of the quasi-squares in the sequence arestrictly increasing after the second, the area of the ith quasi-square Qi for i � 2is A�(i), and the semi-perimeter for the quasi-squares increases by 1 at each step.The areas of these quasi-squares are the points at which the lower bound on thesemi-perimeter increases by 1.For an arbitrary A, there is a unique smallest quasi-square Qj whose area is atleast A. Since the area of Qj is at least A, by selecting A cells from Qj a semi-perimeter of at most S(Qj) is achievable for A. Since the area of Qj�1 is smallerthan A, a semi-perimeter of S(Qj�1) = S(Qj)�1 is not achievable for A. Thereforethe smallest semi-perimeter achievable for any con�guration of A cells is S(Qj). Itis easy to see that each dimension of Qj is either �A1=2� or �A1=2� and that S(Qj)is exactly the semi-perimeter bound in the statement of the theorem.The above argument implies a construction technique for \perimeter-optimal"con�gurations, i.e., con�gurations of speci�ed area with minimum perimeter. Anoptimal con�guration for any A can be constructed by arranging A cells into a6



partial square as follows. Start with a complete square with sides of length �A1=2�.Add cells to �ll in new 1-dimensional faces (completing a face before starting on anew one) until the total number of cells is A. The resulting partial square will havesides of length �A1=2� and �A1=2�, and will measure �A1=2� in as few dimensions aspossible. By theorem 4, it will have minimum semi-perimeter. If the partial squaresare constructed to be slice-convex then by lemma2 they also have minimumperime-ter. This construction technique is a special case of a technique to be described inx4.2 that may be used to construct all minimum-perimeter con�gurations of a givenarea.There is a considerable literature (see for example [11, 12] and the referencestherein) dealing with the generating function approach for developing expressionsfor the exact number of \convex polyominoes" with various properties. It shouldbe noted that these expressions are generally non-closed-form expressions that mayinvolve in�nite expansions, and that the algorithms that we develop are based onlibraries (to be described below) comprised of particular small subsets of the fullcollection of minimum perimeter con�gurations for a given area, so that the fullcollection does not have to be counted or generated. In general, for large areas, thelatter set contains so many elements that it would be impractical to generate all ofthem anyway.For the two-dimensional case considered here, a result of Ghandeharizadeh etal [6] (lemma 1), and a result of Rosenberg [15] (lemma 4.3), both yield an alternatebound on the semi-perimeter S: S � l2A1=2m :This bound is equivalent to S�(A) (see Yackel and Meyer [18]), and by the precedingconstruction is therefore attained by appropriate con�gurations for each value of A.Lemma 5 Xp P�(Ap) � C .Proof: Follows from C =Pp P(Tp) and the area constraints for (Tp).Clearly, if the con�guration for each processor has minimum perimeter (i.e.,P(Ap) = P�(Ap) for all p), then the corresponding set of cell assignments achievesthe lower bound on the communication measure C, and is therefore an optimalassignment. In x5 we give some classes of domains for which such assignments arepossible.4 Other Minimum Perimeter Con�gurationsIn this section we discuss some additional characteristics of con�gurations that haveminimum perimeter for their area. The previous section establishes that con�gu-rations that are square or nearly square have minimum perimeter. In this sectionwe will see that con�gurations of other shapes may also have minimum perimeter.7



We may classify con�guration shapes according to two independent characteris-tics. Con�gurations are either nearly square (dimensions di�ering by at most 1)or non-square. In addition, con�gurations are either regular (complete rectangles)or irregular. Figure 3 depicts examples of minimum-perimeter con�gurations ineach of the four categories induced by these characteristics. Non-square regularnearly square non-squareregularirregularFigure 3: Categories of optimal con�gurationscon�gurations (rectangles) with minimum perimeter are discussed in x4.1. Irregu-lar minimum-perimeter con�gurations and a technique for constructing all optimalcon�gurations of a given area are taken up in x4.2. In the following lemmas wepresent two useful characterizations of con�gurations with minimum perimeter.Lemma 6 A con�guration of A cells with semi-perimeter S > 2 has minimumperimeter if and only if it is a slice-convex tile satisfyingA�(S � 1) < A :(2) Proof: From lemma 2 it follows that only slice-convex con�gurations may haveminimumperimeter. To see that only tiles (i.e., connected con�gurations) may haveminimumperimeter, consider a con�guration containing two disconnected sub-tilesdenoted by T1 and T2. By translating sub-tile T1 it is always possible to connect T1and T2 (see �gure 4), thereby decreasing the perimeter of the con�guration by atleast 2. If (2) holds, then A is greater than the largest area for which a smaller semi-perimeter is achievable, so the con�guration has minimum semi-perimeter. This,along with slice-convexity imply the con�guration has minimum perimeter.Lemma 7 A con�guration of A cells has minimum perimeter if and only if it isslice-convex and its minimum circumscribing rectangle has perimeter P�(A).Proof: The lemma follows from the fact that a rectangle has the same perimeteras any slice-convex con�guration of cells it minimally circumscribes.8



�!Figure 4: translating sub-tiles to decrease perimeter4.1 Optimal RectanglesUsing previous results, we can characterize the rectangular blocks that have min-imum perimeter. Below we use k to denote the di�erence between the height andwidth of a rectangular block.Theorem 8 An x� (x+k) or an (x+k)�x rectangular block is perimeter-optimalif and only if k is even and 1 + k2 (k2 � 1) � xork is odd and 1 + �k�12 �2 � x.Conversely, an x� (x+ k) or an (x+ k)� x rectangle is perimeter-optimal if andonly if k is at most maxn2 round(x1=2); 2 jx1=2 � 1k+ 1owhere round(x) rounds x to the nearest integer. (Since the fractional part of x1=2is never 1=2 for integer x, we do not care if round(1=2) = 0 or 1.)Proof: To prove the �rst part of the theorem, we simply apply the optimalitytest. By lemma 6, an x� (x+ k) block is optimal if and only if�2x+ k � 12 �r �2x+ k � 12 �2�r < x2 + kx(3)where r � 2x+ k � 1( mod 2).If k is even, (3) reduces to�2x+k�12 � �2x+k�12 � < x2 + kx() (x+ k2 )(x + k2 � 1) < x2 + kx() k2 (k2 � 1) < x:The integrality of both sides of the inequality allows us to derive the desired result.If k is odd, (3) reduces to �2x+k�12 �2 < x2 + kx() �x+ k�12 �2 < x2 + kx() �k�12 �2 < x:9



To prove the second part of the theorem, we show that 2 �(x� 1)1=2� + 1 and2 round �x1=2� are the largest odd and even integers respectively satisfying (3).To prove the result for the odd numbers, we start with the expression for x interms of odd k. �k�12 �2 + 1 � x() k�12 � (x� 1)1=2:Since the LHS of the last inequality is integer, we may take the oor of the RHS.() k�12 � �(x� 1)1=2�() k � 2 �(x� 1)1=2�+ 1:Since the RHS of the last inequality is an odd integer, k = 2 �(x � 1)1=2�+ 1 is thelargest odd integer satisfying (3).To prove the result for the even numbers we write x1=2 in the form x = r + fwhere r is the integer part and f 2 [0; 1) is the fractional part. If f < 12 then2 round �x1=2� = 2r. If f > 12 then 2 round �x1=2� = 2r + 2. (For integer x, f isnever 12 so round �x1=2� is uniquely de�ned for integer x.)If f < 12 and 2 round �x1=2� = 2r then k = 2r satis�es (3) becausek2 �k2 � 1� = r(r � 1) = r2 � r < r2 + 2fr + f2 = xand k = 2r+ 2 violates (3) becausek2 �k2 � 1�+ 1 = (r + 1)r + 1 = r2 + r + 1 > r2 + 2fr + f2 = x:If f > 12 and 2 round �x1=2� = 2r + 2 then k = 2r + 2 satis�es (3) becausek2 �k2 � 1� = (r + 1)r = r2 + r < r2 + 2fr + f2 = xand k = 2r+ 4 violates (3) becausek2 �k2 � 1� = (r + 2)(r + 1) = r2 + 3r + 2 > r2 + 2fr + f2 = x:Therefore k = 2 round �x1=2� is the largest even integer satisfying (3).Note that the �rst part of the theorem shows that if a particular rectangle is op-timal, then by increasing both dimensions by the same amount, the resulting largerrectangle is also optimal. Theorem 8 is addressed graphically in �gure 5, whichshows the dimensions of all rectangles with x � 30 that have minimum perimeter.The integral points on the diagonal line in the �gure represent the squares, and theouter boxes represent the most-skewed rectangles with optimal perimeter. All inte-ger points between (and including) the boxed points correspond to rectangles withminimumperimeter. Table 1 lists dimensions of the most skewed optimal rectangles10



corresponding to the boxed points above the diagonal. In the genetic algorithmsto be developed below, we start with minimum-perimeter con�gurations that are\nearly rectangular". Theorem 8 can be used to show that for a given area Ap, thenumber of such \near rectangles" is limited by the skew-parameter k which is oforder A1=4p .
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Figure 5: Dimensions of rectangles with optimal perimeterMost-skewed perimeter-optimal rectanglesk x� (x+ k)2 1� 33 2� 54 3� 7 4� 85 5� 10 6� 116 7� 13 8� 14 9� 157 10� 17 11� 18 12� 198 13� 21 14� 22 15� 23 16� 249 17� 26 18� 27 19� 28 20� 2910 21� 31 22� 32 23� 33 24� 34 25� 3511 26� 37 27� 38 28� 39 29� 40 30� 41Table 1: Some most-skewed perimeter-optimal rectangles11



Figure 6: Optimal con�gurations of area 104.2 Optimal Irregular TilesTheorem 4 suggests a procedure for generating all the minimum-perimeter con�gu-rations for a given area A (although these are too numerous to actually compute formost large areas). In this discussion we consider two con�gurations to be equivalentif one can be transformed into the other by rotation and/or reection. Using thetheorem, all the possible circumscribing rectangles for perimeter-optimal con�gu-rations of area A can be speci�ed. For each of these rectangles, any slice-convexsubset of A cells forms a minimum-perimeter con�guration. We say a cell is a cor-ner cell of a con�guration if it is not between two cells in any slice. By removinga corner cell from a slice-convex con�guration, convexity is maintained. Therefore,starting from a minimum-perimeter rectangle, a minimum-perimeter con�gurationcan be constructed by iteratively removing an appropriate number of corner cells.For example, given an area of 10, the minimum-perimeter con�gurations are gen-erated as follows. S�(10) = 7, so the rectangles of semi-perimeter 7 are considered.The possibilities are 1 � 6, 2 � 5, and 3 � 4. A 1 � 6 rectangle can't enclose 10cells, so all minimum-perimeter con�gurations are circumscribed by either 2� 5 or3 � 4 rectangles. Therefore all minimum-perimeter con�gurations of area 10 arerepresented by the con�gurations in �gure 6.The �rst �ve con�gurations in the �gure represent all the possibilities for con-�gurations enclosed by 3� 4 rectangles: the �rst two are constructed by removingtwo corners from the same column, the next two by removing two corners from thesame row, and the �fth by removing two corners from di�erent rows and columns.There is only one possible con�guration of area 10 contained in a 2� 5 rectangle.By examining the above technique, we are able to identify the cases in whichthere is a unique minimum-perimeter con�guration of given area. Given an areaA, if there is a unique rectangle with semi-perimeter S�(A) and area � A, then allminimum-perimeter con�gurations of area A are circumscribed by that rectangle.Furthermore, if the area of that unique enclosing rectangle is A or A+1 then thereis a unique optimal con�guration of area A, because all removals of either zero orone corner result in equivalent con�gurations. We also show that all other caseslead to non-uniqueness.Theorem 9 There is a unique minimum-perimeter con�guration of area A if andonly if A can be expressed as A = k2, k(k + 1), or k(k + 1)� 1 for positive integer12



k. Proof: If A = k2 then S�(A) = 2k. The unique enclosing rectangle with semi-perimeter 2k and area at least A has dimensions k � k (any other rectangle withsemi-perimeter 2k has area less than k2). Similarly, if A = k(k+ 1), or k(k+1)� 1and k � 2, then S�(A) = 2k + 1, and the unique rectangle with semi-perimeter2k+ 1 and area at least A has dimensions k � (k + 1).To show that these are the only classes of areas which have unique optimalcon�gurations, consider the fact that such an area A must have only one possibleenclosing rectangle with perimeter S�(A). Since S�(A) corresponds to an enclosingsquare or quasi-square, it follows that the unique enclosing rectangle must be thissquare or quasi-square. This means that the area A is expressible as either k2�j ork(k+1)�j for positive integer k and non-negative integer j. For areas expressed asA = k2 � j with j � 1, a (k+ 1)� (k � 1) rectangle is a second enclosing rectanglewith semi-perimeter 2k because (k + 1)(k � 1) � k2 � j. For areas expressed ask(k + 1) � j with j > 2 there can not be a unique optimal con�guration becausethere are at least two ways of removing j corners from a k � (k + 1) rectangle.The preceding argument proves that squares, quasi-squares, and quasi-squaresminus one corner are the unique optimal con�gurations for their areas and thatall other areas have alternate optimal con�gurations. Similar reasoning can beused to show that for areas of the form k2 � 1 with k � 2, there are exactly twooptimal con�gurations: a k � k square with one corner removed and a complete(k � 1)� (k + 1) rectangle.Another interesting fact about the set of optimal con�gurations of a given areais that there can be at most one rectangular con�guration in the set. To prove thiswe make use of the following lemma.Lemma 10 For (unordered) pairs of positive numbers, two distinct pairs with iden-tical pair sums have di�erent pair products, i.e., for positive numbers x1, y1, x2, y2,if x1 + y1 = x2 + y2 and fx1; y1g 6= fx2; y2g then x1y1 6= x2y2.Proof: Write x2 as x1 + k. Then y2 = y1 � k. Now assume x1y1 = x2y2.Substituting into this last equation, we getx1y1 = (x1 + k)(y1 � k):Simplifying, we get k(y1 � x1 � k) = 0;in other words k = 0 or k = y1 � x1. In the �rst case x1 = x2 and y1 = y2, and inthe second case x1 = y2 and y1 = x2, a contradiction.The lemma tells us that all rectangles with a given semi-perimeter have di�erentareas and implies that if a rectangular con�guration of area A is optimal thenit is the only optimal rectangular con�guration with area A (any other optimalcon�gurations will be irregular). 13



5 Optimal AssignmentsIn order to achieve the lower bound for the objective C, each con�guration musthave perimeter exactly P�(Ap). Thus, ideally the cells assigned to each processorform perimeter-optimal con�gurations that �ll the domain exactly. In this sectionwe exhibit some classes of domains for which such tilings can be constructed. Somerelated results are also presented in x6. The genetic algorithms to be discussed inx7 deal with the general case in which such \perfect" tilings are not known to exist.5.1 Optimal Tilings with RectanglesOne class of problems that have easily obtainable optimal solutions are instances inwhich the domain is a M1 �M2 rectangular grid that can be tiled with perimeter-optimal rectangles. In particular, if N can be factored as f1f2 where f1 divides M1,f2 divides M2 and M1f1 � M2f2 rectangles are perimeter-optimal, then such a tiling ispossible. Below is an optimal assignment for such an instance: a 6 � 18 grid with6 processors, each of which has a load of 18.1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 31 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 31 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 34 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 64 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 64 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6Figure 1 in x1 is an example of a non-rectangular domain optimally tiled withrectangles with di�erent orientations.5.2 Optimal Tiling with Irregular TilesIrregular tiles can �t together to tile many grids. The example below shows howirregular optimal tiles of area 10 can �t together in an optimal tiling.1 1 1 1 4 4 4 4 5 5 6 6 61 1 1 1 4 4 4 4 5 5 6 6 61 1 2 2 3 3 4 4 5 5 5 6 62 2 2 2 3 3 3 3 5 5 5 6 62 2 2 2 3 3 3 3 8 8 8 7 78 8 8 7 78 8 7 7 78 8 7 7 7This example also demonstrates the technique of optimally tiling by decompos-ing the domain into subdomains which can each be optimally tiled by a proportionalsubset of the processors. The domain above can be split into four 5� 4 rectangles,each of which can be tiled optimally with two processors. Such a divide and conquerapproach to tiling is a method of constructing optimal tilings for large domains withcomplex shapes. 14



6 Minimum Diversity AssignmentsBefore discussing genetic algorithms for the general minimumperimeter problem, weconsider a closely related problem and a technique for generating optimal solutionsthat is relevant to our GA approach. The minimum diversity problem presentedin [5] is a parallel database design problem with the same assignment constraintsas the minimum perimeter problem, but has a di�erent objective function. In thisdatabase application [5], we wish to assign grid cells of a rectangular domain toprocessors in order to minimize the total number of distinct processors that appearin the slices of the grid. A typical computation in the database system accessesall the data in a particular slice of the grid, and the processors assigned to cells inthe slice must participate by communicating with a coordinating processor. (Thiscontrasts with the minimum perimeter problem, in which communication occursbetween processors that are assigned to adjacent cells.) We assume a communica-tion overhead is associated with initiating and terminating a query on each of theprocessors associated with a slice. The goal is to minimize total overhead summedover all slices while balancing the workload between the processors (the constraintsof this nonlinear semi-assignment problem are the same as those of the minimumperimeter problem). If we de�ne the diversity of slice s, denoted by �s, to be thenumber of distinct processors in slice s of the grid, then our objective is to minimize�total :=Ps �s. We refer to this as the diversity minimization problem. (It is easyto formulate this objective function as a sum of �xed-charge functions correspond-ing to unit charges for the appearance of a processor (any number of times) in aslice; the minimumperimeter problem objective, on the other hand, is most directlymodeled as a sum of quadratic terms corresponding to the assignment of adjacentcells to di�erent processors.)In Ghandeharizadeh et al [5] we considered a general D-dimensional assignmentproblem and showed that minimizing diversity is equivalent to minimizing the sumof the \D-perimeters" for the processors, where the D-perimeter for a processor isde�ned to be the number of (D � 1)-dimensional slices in which a processor ap-pears. In two dimensions, the D-perimeter of a con�guration of cells is thereforethe semi-perimeter of the con�guration. Because semi-perimeter is not a�ected bya permutation of the rows or columns of the grid, the cells belonging to a processordo not have to be slice-convex or even connected in order to form a con�gurationwith minimum D-perimeter (see �gure 2). However, minimum-perimeter tiles areexamples of con�gurations that have minimumD-perimeter. Cases such those con-sidered in x5 in which tilings are comprised of minimum-perimeter con�gurationscorrespond to instances in which the minimum-perimeter and minimum diversityproblems have common optimal solutions.We now present another class of problems for which optimal solution to thediversity minimization problem may be constructed, and relate these problems tominimum perimeter problems on toroidally connected grids. Note that tiles can\wrap around" the top or side of the grid without incurring any extra diversitysince they remain in the same slices. We can therefore think of the domain as lyingon the surface of a torus, i.e., the top row of the grid is adjacent to the bottom row,15



and the left-most column is adjacent to the right-most. So, using the concept ofconnectedness in the toroidal sense, we will develop another class of problems thathave common optimal tilings for the diversity and perimeter minimization problems.Theorem 11 A toroidal domain can be tiled with partial square tiles of size A ifA divides both the number of rows and columns evenly.Proof: See [17].The constructive proof of this theorem is based on the use of diagonal strips ofblock-plus-fringe optimal shapes of the following type:fringeblockFigure 7 illustrates a minimum (toroidal) perimeter and minimum diversity as-signment generated by this diagonal tiling process on a 7�7 grid with 7 processors.1 6 6 6 7 7 71 1 1 2 7 7 71 1 1 2 2 2 33 3 4 2 2 2 33 3 4 4 4 5 35 6 4 4 4 5 55 6 6 6 7 5 5Figure 7: Diagonal tiling of a toroidal domain7 Parallel Genetic AlgorithmsFor the diversity minimization and minimum perimeter problems described above,the techniques of genetic algorithms (GA's) have been successful in computing op-timal and near-optimal solutions for large-scale problems.The GA approach to solving combinatorial optimization problems involves main-taining a \population" of points in the search space. Each iteration of the GA in-volves the following steps: the objective value of each individual in the population isevaluated by a \�tness function", the most �t individuals are \selected" with high16



probability to form a mating pool, and members of the mating pool \combine" as-signments through a random \crossover" operation to form a new population. Thehope is that good individuals will combine to form even better o�spring.Before describing the GA approach to cell assignment we present a heuristicthat is used in the GA. This heuristic is based upon the availability of a \library"of optimal shapes consisting of minimum-perimeter con�gurations that are nearlyrectangular. Speci�cally, each con�guration in the library consists of a rectangu-lar block plus (possibly) a fringe, analogous to the con�gurations discussed in thepreceding section. Although not all minimum-perimeter con�gurations have thisparticular form (see �gure 6), the heuristic includes procedures for altering shapesthat allow arbitrary optimal shapes to be constructed during the solution process.Moreover, the subset of optimal shapes in the library is su�ciently large so as toyield optimal or near optimal solutions for many cases (see the results of the previ-ous section and [2]). Finally, the number of con�gurations in the library is of orderA1=4p , and, thus, even in the case Ap = 1000 (the largest area in the test problemsbelow), the library contains only 9 elements. We have developed a heuristic to ap-proximate optimal partitions by using this block-fringe viewpoint as an input. Asinput, our procedure is given a list of shapes from the optimal shape library, oneshape (block-fringe) for each processor. The heuristic has two stages: in stage 1it places a block of the speci�ed shape for each processor in the grid, splitting theblocks if necessary to get them to �t. Stage 1 is completed by assigning the fringesin the remaining free grid cells so that they line up as much as possible with thecorresponding blocks. The result is a feasible assignment in which each processorhas a con�guration of cells which is approximately the same as an optimal tile undersome permutation of the rows and columns. In stage 2 the heuristic performs a localsearch of the problem space in a fashion similar to the Kernighan - Lin heuristic [9].Using the cell-processor assignment from stage 1 as its starting point, it selects pairsof cells and evaluates the change in objective that would result from swapping theprocessors in the two cells. If the swap does not worsen the objective, then the cellassignments are interchanged. The number of swaps that are evaluated is providedas an input to the heuristic so that the user has control over the running time ofstage 2.The common feasible solution set of the diversity minimization and perimeterminimization problems is the set of all partitions of the given grid into N sets of thespeci�ed sizes (we restrict our attention to cases where the sizes are as similar aspossible, i.e., they di�er by at most 1). The number of feasible solutions, even forsmall problems, is very large: for a 5�5 grid to be partitioned into 5 equal size sets,the number of feasible partitions is more than 6 � 1014. Rather than developinga GA with an individual corresponding to each feasible solution, we take a high-level approach that incorporates knowledge about the form of perimeter-optimalcon�gurations. The search space explored by the GA is not the space of all possiblepartitions of the domain among N processors, but rather the space of all possiblechoices of perimeter-optimal shapes for the N processors. With this encoding,an \individual" does not correspond to a particular feasible solution, but insteadrepresents a potential assignment of perimeter-optimal con�gurations to processors.17



This set of \shape" assignments is then input to our cell-assignment heuristic toobtain a feasible solution. Therefore the objective value produced by this heuristicis a natural �tness function for our GA.We implemented our GA on a Thinking Machines Corporation Connection Ma-chine CM-5 in the Computer Sciences Department at the UW-Madison. We usedthe \host-node" programming paradigm in which a host processor initiates andcoordinates the node processors. This allows the implementation of a \fork-join"parallel program which �ts the genetic algorithm's characteristics [17]. Each nodeon the parallel machine is responsible for two individuals. The nodes execute �tnessfunction evaluation and crossover in parallel, sending the �tness values of the newgeneration back to the host. After receiving the �tness values, the host selects thepairs of individuals that will crossover and informs the nodes of the \names" ofthese so that the nodes can then exchange the corresponding genetic information.Diversity minimization problems as large as 1000�1000 grids partitioned among1000 processors (corresponding to 1 billion assignment variables in the originalproblem formulation) were processed with this GA. The GA actually producedprovably optimal solutions to many of the medium-sized problems (involving a fewthousand variables) as well as for one of the 1 million variable problems. Thecomputing time varied over the test problems from 0.4 seconds to 6 seconds per GAiteration. Within 100 iterations, a solution within at most 4% of the optimal valuewas computed for each of the test problems studied. For complete details see [1].The GA for the minimum perimeter problem was tested on a similar suite ofproblems; many of the medium-sized problems (that is, problems with fewer than1; 000; 000 binary variables in a Quadratic Assignment formulation) were solvedto optimality within 10 minutes, and a 1; 815; 848 variable problem was solved tooptimality in less than 2.5 minutes. Processing some extremely large test problemstook about 20 minutes for the 512 � 512 grid partitioned among 512 processors,and a little more than 2.5 hours for the 1000� 1000 grid partitioned among 1000processors. The algorithm was always able to compute solutions within 2.1% of thelower bound within 20 generations. Figure 8 shows an optimal solution generatedby the GA for the 7 � 7 grid partitioned among 7 processors (compare with thetoroidal 7 � 7 case in �gure 7). A subset of these test problems (formulated asquadratic assignment problems) was also run on a GRASP algorithm (see [10]) forgeneral quadratic assignment problems. GRASP, designed to handle more generalproblems, cannot readily make use of the special problem structure that leads tothe optimal shape library that is a key feature of our GA approach, so it is notsurprising that the largest problem that it was able to solve to optimality was the7�7 grid referenced above. For problems larger than this, neither the solution timenor quality was comparable to that attained with the GA, and time limitations (weallowed problems to run for not more than 6 hours) prevented GRASP from runningproblems on grids larger than 13 � 13. (Details of this computational comparisonare given in [2].)We have also compared our GA against the popular spectral partitioning algo-rithm [14] and the geometric mesh partitioningmethod [13]. We obtained MATLABversions of both algorithms from the ftp site referenced in [7]. Both methods were18



1 1 1 2 2 3 31 1 2 2 2 3 31 1 2 2 3 3 34 4 4 4 5 5 54 4 4 5 5 5 56 6 6 6 7 7 76 6 6 7 7 7 7Figure 8: Minimum Perimeter Solution for the 7� 7 gridrun on a uniprocessor Sun SPARCstation 20. Our GA, written in C, using theCMMD libraries on a thirty-two node partition of the CM-5, signi�cantly outper-formed both methods in terms of the quality of the �nal solution in all cases (rangingfrom a 32�30 domain to be partitioned among 64 processors, to the large 512�512domain to be partitioned among 512 processors) and it ran signi�cantly faster thanthe spectral method in all cases. The serial geometric mesh partitioner was almostas fast as the GA on the smaller problems, but was slower (or did not run becauseof memory limitations) on the larger problems.Finally, we observe that a similar high level approach may be worthwhile forother classes of �xed-charge assignment problems. For example, in multicommod-ity problems with �xed-charges it would be possible to develop for each commoditya collection of optimal and suboptimal �xed-charge assignments, de�ne an \individ-ual" as a speci�c such collection for each commodity, and then employ a heuristicwithin the GA that combines these \patterns" to produce a good overall solutionand a corresponding \�tness" measure for each \individual".8 Conclusions and Future WorkWe have formalized as nonlinear network optimizationmodels problems of partition-ing tasks among processors to minimize interprocessor communication for paralleldomain decomposition. Lower bounds on the objective functions have been de-veloped and we have demonstrated how the bound is attained when the domaincan be tiled with minimum-perimeter tiles. We have presented characteristics ofminimum-perimeter tiles and demonstrated how a library consisting of a suitablesubset of such tiles can be used to develop a genetic algorithm capable of generatinggood quality (and, in some cases, provably optimal) solutions to enormous problemsthat have up to one billion variables when formulated as quadratic semi-assignmentproblems. Continuing work in this area includes modifying the algorithms to gen-erate optimal or near-optimal solutions for arbitrary domains and extending theresults to three-dimensional domains, other data partitioning problems, and othertypes of �xed-charge networks. 19
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