
QPCOMP: A Quadratic Programming Based Solver for MixedComplementarity Problems�Stephen C. Billupsyand Michael C. Ferris zFebruary 7, 1996AbstractQPCOMP is an extremely robust algorithm for solving mixed nonlinear complementarityproblems that has fast local convergence behavior. Based in part on the NE/SQP method ofPang and Gabriel[14], this algorithm represents a signi�cant advance in robustness at no costin e�ciency. In particular, the algorithm is shown to solve any solvable Lipschitz continuous,continuously di�erentiable, pseudo-monotone mixed nonlinear complementarity problem. QP-COMP also extends the NE/SQP method for the nonlinear complementarity problem to themore general mixed nonlinear complementarity problem. Computational results are provided,which demonstrate the e�ectiveness of the algorithm.1 IntroductionThis paper describes a new algorithm for solving the mixed nonlinear complementarity problem(MCP), which provides a signi�cant improvement in robustness over previous superlinearly orquadratically convergent algorithms, while preserving these fast local convergence properties.The MCP is de�ned in terms of a box IB := Qni=1[li; ui] and a function f : IB! IRn, where foreach i, �1 � li < ui � 1. The problem MCP(f; IB) is to �nd x 2 IB such that(x� l)>f(x)+ = (u� x)>f(x)� = 0;where f(x)+ represents the projection of f(x) onto the positive orthant, and f(x)� := f(x)+�f(x).Further, in the above de�nition, we agree that �1� 0 = 0.Note that by choosing l = 0 and u = 1, the MCP reduces to the standard nonlinear comple-mentarity problem (NCP), which is to �nd x � 0 such thatf(x) � 0 and x>f(x) = 0:Complementarity problems (both MCP and NCP) arise in many applications [4, 7] and arethe subject of much recent computational work. Indeed in recent years, a signi�cant number ofalgorithms have been developed to solve complementarity problems. Most of these algorithms canbe classi�ed as descent methods; they work to minimize a nonnegative merit function, which is�This material is based on research supported by National Science Foundation Grant CCR-9157632, Departmentof Energy Grant DE-FG03-94ER61915, and the Air Force O�ce of Scienti�c Research Grant F49620-94-1-0036.yDepartment of Mathematics, University of Colorado, Denver, Colorado 80217zComputer Sciences Department, University of Wisconsin, Madison, Wisconsin 537061

chosen so that zeros of the merit function correspond to solutions of the complementarity problem.Among the algorithms included in this class are PATH [5, 15], MILES [17], SMOOTH [3], NE/SQP[14], and BDIFF [10]. Within this basic framework, there are substantial di�erences between thealgorithms; the algorithms di�er in the choice of merit function, the techniques used for determiningsearch directions, and the globalization strategies used to guarantee descent of the merit function.However, because all of these algorithms work to minimize a merit function, their global convergencebehavior is limited by the same fundamental di�culty: the merit function may have local minimathat are not solutions of the complementarity problem. This di�culty manifests itself in di�erentways for di�erent algorithms. In PATH and MILES, it arises as a rank-de�cient basis or as a linearcomplementarity subproblem which is not solvable. In SMOOTH, it appears as a singular Jacobianmatrix. In NE/SQP it arises as convergence to a point that fails some regularity condition.Due to this di�culty, the best these algorithms can hope for, in terms of global convergence be-havior, is to guarantee �nding a solution only when the merit function has no strict local minimizersthat are not global minimizers. In general, this means that the function f must be monotonic inorder to guarantee convergence from arbitrary starting points.This paper describes and implements an algorithm QPCOMP that does not su�er from theabove di�culty, and hence is more robust than many other MCP algorithms. QPCOMP is basedupon a strategy presented in Section 2 of this paper. This strategy provides a means of extendingany algorithm which reliably solves strongly monotone MCPs so that it will solve a much broaderclass of problems. In particular, it will solve any problem which satis�es a pseudo-monotonicity con-dition at a solution. Applying this strategy to the NE/SQP algorithm[14], results in the QPCOMPalgorithm.NE/SQP is an algorithm for solving nonlinear complementarity problems that has a number oftheoretical advantages. We present this algorithm in Section 3, along with extensions to the MCPframework that are necessary for its use in our context. When we tested this algorithm on oursuite of test problems, we found that NE/SQP compares poorly to PATH, SMOOTH, and MILESin terms of robustness. In fact, we shall show in Section 3 that the algorithm cannot reliably solveeven one dimensional monotone linear complementarity problems. However, NE/SQP works wellon strongly monotone problems, which is all that is required for our strategy to work.In Section 4, we present the QPCOMP algorithm. The main convergence result for this algo-rithm is given in Theorem 4.1, which shows global convergence under the assumption of pseudo-monotonicity at a solution, whenever f is a Lipschitz continuous, continuously di�erentiable func-tion. The e�ectiveness of the algorithm is demonstrated convincingly by the test results given inSection 5. This is in spite of the poor performance of the NE/SQP algorithm on which QPCOMPis based.Before we begin, a word about notation is in order. Iteration numbers appear as superscriptson vectors and matrices and as subscripts on scalars. Subscripts on a vector (or matrix) representeither subvectors (or submatrices) or components of the vector or matrix . For example, if Mis an n � n matrix with elements Mjk ; j; k = 1; : : : ; n, and J and K are index sets such thatJ;K � f1; : : : ; ng, then MJ;K denotes the jJ j � jKj submatrix of M consisting of the elementsMjk ; j 2 J; k 2 K. Similarly, xj represents the jth component of the vector x. The notation x+and x� refers to the positive and negative components of the vector x. Speci�cally, x+ is the vectorwhose ith component is given by max(xi; 0), and x� := x+ � x. The directional derivative of afunction f : IB! IRn evaluated at the point x in the direction d is denoted byf 0(x; d) := lim�#0 f(x+ �d)� f(x)� ;2

provided the limit exists. Note that if x is a stationary point of f on IB, then f 0(x; d) = 0 8 d suchthat x+d 2 IB. The Euclidean and max norms are denoted by k�k and k�k1, respectively. Through-out the paper, we use the standard de�nitions of monotone and strongly monotone functions [13,De�nition 5.4.2]. Similarly, in discussing convergence rates, we use the standard de�nitions ofQ-superlinear and Q-quadratic convergence [13, Chapter 9]. Finally, we use the symbol IR+ torepresent the nonnegative real numbers.2 The Basic IdeaAs mentioned in the introduction, numerous algorithms exist which are extremely pro�cient atsolving monotone or strongly monotone mixed complementarity problems. The challenge then isto develop an e�cient algorithm that solves a broader class of problems. In this section we presenta strategy for taking algorithms which work well on strongly monotone MCPs and extending themto solve MCPs for which a considerably weakened monotonicity condition is satis�ed. To state thiscondition, we �rst need to de�ne the concept of pseudo-monotonicity:De�nition 2.1 Given a set IB � IRn, the mapping f : IB! IRn is said to be pseudo-monotone ata point x� 2 IB if 8y 2 IB,f(x�)> (y � x�) � 0 implies f(y)> (y � x�) � 0: (1)f is said to be pseudo-monotone on IB if it is pseudo-monotone at every point in IB.It is known [9] that if a function g : IRn ! IR is pseudo-convex [11, De�nition 9.3.1], thenrg is a pseudo-monotone function. However, if g is only pseudo-convex at a point x�, it does notnecessarily follow that rg is pseudo-monotone at x�.Pseudo-monotonicity is a weaker condition than monotonicity. In particular, every monotonefunction is pseudo-monotone. But the converse is not true. For example, consider the functionf(x) := x=2 + sin(x). This function is pseudo-monotone, but is not monotone. Note further thatthe natural merit function kf(x)k2 =2 has strict local minima that are not global minima. Thus,we see that the natural merit function of a pseudo-monotone function can have local minima thatare not global minima.In order to guarantee global convergence of our algorithm we shall require that the followingassumption be satis�ed:Assumption 2.2 MCP(f; IB) has a solution x� such that f is pseudo-monotone at x�.If MCP(f; IB) satis�es Assumption 2.2, we say that MCP(f; IB) is pseudo-monotone at a solu-tion. However, for simplicity, we will abuse terminology somewhat and say simply that MCP(f; IB)is pseudo-monotone. This should not cause any confusion since all of our discussion will refer toproblems which satisfy Assumption 2.2.The strategy we present for pseudo-monotone MCPs is based upon extending a descent-basedalgorithm for strongly monotone MCPs. The idea behind a descent-based algorithm is to reformu-late the MCP as a minimization problem involving a nonnegative merit function � : IB! IR+. Themerit function is de�ned in such a way that �(x) = 0 if and only if x is a solution to MCP(f; IB).If f is strongly monotone, it is easy to construct a merit function which has no local minima. Itis then a simple task to �nd the global minimizer of �, thereby giving a solution to the MCP. Ifhowever f is not monotone, then the merit function chosen will, in all likelihood, contain local3

minima for which � 6= 0. The algorithm may then terminate at such a local minimum, rather thanat the solution.To overcome this di�culty, we would like to �nd some way to \escape" from this local minimum.This can be accomplished by constructing an improved starting point ~x where �(~x) is smaller thanthe value of � at the local minimum. Since the descent-based algorithm never allows the value of� to increase, the algorithm can be restarted from ~x with the guarantee that it will never returnto the local minimum. Obviously, �nding such an improved starting point is not a straightforwardtask. However, this can be achieved when the problem is pseudo-monotone. The remainder of thissection describes how to construct this improved starting point.We begin by de�ning a particular merit function for our algorithm: To do this, we �rst introducethe mapping H : IB! IRn de�ned byHi(x) := min(xi � li;max(xi � ui; fi(x))): (2)It is easily shown that H(x) = 0 if and only if x solves MCP(f; IB). Using this function, we de�nethe merit function �(x) := 12H(x)>H(x): (3)Clearly, x is a solution to MCP(f; IB) if and only if x is a minimizer of � with �(x) = 0.In Section 3 we will present a basic algorithm for solving strongly monotone MCPs, which isbased on minimizing this particular choice of �. However, for now, we simply assume that such analgorithm exists. Moreover we assume that the algorithm will fail in a �nite number of iterationswhenever it cannot solve the problem.Now suppose the basic algorithm fails at a point x0. Our strategy will be to solve a sequenceof perturbed problems, generating a sequence of solutions fxkg that leads to an improved startingpoint ~x. The perturbed problems we solve are based on the following perturbation of f : given acentering point �x 2 IB, and a number � > 0, letf�;�x(x) := f(x) + �(x� �x):If f is Lipschitz continuous, then for � large enough, f�;�x is strongly monotone. Thus, the basicalgorithm will be able to solve the perturbed problem MCP(f�;�x).With a su�ciently large � we can then generate a sequence of iterates as follows: given a pointx0, then for k = 0; : : :, choose xk+1 as the solution to MCP(f�;xk ; IB). Note that every subproblemin the sequence uses the same choice of �, but a di�erent choice of centering point. In particularthe centering point for one subproblem is the solution of the previous subproblem. This is veryreminiscent of the proximal point algorithm [16] and of Tikhonov regularization [18].The following lemma gives su�cient conditions for a subsequence of these iterates to convergeto a solution of MCP(f; IB).Theorem 2.3 Let � > 0 and let fxkg; k = 0; 1; ::: be a sequence of points in IB such that for eachk, xk+1 is a solution to MCP(f�;xk; IB). If MCP(f; IB) satis�es Assumption 2.2, then1. fxkg has a subsequence that converges to a solution �x of MCP(f; IB);2. every accumulation point of fxkg is a solution of MCP(f; IB);3. if f is pseudo-monotone at any accumulation point �x of fxkg, then the iterates converge to�x. 4

Proof Let x� be the solution to MCP(f; IB) given by Assumption 2.2. Since xk+1 is a solution toMCP(f�;xk ; IB), then for each component i, exactly one of the following is true:1. xk+1i = li and fi(xk+1) + �(xk+1i � xki) � 0,2. li < xk+1i < ui and fi(xk+1) + �(xk+1i � xki) = 0,3. xk+1i = ui and fi(xk+1) + �(xk+1i � xki) � 0,Let Il, If and Iu be the sets of indices which satisfy the �rst, second, and third conditions respec-tively.For i 2 Il, it follows that 0 � xki � xk+1i � fi(xk+1)=�. Also, xk+1i � x�i = li � x�i � 0, so(xk+1i � x�i)(xki � xk+1i) � fi(xk+1)(xk+1i � x�i)=�: (4)By similar reasoning, this inequality holds for i 2 Iu. Finally, for i 2 If , f�;xki (xk+1) = 0, soxki � xk+1i = fi(xk+1)=�, whereupon it follows that (4) is satis�ed as an equality.Thus in all cases, inequality (4) is satis�ed, which gives us the following.(xki � x�i)2 = (xk+1i � x�i + xki � xk+1i)2= (xk+1i � x�i)2 + 2(xk+1i � x�i)(xki � xk+1i) + (xki � xk+1i)2� (xk+1i � x�i)2 + 2fi(xk+1)(xk+1i � x�i)=�+ (xki � xk+1i)2 by (4).Summing over all components,

xk � x�

2 �

xk+1 � x�

2 + 2f(xk+1)> �xk+1 � x�� =�+

xk � xk+1

2 :Under Assumption 2.2, the inner product term above is nonnegative. Thus,

xk � x�

2 �

xk+1 � x�

2 +

xk � xk+1

2 ;so f

xk � x�

g is a decreasing sequence, and

xk � xk+1

 ! 0. It follows that fxkg has an accu-mulation point. Let �x be any accumulation point. Then there is a subsequence fxkj : j = 0; 1; : : :gconverging to �x. Since

xk � xk+1

 ! 0, we also see that xkj+1 ! �x. Finally, since xkj+1 solvesMCP(f�;xkj ; IB), we conclude by a straightforward continuity argument that �x solves MCP(f�;�x; IB),which implies that �x solves MCP(f; IB). This proves items 1 and 2.To prove item 3, note that if f is pseudo-monotone at an accumulation point �x, then by item 2,�x is a solution, so the above analysis can be repeated with x� replaced by �x. We can then concludethat n

xk � �x

o is a decreasing sequence. But since �x is an accumulation point of fxkg, it followsthat

xk � �x

! 0.Note that Theorem 2.3 did not make any assumptions on the choice of �. Thus, even if � istoo small to ensure that f�;�x is strongly monotone, the strategy will still work so long as eachsubproblem is solvable.To illustrate the technique, it is useful to look at a simple example. Let IB := IR+ and letf : IR+ ! IR be de�ned by f(x) = (x� 1)2 � 1:01:5

Table 1: Iterates produced by solving sequence of perturbed problems, with (� = 1:1)k xk f(xk) �(xk)0 0 -.01 .000051 .9110 -1.0021 .50212 1.5521 -.7052 .24873 1.8356 -.3118 .04864 1.9439 -.1191 .00715 1.9832 -.0433 .000946 1.9973 -.0155 .000127 2.0023 -.0055 .00002This deceptively simple problem proved intractable for all of the descent-based methods we tested.In particular, we tried to solve this problem using PATH, MILES, NE/SQP, and SMOOTH. Allfour algorithms failed from a starting point of x = 0. But this should not be surprising since f isnot monotone. However, f is pseudo-monotone on IB. Thus, it is easily solved by our technique.For example, using � = 1:1 and a starting point x0 = 0, the strategy generates the sequence ofiterates shown in Table 1.Note that at the 7th iteration, an improved starting point is found, (i.e, �(x7) < �(x0)). At thispoint, a basic algorithm (e.g., Newton's method) can be used to obtain the �nal solution.In this section, we have introduced a basic strategy for taking descent-based algorithms thatsolve strongly monotone MCPs, and extending them to solve pseudo-monotone MCPs. This is, infact, the main idea presented in this paper. However, to turn this strategy into a working algorithm,a number of details must be addressed:1. We must ensure that the basic algorithm (for solving the strongly monotone MCPs) terminatesin a �nite number of iterations. This issue will be addressed in detail in Section 3.2. Since we require �nite termination of the basic algorithm, we must allow inexact solutions ofthe perturbed subproblems. We shall therefore need to incorporate control parameters intoour strategy which govern the accuracy demanded by each subproblem. In the our actualimplementation of the algorithm we demand very little accuracy for each subproblem. Infact, except in extreme circumstances, we allow only one step of the basic algorithm beforeupdating the perturbed problem. To guarantee convergence of this approach requires morelaborious analysis which we defer until Section 4.3. Since we have no a priori information regarding the Lipschitz continuity of f , we shall haveto incorporate some adaptive strategy for choosing � in order to ensure that, eventually, thesubproblems all become solvable.The next two sections of the paper are devoted to addressing these details.3 Subproblem SolutionIn this section, we present an algorithm for solving strongly monotone MCPs, which is based on theNE/SQP algorithm [14]. NE/SQP was originally developed as a method for solving the nonlinear6

complementarity problem. When it was �rst introduced, NE/SQP o�ered a signi�cant advance inthe robustness of NCP solvers because the subproblems it needs to solve at each iteration are convexquadratic programs, which are always solvable. Today, its robustness has been greatly surpassedby PATH, MILES, and SMOOTH (see Section 5). However, NE/SQP is still a viable technique forsolving strongly monotone MCPs. Moreover, NE/SQP has the very desirable feature of evaluatingthe function f only on its domain IB. This is in marked contrast to the SMOOTH algorithm whichrequires f to be de�ned on all of IRn.In this section, we �rst present the NE/SQP algorithm extended to the MCP framework. Sincethe development closely parallels that given in [14], we are deliberately terse in our presentation.Moreover, we omit the proofs to Proposition 3.1, Theorem 3.4 and Lemma 3.5. However, detailedproofs for these results are given in [1, Chapter 2]. Once the extended NE/SQP algorithm ispresented we will then modify it to ensure �nite termination. We note that Gabriel [8] also extendedNE/SQP to address the upper bound nonlinear complementarity problem, a special case of MCPwhere l = 0 and u > 0 is �nite.3.1 Extension of NE/SQP to the MCP FrameworkRecall that a vector x solves MCP(f; IB) if and only if �(x) = 0, where � is de�ned by (2) and(3). The NE/SQP algorithm attempts to solve this problem by solving the minimization problemminx2IB �(x). We will use � as a merit function for the MCP. To describe the algorithm in detailwe need to partition the indices f1; : : : ; ng into �ve sets as follows:Il(x) = fi : xi � li < fi(x)gIel(x) = fi : xi � li = fi(x)gIf (x) = fi : xi � ui < fi(x) < xi � lig Ieu(x) = fi : xi � ui = fi(x)gIu(x) = fi : xi � ui > fi(x)g:It will at times be convenient to refer also to the index sets Jl(x) := Il(x)SIel(x) and Ju(x) :=Iu(x)S Ieu(x). As in the original description of NE/SQP, the subscripts of these sets are chosento re
ect their meaning. For example, the subscripts l; f , and u correspond to the indices whereHi(x) = (xi � li); fi(x), and (xi � ui) respectively. The subscripts el and eu correspond to theindices where fi(x) is equal to li and ui, respectively.These index sets are used to de�ne an iteration function � : IB� IRn ! IR as follows: �(x; d) :=Pni=1 �i(x; d), where�i(x; d) := 8>>><>>>: 12(xi � li + di)2 i 2 Il(x)S Iel(x)12(xi � ui + di)2 i 2 Iu(x)S Ieu(x)12(fi(x) +rfi(x)>d)2 i 2 If (x) i = 1; : : : ; n:Given a point xk 2 IB, the algorithm chooses a descent direction dk by solving the convexquadratic programming problem (QPk) given byQPk : minxk+d2IB�(xk; d):We note that in the original NE/SQP algorithm, an additional constraint was added to thisquadratic program, namely, di = 0 if fi(xk) = 0 and xki = li or xki = ui. However, this con-straint is unnecessary for the convergence results, so we omit it from our algorithm.7

To ensure descent of the merit function �, we will need to perform a linesearch along thedirection dk. To describe this linesearch, we use a forcing function z : IB� IRn ! IR+, de�ned byz(x; d) :=Pni=1 zi(x; d), wherezi(x; d) := 8<: 12d2i i 62 If(x)12(rfi(x)>d)2 i 2 If(x) i = 1; : : : ; n:This forcing function will be used to guarantee su�cient decrease in the merit function at eachiteration. The following proposition summarizes some essential properties of the functions � and z:Proposition 3.1 ([1], Lemmas 2.2.5 and 2.2.6) The following properties hold:1. If xk 2 IB, then (QPk) has at least one optimal solution.2. �(x; d)� �(x; 0)� z(x; d) � �0(x; d) for all (x; d) 2 IB� IRn.3. If dk is an optimal solution to (QPk) and �(x; dk) < �(x; 0), then for any � 2 (0; 1), thereexists a scalar �� > 0 such that for all � 2 [0; ��]�(x+ �dk)� �(x) � ���z(x; dk):4. If dk is an optimal solution to (QPk), then z(xk; dk) � �(xk):Item (1) in the above proposition ensures that each QP is solvable. Item (2) ensures that thesolution to the QP will be a descent direction for � unless x is a stationary point of �. Item (3)allows us to use a Armijo type linesearch which will be guaranteed to terminate in a �nite numberof iterations. Item (4) will be used in the proof of Theorem 3.14. We now state the algorithm.Algorithm NE/SQPStep 1 [Initialization] Select �; � 2 (0; 1), and a starting vector x0 2 IB. Set k = 0.Step 2 [Direction generation] Solve (QPk), giving the direction dk.If �(xk; dk) = �(xk), terminate the algorithm; otherwise, continue.Step 3 [Steplength determination] Let mk be the smallest nonnegative integer m such that�(xk + �mdk)� �(xk) � ���mz(xk; dk); (5)set xk+1 = xk + �mkdk.Step 4 [Termination check] If xk+1 satis�es a prescribed stopping rule, stop. Otherwise,return to Step 2, with k replaced by k + 1.The convergence results of this algorithm are based on two regularity conditions: b-regularityand s-regularity. It is convenient to partition the index sets as follows in order to de�ne theseregularity conditions.I+el (x) = fi 2 Iel : xi � li > 0gI0el(x) = fi 2 Iel : xi � li = 0gI lf(x) = fi 2 If : xi � li = 0gInf (x) = fi 2 If : xi � ui < 0 < xi � lig Iuf (x) = fi 2 If : xi � ui = 0gI0eu(x) = fi 2 Ieu : xi � ui = 0gI�eu(x) = fi 2 Ieu : xi � ui < 0g:Note that for x 2 IB, the sets Il(x); I+el(x); I0el(x); I lf(x); Inf (x); Iuf (x); I0eu; I�eu(x), and Iu(x) form apartition of the indices f1; : : : ; ng. 8

De�nition 3.2 A nonnegative vector x is said to be b-regular if for every index set � satisfyingInf (x) � � � If (x)[Iel(x)[Ieu(x);the principal submatrix r�f�(x) is nonsingular.De�nition 3.3 A nonnegative vector x is said to be s-regular if the following linear inequalitysystem has a solution in y:xi � li + yi = 0 i 2 Il(x)xi � ui + yi = 0 i 2 Iu(x)fi(x) +rfi(x)>y = 0 i 2 Inf (x)xi � li + yi � 0 i 2 I lf(x)fi(x) +rfi(x)>y � 0 i 2 I lf(x)xi � ui + yi � 0 i 2 Iuf (x) fi(x) +rfi(x)>y � 0 i 2 Iuf (x)xi � li + yi � 0 i 2 I+el (x)fi(x) +rfi(x)>y � 0 i 2 I+el (x)xi � ui + yi � 0 i 2 I�eu(x)fi(x) +rfi(x)>y � 0 i 2 I�eu(x)yi = 0 i 2 I0el(x)SI0eu(x): (6)Note that when l = 0; u =1 the above de�nition is identical to the concept of s-regularity [14,De�nition 1].The following theorem parallels the convergence results of [14, Theorems 1 and 2] and establishesthe fact that the NE/SQP algorithm has very good local convergence behavior.Theorem 3.4 ([1], Theorems 2.2.12 and 2.2.15) Let f : IB ! IRn be a once continuouslydi�erentiable function. Let x0 2 IB be arbitrary. The following statements hold:1. NE/SQP generates a well de�ned sequence of iterates fxkg, with xk 2 IB, along with asequence of optimal solutions fdkg for the subproblems (QPk);2. if x� is an accumulation point of fxkg, and if x� is both b-regular and s-regular, then thefollowing hold:(a) x� is a solution of MCP(f; IB).(b) there exists an integer K > 0 such that for all k � K, the stepsize �k = �mk = 1, hence,xk+1 = xk + dk;(c) the sequence fxkg converges to x� Q-superlinearly;(d) if rf is Lipschitzian in a neighborhood of x�, then the convergence is Q-quadratic.The global convergence results contained above are not very useful from a practical standpoint.The problem is that the s-regularity and b-regularity conditions are dependent not only on theproblem, but also on the algorithm. In particular, they depend on the particular choice of meritfunction used. A result that will be more useful for our purposes is available as a result of thefollowing lemma:Lemma 3.5 ([1], Lemma 2.2.17) If f is strongly monotone, then all points x 2 IB are bothb-regular and s-regular.It should be noted that the strong monotonicity assumption above is essential. For example,consider the monotone function f : IR+ ! IR given by f(x) = 1, and let IB := IR+. For thischoice of f and IB, it is easily veri�ed that 8x > 1, x is neither b-regular or s-regular. As aconsequence, even though MCP(f; IB) has the trivial solution x = 0, NE/SQP fails to �nd it withany starting point x > 1. Thus, we see that NE/SQP cannot be relied upon to solve monotonelinear complementarity problems.We now state our main convergence result of the NE/SQP algorithm.9

Theorem 3.6 Suppose f is strongly monotone. If x� is an accumulation point of the iterates fxkgproduced by the NE/SQP algorithm, then x� is a solution of MCP(f; IB) and the sequence fxkgconverges to x� with the local convergence rates speci�ed in Theorem 3.4.Proof By Lemma 3.5, x� is both b-regular and s-regular. Therefore, by Theorem 3.4, x� is asolution of MCP(f; IB) and the iterates fxkg generated by the NE/SQP algorithm converge to x�with convergence rates speci�ed in Theorem 3.4.3.2 Modi�cation of NE/SQP to Guarantee Finite TerminationThe NE/SQP algorithm has the drawback that it does not necessarily terminate in a �nite numberof iterations unless it converges to a solution. In particular, while the algorithm guarantees descentof � at every iteration, the sequence f�(xk)g may not converge to 0. This can happen either bygenerating an unbounded sequence of points, or by converging slowly to an irregular point. This willclearly be unacceptable if we are to use the algorithm to solve a sequence of perturbed subproblems.We therefore present a modi�ed NE/SQP algorithm which has the same local convergence propertiesas the original NE/SQP algorithm, but which also guarantees �nite termination, even when it fails.Modi�ed NE/SQP AlgorithmStep 1 [Initialization] Given a starting vector x0 2 IB, a convergence tolerance tol, and ter-mination parameters
 2 (0; 1), and � � 11, select �; � 2 (0; 1), and set k = 0.Step 2 [Direction generation] Solve (QPk), giving the direction dk.If �(xk; dk) � (1�
)�(xk), or if

dk

2 > ��(x0), then terminate the algorithm, returningthe point xk along with a failure message; otherwise, continue.Step 3 [Steplength determination] Let mk be the smallest nonnegative integer m such that�(xk + �mdk)� �(xk) � ���mz(xk; dk): (7)Set xk+1 = xk + �mkdk and continue.Step 4 [Termination check] If �(xk+1) � tol terminate the algorithm, returning the solutionxk+1. Otherwise, return to Step 2, with k replaced by k + 1.Note that by setting
 = 0 and � = 1, the modi�ed algorithm is identical to NE/SQP, withthe addition of a particular stopping criteria in Step 4. However, by choosing
 2 (0; 1) and� < 1, we can ensure that the algorithm will terminate in a �nite number of iterations, whichwe will prove in Theorem 3.14. This has the drawback that the modi�ed algorithm may fail whenthe original algorithm would have succeeded. However, we shall overcome this drawback in theQPCOMP algorithm by carefully controlling the parameter
. Moreover, the modi�ed algorithmalso has the same local convergence properties as the original algorithm. To establish this fact, weuse the following two lemmas to show that if xk is near a b-regular solution of MCP(f; IB), thenthe tests in Step 2 can never cause failure.Lemma 3.7 ([1], Lemma 2.2.14) Let �x be a solution of MCP(f; IB). If �x is b-regular, then thereexists a constant c > 0 such that for any vector xk 2 IB close enough to �x,

dk

 � c

H(xk)

 ;where dk is any solution to the quadratic program (QPk).10

Observe, that when xk is close enough to a b-regular solution,

H(xk)

 �

H(x0)

 =c, so

dk

 �

H(x0)

, and therefore,

dk

2 � ��(x0). Thus, when xk is close to a b-regular solution,the second test in Step 2 of the Modi�ed NE/SQP algorithm cannot cause failure. We now showthat the �rst test in Step 2 cannot cause failure either.Lemma 3.8 ([1], Lemma 2.2.19) Let �x be a solution of MCP(f; IB). If �x is b-regular, then forany � 2 (0; 1=2), there is a neighborhood N � IB of �x such that if xk 2 N , then�(xk; dk) � ��(xk);where dk is an optimal solution of (QPk).The above lemmas show that for xk close enough to �x, the modi�ed algorithm will not terminatein Step 2, as long as �x is b-regular. Thus, the modi�ed algorithm has the same local convergenceproperties as the original algorithm. This establishes the following theorem:Theorem 3.9 Under the conditions of Theorem 3.4, the Modi�ed NE/SQP algorithm generatesa well de�ned sequence of iterates fxkg � IB, along with a sequence of optimal solutions fdkg forthe subproblems (QPk). Furthermore, if x� is an accumulation point of fxkg, and if either f isstrongly monotone, or x� is both b-regular and s-regular, then x� is a solution of MCP(f; IB) andthe iterates converge to x� at the rates speci�ed in Theorem 3.4.The remainder of this section is aimed at proving that the Modi�ed NE/SQP algorithm ter-minates. This is accomplished by considering what happens if the algorithm does not terminate.In this case, we shall show that the iterates fxkg converge to a point x�. Using this fact, we willplace bounds on certain quantities, which will then be used to establish a minimum rate of decreasefor the merit function �. This will then force the merit function to zero, which means that thealgorithm will terminate after all, by the test in Step 4.For ease of discussion, we de�ne the function �x(d) := �(x; d). The following lemma is atechnical result needed in several ensuing proofs.Lemma 3.10 ([1], Lemma 2.2.21) If �x(d) � (1�
)�(x) then z(x; d) � 12
2�(x).We now prove that the iterates converge.Lemma 3.11 Suppose f is continuously di�erentiable. If the Modi�ed NE/SQP algorithm, with
 2 (0; 1) and � < 1, fails to terminate, then the iterates fxkg produced by the algorithm willconverge to a point x� 2 IB with �(x�) > 0.Proof Let �k(d) := �(xk; d) and let zk(d) := z(xk; d). By the test in Step 2 of the algorithm,�k(d) � (1�
)�(xk). Thus, by Lemma 3.10, zk(d) � 12
2�(xk).Let f�kg be the sequence of steplengths generated in step 3 of the algorithm, i.e., �k := �mk .Then, �(xk+1) = �(xk + �kdk)� �(xk)� ��kzk(dk) (by the linesearch test (7))� �(xk)� ��k
2�(xk)=2 (by Lemma 3.10)= (1� ��k
22)�(xk): 11

Let �̂k := ��k
2=2. Then �(xk+1) � �(x0) kYj=0(1� �̂j):Since �(xk) is bounded away from 0, it follows that1Yk=0(1� �̂k) > 0:But this implies that P1i=0 �̂k is �nite, which means that P1i=0 �k is �nite.Now, by the test in Step 2 of the algorithm,

dk

2 � ��(x0). Thus,

dk

 is bounded, so1Xk=0 �k

dk

 <1:From this it follows that the sequence of iterates fxkg converges to some point x�. Clearly, �(x�) > 0,or the algorithm would terminate in Step 4.Using the fact that the iterates converge, together with straightforward continuity arguments,bounds can be placed on several quantities, which will be useful in proving Lemma 3.13.Lemma 3.12 ([1], Lemma 2.2.23) Under the hypotheses of Lemma 3.11, there exist constantsM1, M2, and L, depending on the starting point x0, such that for all � 2 [0; 1], the followinginequalities hold: jfi(xk + �dk)j �M1; jrfi(xk + �dk)j �M2 (8)and fi(xk)� �L

dk

 � fi(xk + �dk) � fi(xk) + �L

dk

 : (9)Furthermore, for any � > 0, we can choose �̂(�) > 0 such that for k su�ciently large, the followingholds for all � 2 [0; �̂(�)]:jfi(xk + �dk)j � ���fi(xk) + �rfi(xk)>dk���+ ��

dk

 : (10)We are now able to establish a minimum rate of decrease for the merit function.Lemma 3.13 Under the hypotheses of Lemma 3.11, there exists a constant �̂ 2 (0; 1) such that�(xk+1) � �̂�(xk); 8 k su�ciently large.Proof Suppose � 2 (0; 1), and let � 2 [0; �̂(�)] where �̂(�) is chosen according to Lemma 3.12.Suppose that k is large enough that (10) holds. We shall examine the terms Hi(xk+ �dk)2 in orderto establish an upper bound on �(xk+1) =PiHi(xk + �dk)2=2:To simplify notation, we drop the superscripts k. Thus, we let x := xk and d := dk, etc. Weshall also �nd it convenient to de�ne the scalar function �̂i : IR+ ! IR+, as follows:�̂i(�) := �i(x; �d):Observe that �̂00i (0) = zi(x; d), so nXi=1 �̂00i (0) = z(x; d): (11)To bound Hi(x+ �d)2, we have to look at two di�erent cases:12

Case 1: i 2 If (x). Note that jHi(x+ �d)j � jfi(x+ �d)j. Thus, by (10),Hi(x+ �d)2 � (fi(x) + �rfi(x)>d)2 + 2�� ���fi(x) + �rfi(x)>d��� kdk+ �2�2 kdk2 :But, (fi(x) + �rfi(x)>d)2 = 2�̂i(�) = 2�̂i(0) + 2��̂0i(0) + �2�̂00i (0), soHi(x+ �d)2 � 2�̂i(0) + 2��̂0i(0) + �2�̂00i (0) + 2�� ���fi(x) + �rfi(x)>d��� kdk+ �2�2 kdk2 : (12)Case 2: i 62 If (x). We look only at the case i 2 Il(x)SIel(x); the argument for i 2 Iu(x)SIeu(x)is similar.If Hi(x+ �d) is negative, thenHi(x+ �d) = fi(x+ �d)� fi(x)� �L kdk by (9)� xi � li + �di � �(di + L kdk) since fi(x) � xi � li� xi � li + �di � �(L+ 1) kdk :Thus,Hi(x+ �d)2 � (xi � li + �di)2 � 2�(xi � li + �di)(L+ 1) kdk+ �2(L+ 1)2 kdk2� (xi � li + �di)2 + �2(L+ 1)2 kdk2 :If Hi(x+ �d) is nonnegative, this inequality holds trivially since Hi(x+ �di) � xi � li + �di.Finally, (xi � li + �di)2 = 2�̂i(�) = 2�̂i(0) + 2��̂0i(0) + �2�̂00i (0), soHi(x+ �d)2 � 2�̂i(0) + 2��̂0i(0) + �2�̂00i (0) + �2(L+ 1)2 kdk2 : (13)Summing over all components, we get�(x+ �d) = 12XHi(x+ �d)2 � �x(0) + ��0x(0; d) + ��� + �2�; (14)where � := Xi2If (x) ���fi(x) + �rfi(x)>d��� kdk ;and � := nXi=1 �̂00i (0) + Xi 62If (x)(L+ 1)2 kdk2 + Xi2If (x) �2 kdk2 :We now establish bounds for � and �. By (8),Xi2If (x) ���fi(x) + �rfi(x)>d��� � kf(x)k+ �M2 kdk �M1 + �M2q��(x0) =: C1:Thus, � � C1 kdk � C1p��(x0) =: K1.For �, we deduce from (11) thatnXi=1 �̂00i (0) = z(x; d) � �(x); by item 4 of Proposition 3.1:13

Thus, � � �(x) + kdk2 �n(L+ 1)2 + n�2�� �1 + n�((L+ 1)2 + �2)� �(x0); since kdk2 � ��(x0)� K2;where K2 := (1+n�((L+1)2+1))�(x0). This last inequality holds since � � 1. Returning to (14),�(x+ �d) � �x(0) + ��0x(0; d) + ��K1 + �2K2= �(x) + ��0(x; d) + ��K1 + �2K2:By Item 2 of Proposition 3.1,�0(x; d) � �x(d)� �x(0)� z(x; d)� (1�
)�(x)� �(x)� z(x; d); by the test in Step 2= �
�(x)� z(x; d):Thus, �(x + �d)� �(x) � � (�
�(x)� z(x; d)) + ��K1 + �2K2:Note that the de�nitions of K1 and K2 are independent of �. We can therefore consider aparticular choice of �: let � := min(1;
�(x�)=(2K1)) and let �� := min(�̂(�);
�(x�)=(2K2)). Notethat � > 0 and �� > 0, since �(x�) > 0. It follows that for all � � �� , and for k su�ciently large,�(x + �d)� �(x) � ��z(x; d)� �
�(x) + �
�(x�)=2 + � ��K2� ��z(x; d)� �
�(x) + �
�(x)=2 + �
�(x)=2; since �(x�) � �(x)= ��z(x; d)� ���z(x; d); 8 � � 1: (15)Observe that the steplength �m generated by Step 3 of the algorithm is chosen such that m isthe smallest integer satisfying (7). Thus, � := �m�1 cannot satisfy (15). But this means that�m�1 � �� ; which implies �m � ���:It follows by the linesearch test (7) and Lemma 3.10 that�(x + �md) � �(x)� ����z(x; d) � (1� ����
22)�(x):By setting �̂ := 1� ����
2=2, the proof is complete.Theorem 3.14 If
 2 (0; 1) and � < 1, then the modi�ed NE/SQP algorithm will terminate ina �nite number of iterations provided that f is continuously di�erentiable on IB.Proof Let tol > 0 be the stopping tolerance used in the algorithm. If the algorithm does notterminate, then by Lemma 3.13, there exists �̂ 2 (0; 1) such that for k su�ciently large, �(xk+1) ��̂�(xk). Thus, after su�ciently many iterations, �(xk) < tol, and the algorithm will terminate inStep 4. 14

4 The QPCOMP AlgorithmThe basic idea behind QPCOMP is simple. The algorithm �rst tries to solve the problem using themodi�ed NE/SQP algorithm. If this fails, QPCOMP then solves a sequence of perturbed problemsin order to �nd a point with an improved value of the merit function. Once this point is found,QPCOMP returns to running the modi�ed NE/SQP algorithm on the original problem, startingfrom this improved point.One complication of the algorithm is that the subproblems must be solved inexactly in orderto guarantee that they are each completed in a �nite amount of time. To handle this we haveintroduced a sequence of tolerances f�jg which control the accuracy demanded by each subproblem.Another complication is that the best choices of the parameters � and
 cannot be knownin advance. We now state the algorithm, including a description of how these parameters areadaptively chosen.Algorithm QPCOMPStep 1 [Initialization] Given a starting vector x0 2 IB and a convergence tolerance � > 0,choose � > 0, � 2 (0; 1),
 2 (0; 1), � 2 (0; 1), and set k = 0.Step 2 [Attempt NE/SQP] Run the Modi�ed NE/SQP algorithm with starting point xk, withtol = �, to generate a point ~x.Step 3 [Termination check] If ~x solves MCP(f; IB), stop; otherwise continue with step 4.Step 4 [Generate better starting point] Set �best := �(~x), set y0 = ~x, set j = 0, and choose� > 0, and choose a positive sequence f�jg # 0.Step 4a Run the Modi�ed NE/SQP algorithm to solve the perturbed problemMCP(f�;yj ; IB) from starting point yj , with tol = �j=(1+

yj

). This generatesa point ~y.Step 4b If ~y fails to solve the perturbed problem to the requested accuracy, set� � �+ � and
 � �
, and goto step 4a; otherwise, continue.Step 4c [Check point] If �(~y) � ��best , set xk+1 = ~y and return to step 2, with kreplaced by k + 1. Otherwise, set yj+1 := ~y and return to step 4a, with jreplaced by j + 1.Observe, that the QPCOMP algorithm has the same local convergence properties as NE/SQP.In particular, by Theorem 3.9, for any b-regular solution x�, there is a neighborhood such that themodi�ed NE/SQP algorithm is identical to NE/SQP within this neighborhood. Thus, in Step 2 ofthe QPCOMP algorithm, if xk is su�ciently close to x�, then the modi�ed NE/SQP algorithm willconverge to x� at the rates speci�ed by Theorem 3.4.We now establish global convergence properties for the algorithm:Theorem 4.1 If f is Lipschitz continuous and continuously di�erentiable on IB, and if MCP(f; IB)satis�es Assumption 2.2, then for any � > 0 the QPCOMP algorithm generates an iterate xksatisfying �(xk) < � in a �nite number of iterations.The remainder of this section is devoted to proving this theorem. As an introduction to theproof, note that if Step 4 is always successful at generating an improved starting point, then even15

if the Modi�ed NE/SQP always fails in Step 2, the merit function values f�(xk)g will converge to0 at least linearly, since �(xk+1) � ��(xk) for all k. Thus, our convergence analysis is reduced toproving that Step 4 always generates an improved starting point.In the analysis that follows, it will be convenient to de�ne perturbed index sets byI�;�xl (x) := fi : xi � li < f�;�xi (x)gI�;�xel (x) := fi : xi � li = f�;�xi (x)gI�;�xf (x) := fi : xi � ui < f�;�xi (x) < xi � lig I�;�xeu (x) := fi : xi � ui = f�;�xi (x)gI�;�xu (x) := fi : xi � ui > f�;�xi (x)g:We shall also use the following obvious perturbations of the functions H , �, �, and z:H�;�x(x) := min(xi � li;max(xi � ui; f�;�xi (x)));��;�x(x) := 12

H�;�x(x)

2 ;��;�xx (d) := ��;�x(x; d) :=P��;�xi (x; d); where��;�xi (x; d) := 8>><>>: 12(xi � li + di)2 i 2 I�;�xl (x)SI�;�xel (x)12(xi � ui + di)2 i 2 I�;�xu (x)SI�;�xeu (x)12(f�;�xi (x) +rf�;�xi (x)>d)2 i 2 I�;�xf (x) i = 1; : : : ; n:z�;�xx (d) := z�;�x(x; d) :=P z�;�x(x; d); wherez�;�xi (x; d) := (12d2i i 62 I�;�xf (x)12(rf�;�xi (x)>d)2 i 2 I�;�xf (x) i = 1; : : : ; n:To show that Step 4 is always successful at generating an improved starting point, we beginby assuming that the Modi�ed NE/SQP algorithm in Step 4a of QPCOMP fails at most a �nitenumber of times. Later, we will remove this assumption. It follows that after a �nite number ofiterations, ~y always solves the perturbed problem to the desired accuracy, so the algorithm alwayscontinues past Step 4b to Step 4c. Thus, either an improved point will eventually be found, or thealgorithm will generate a sequence of iterates fyjg such that

H�;yj(yj+1)

 � �j1 + kyjk :We then use the fact that f�jg converges to 0 to show that �(yj)! 0. This result is proved in thefollowing lemma:Lemma 4.2 Let f be a Lipschitz continuous function and let f�kg be a sequence of positive numbersthat converges to 0. Let � > 0 and let fxkg be a sequence of points in IB such that

H�;xk(xk+1)

 � �k1 + kxkk ; 8k: (16)Suppose MCP(f; IB) satis�es Assumption 2.2, then for any � > 0, there exists an iterate xj 2 fxkgsuch that �(xj) � �.Proof Let x� be the solution to MCP(f; IB) guaranteed by Assumption 2.2 which satis�es (1),and let yk := H�;xk(xk+1). In the same spirit as the proof to Theorem 2.3, we establish a lowerbound on the term (xk+1i � x�i)(xki � xk+1i). 16

Case 1: yki = xk+1i � li and x�i < xk+1i . Observe that(xk+1i � x�i)(xki � xk+1i) = (xk+1i � x�i)fi(xk+1)� yi� + wki ; (17)where wki := (xk+1i � x�i) xki � xk+1i � fi(xk+1)� yi� ! :Now, 0 < (xk+1i � x�i) � xk+1i � li = yki . Also, xki � xk+1i � li � xk+1i = �yki . Thus,wki = (xk+1i � x�i) �xki � xk+1i + yi=��� (xk+1i � x�i)(fi(xk+1)=�)� yki ��yki + yki =��� jyki j ���fi(xk+1)��� =�� �(yki)2 � jyki j ���fi(xk+1)��� =�:Returning to (17), we get(xk+1i � x�i)(xki � xk+1i) � (xk+1i � x�i) �fi(xk+1)� yi� =�� (yki)2 � jyki j� ���fi(xk+1)��� :(18)Case 2: yki = xk+1i � li; and x�i � xk+1i . In this case, f�;xki (xk+1) � xk+1i � li = yki . Thus,fi(xk+1) + �(xk+1i � xki) � yki , so xki � xk+1i � (fi(xk+1)� yki)=�. Since xk+1i � x�i � 0, we get(xk+1i � x�i)(xki � xk+1i) � (xk+1i � x�i) �fi(xk+1)� yi� =�: (19)Case 3: yki = f�;xki (xk+1). In this case, yki = fi(xk+1) + �(xk+1i � xki), so xki � xk+1i = (fi(xk+1)�yki)=�. Thus, (xk+1i � x�i)(xki � xk+1i) = (xk+1i � x�i) �fi(xk+1)� yki � =�:Case 4: yki = xk+1i � ui; xk+1i � x�i . By similar arguments to Case 2, inequality (19) is satis�ed.Case 5: yki = xk+1i � ui; xk+1i < x�i . By similar arguments to Case 1, inequality (18) is satis�ed.In every case above, inequality (18) holds. Thus,(xki � x�i)2 = (xk+1i � x�i + xki � xk+1i)2= (xk+1i � x�i)2 + 2(xk+1i � x�i)(xki � xk+1i) + (xki � xk+1i)2� (xk+1i � x�i)2 + 2(xk+1i � x�i) �fi(xk+1)� yki � =�� 2(yki)2� 2� jyki j ���fi(xk+1)���+ (xki � xk+1i)2; by (18).Summing over all components, we get

xk � x�

2 �

xk+1 � x�

2 + 2f(xk+1)> �xk+1 � x�� =�� 2 �yk�> �xk+1 � x�� =��2

yk

2 � 2n

yk

f(xk+1)

 =�+

xk � xk+1

2 :17

Now, let L be the Lipschitz constant for f . Then

f(xk+1)

 �

f(xk+1)� f(x�)

 + kf(x�)k �L

xk+1 � x�

+ kf(x�)k. Further, by Assumption 2.2, f(xk+1)> �xk+1 � x�� � 0. Thus,

xk � x�

2 �

xk+1 � x�

2 � 2

yk

xk+1 � x�

 =�� 2

yk

2�2n

yk

 �L

xk+1 � x�

+ kf(x�)k� =�+

xk � xk+1

2�

xk+1 � x�

2 � 2�k�

xk+1 � x�

 = �1 +

xk

�� 2�2k= �1 +

xk

�2 by (16)�2n�k� �L

xk+1 � x�

+ kf(x�)k� = �1 +

xk

�+

xk � xk+1

2=

xk+1 � x�

2 +

xk � xk+1

2 � 2�k�k; (20)where �k :=

xk+1 � x�

�(1 + kxkk) + �k(1 + kxkk)2 + n �L

xk+1 � x�

+ kf(x�)k��(1 + kxkk) :Note that �k �

xk+1 � x�

 (nL+ 1)=�+ �0 + n kf(x�)k =�: (21)Let C := (nL + 1)=�+ �0 + n kf(x�)k =�. Then �k � C implies that

xk+1 � x�

 � 1. Now,let f�k : k 2 �g be the subsequence of f�kg for which �k � C; 8k 2 �. It follows then that

xk+1 � x�

 � 1; 8k 2 �. If we divide each side of (21) by

xk+1 � x�

2, it is easily seen thatf�k=

xk+1 � x�

2 : k 2 �g is bounded.However, dividing (20) by

xk+1 � x�

2 gives

xk � x�

2kxk+1 � x�k2 � 1 +

xk � xk+1

2kxk+1 � x�k2 � 2�k�kkxk+1 � x�k2 :Since �k # 0, the last term above converges to 0. Thus, for k 2 � large enough,

xk � x�

kxk+1 � x�k > 12 ;and �k � 2

xk � x�

�(1 + kxkk) + �k(1 + kxkk)2 + n �2L

xk � x�

+ kf(x�)k��(1 + kxkk) :Observe that

xk � x�

(1 + kxkk) � kx�k+

xk

(1 + kxkk) � kx�k+ 1:Thus, the subsequence f�k : k 2 �g is bounded, from which it follows that f�kg is bounded.Now, assume the lemma is false. Then there exists an � > 0 such that for all k, �(xk) > �2=2,which implies

H(xk)

 > �. Furthermore, for k large enough, �k < �2: Without loss of generality,we can assume that this inequality holds for all k.18

Since f is Lipschitz continuous, H�;xk is also Lipschitz continuous with some Lipschitz constantK. But then, � � �2 <

H(xk)

� �k�

H�;xk(xk)

 �

H�;xk(xk+1)

�1 +

xk

��

H�;xk(xk)�H�;xk(xk+1)

� K

xk+1 � xk

Thus, for � small enough, �=(2K) < (�� �2)=K <

xk+1 � xk

 :Finally, since the sequence f�k�kg converges to 0, then for all k su�ciently large, �k�k < �=(8K).Thus, from (20)

xk � x�

2 �

xk+1 � x�

2 +

xk+1 � xk

2 � 2�k�k�

xk+1 � x�

2 + �=(2K)� �=(4K)=

xk+1 � x�

2 + �=(4K):But, then

xk � x�

2 � 1Xk+1 �=(4K) =1 >

xk � x�

2 :The lemma is thus proved by contradiction.Note that Lemma 4.2 did not make any assumption on the choice of � other than that it isgreater than 0. Thus, even if � is smaller than the Lipschitz constant, we can guarantee convergence.The next stage in our analysis is to prove that the Modi�ed NE/SQP algorithm can fail at mosta �nite number of times in Step 4a of QPCOMP. This is accomplished by observing that after eachfailure, the value of � is increased, while the value of
 is decreased. Thus, the result will be provedif we can show that for � large enough, and
 small enough, the Modi�ed NE/SQP algorithm willalways solve the perturbed problem MCP(f�;yj ; IB). This is accomplished by the following twolemmas.Lemma 4.3 ([1], Lemma 2.3.3) Suppose f is Lipschitz continuous with Lipschitz constant L,and let x and �x be arbitrary points in IB. If � > 2L+ 2, and if �d satis�es ��;�xx (�d) � ��;�xx (0), then

 �d

2 < 11 ��;�x(x):Lemma 4.4 Suppose f is Lipschitz continuous. There exist constants �
 > 0, and �� � 0, such thatfor any � � ��, the modi�ed NE/SQP algorithm applied to MCP(f�;�x) will not terminate in Step 2for any
 � �
 and �x 2 IB.Proof Suppose the lemma is false. Then there must exist a sequence f�j;
jg, with � ! 1 and
 # 0 such that for each j there exists a perturbed problem MCP(f�j;�xj ; IB) where the modi�edNE/SQP algorithm with
 :=
j fails in Step 2 when run on MCP(f�j;�xj ; IB)g.De�ne f j(x), Hj(x), �j(x), and �j(x; d), to be the f , H , �, and � functions corresponding tothe jth perturbed problem. For example f j(x) := f�j;�xj(x), etc. Then for the jth problem to failin Step 2, there must exist a point xj and a direction dj such that dj is an optimal solution to thequadratic program (QPj) de�ned by minxj+d2IB�j(xj ; d)19

and also dj fails one of the two tests in Step 2 of the algorithm. Without loss of generality, we canassume �j � 2L+2; 8j. By Lemma 4.3,

dj

2 < 11 �j(xj) � ��j(xj). Thus, the failure must occurbecause of the �rst test in Step 2. In other words,�j(xj ; dj) � (1�
j)�j(xj); 8j: (22)Since �j(xj ; dj) � �j(xj ; 0) = �j(xj), and also,
j # 0, we see thatlim �j(xj ; dj)�j(xj) = 1: (23)Let Ij := I�j ;�xjf (xj), Jj be the set of indices not in Ij ,Aj :=

HjIj (xj)

kHj(xj)k and Bj :=

HjJj(xj)

kHj(xj)k :We �rst show that limj!1 Aj = 0. To do this, we examine a particular choice of j. LetHj := Hj(xj). We can then rewrite �j(xj ; d), as follows:�j(xj ; d) := 12

(M j +Dj)d+Hj

2where M ji;� := (rf ji (xj)> if i 2 Ij0 if i 2 Jj : Djii := (� if i 2 Ij1 if i 2 Jj :Observe that xji � ui � Hji � xji � li. Note that for ~d de�ned by~di := (�Hji =� if i 2 Ij0 if i 2 Jjit follows that xj + ~d 2 IB, since � � 1. Furthermore(M j +Dj) ~d+Hj = 24 (M j ~d)IjHjJj 35 :Now, since dj is an optimal solution to (QPj),�j(xj ; dj) � �j(xj ; ~d) = 12

(M j +Dj) ~d+Hj

2 = 12 �

(M j ~d)Ij

2 +

HjJj

2�� 12 �L2

 ~d

2 +

HjJj

2� � 12

Hj

2 �L2Aj2=�j2 + Bj2� :Thus, by (23), 1 = lim �j(xj; dj)�j(xj) � lim inf L2A2j�2j +B2j! :But, since fAjg is bounded, and �j ! 1, we see that 1 � lim inf B2j . Furthermore, Bj � 1, solimBj = 1, which implies that Aj ! 0. 20

Let us now examine the direction �nding subproblem (QPj) for large j. For some � 2 [0; 1],de�ne ~d by ~di := (0 if i 2 Ij��Hji if i 2 Jj :Here we see that (M j +Dj) ~d+Hj = 24 HjIj + (M j ~d)Ij(1� �)HjJj 35 :Thus, �j(xj ; dj) � 12

(M j +Dj) ~d+Hj

2= 12 �

HjIj + (M j ~d)Ij

2 + (1� �)2

HjJj

2�� 12 �

HjIj

2 + 2

HjIj

M j ~d

 +

M j ~d

2 + (1� �)2

HjJj

2�� 12 �(Aj

Hj

)2 + 2Aj

Hj

L

 ~d

+ L2

 ~d

2 + �(1� �)Bj

Hj

�2�� 12

Hj

2 �A2j + 2Aj�L+ �2L2 + (1� �)2B2j �� �(xj) �A2j + 2Aj�L + (1� 2�+ (L2 + 1)�2)� ; since Bj � 1:Choosing � = 1=(1 + L2), we get �j(xj ; dj) � �(xj) �Aj(2L=(1+ L2) +Aj) + 1� 1=(1 + L2)�. Butsince limAj = 0, we see that lim sup �j(xj ; dj)�(xj) � 1� 11 + L2 < 1;contradicting (23). Thus, the lemma is proved by contradiction.We can now combine the results of the previous three lemmas to prove that Step 4 alwaysgenerates an improved starting point.Lemma 4.5 Suppose that f is Lipschitz continuous and continuously di�erentiable on IB and thatMCP(f; IB) satis�es Assumption 2.2. If the QPCOMP algorithm fails to terminate, it will executeStep 2 an in�nite number of times.Proof Assume the lemma is false. It then follows that after a �nite number of statements areexecuted, the algorithm never returns to Step 2. But this means that, thereafter, the test in Step4c of the algorithm is never satis�ed.By Theorem 3.14, the modi�ed NE/SQP algorithm will always terminate in a �nite numberof steps. Thus, Step 4b of the QPCOMP algorithm will be executed an in�nite number of times.But the test in Step 4b can fail only a �nite number of times. After that, � will be large enoughand
 will be small enough that by Lemma 4.4 the Modi�ed NE/SQP algorithm will always �nd asolution to the perturbed problems. Thus we see that Step 4c is visited an in�nite number of times,and moreover, after a �nite number of iterations, the value of � is �xed. But then Lemma 4.2guarantees that the test in Step 4c will be satis�ed after a �nite number of iterations. But thiscontradicts our original assumption, so the lemma is true.We are now ready to prove Theorem 4.1 21

Proof (of Theorem 4.1)By Lemma 4.5 either the algorithm will terminate with a solution in Step 3, or Step 2 will beexecuted an in�nite number of times. But if Step 2 is executed an in�nite number of times, thenwe have �(xk+1) < ��(xk) =) �(xk) < �k�(x0);so �(xk) converges to zero.5 Implementation and TestingThe QPCOMP algorithm was coded in ANSI C, using double precision arithmetic. The Fortranpackage MINOS [12] was used to solve the quadratic subproblems. The algorithm allows for a greatdeal of
exibility in the choice of parameters, which can be speci�ed in an options �le. For testingpurposes, we used the following choices of parameters in the QPCOMP and Modi�ed NE/SQPalgorithms: � = :9, � = 1:0e4, � = :5, � = :5. The sequence f�jg used in Step 4 of the QPCOMPalgorithm was given by �j+1 = 0:999 � �j, with �0 set to 1000. This e�ectively caused the Modi�edNE/SQP algorithm to perform only one iteration before returning control back to QPCOMP. Theparameter � was updated as follows:1. In Step 4, � is set to �best.2. In Step 4b, if ~y fails to solve the perturbed problem, � is set to max(:1; 10�); otherwise, it ismultiplied by :9.Finally, the parameter
 is initially chosen to be :01. Thereafter, in Step 4b, it is set to min(1=�;
).For practical considerations, we also placed a limit on the number of allowable iterations of thelinesearch in Step 3 of the modi�ed NE/SQP algorithm. This limit is set to 10 when the Modi�edNE/SQP algorithm is called from Step 2 of QPCOMP, and is increased by 4 whenever the Modi�edNE/SQP algorithm fails, up to a maximum of 30.QPCOMP was interfaced with the GAMS modeling language [2, 6], allowing problems to beeasily speci�ed in GAMS, and the algorithm to be tested using MCPLIB [4] and GAMSLIB [2].Speci�cally, we tested QPCOMP on every problem with fewer than 110 variables in MCPLIB andGAMSLIB. Larger problems were excluded because our implementation of QPCOMP uses a densesolver for the QP subproblems. Table 2 summarizes the features of the problems tested.We also tested NE/SQP, PATH version 2.8 [5], and SMOOTH version 3.0 [3] on the problemsin Table 2. To run NE/SQP, we simply used the QPCOMP algorithm with � = 1 and
 = 0. Acomparison of the performance of the algorithms is given in Table 3. Many of the problems in thelibrary are speci�ed with more than one starting point. The particular starting point used is shownin the second column of the table. For each problem we report the execution time (in seconds) andthe number of function and Jacobian evaluation, f and J. To save space, we have omitted from thistable any problems which all four algorithms solved in less than a second. All of the problems weresolved to an accuracy of 10�6. Speci�cally, for QPCOMP the stopping criteria was kH(x)k � 10�6.The results of the testing demonstrate the high degree of robustness of the QPCOMP algorithm.We note that although it did not solve the Von Th�unen problems, QPCOMP was able to solve theseproblems to an accuracy of 10�4. Experimentation with the Von Th�unen problems suggests that theJacobian matrix is singular at the solution. Thus, near the solution, the Jacobian matrix is poorlyconditioned. This ill-conditioning is exacerbated in QPCOMP by the fact that the QP subproblemsare formulated using the square of the Jacobian matrix, resulting in extremely ill-conditioned QP22

Table 2: ModelsGAMS �le Model origin Type Size Nonzerosbertsekas.gms Tra�c assignment NCP 15 75billups.gms Section 2 NCP 1 1cafemge.gms GAMSLIB (139) MCP 47 316choi.gms Nash equil. NCP 13 169colvncp.gms Colville #2 NLP 15 99colvdual.gms Colville #2 (Dual) NLP 20 149ehl k60.gms Lubrication MCP 61 3721ehl k80.gms " MCP 81 6561ehl kost.gms " MCP 101 10201freebert.gms Tra�c assignment MCP 15 75gafni.gms " MCP 5 25hanskoop.gms Capital stock NCP 14 116hansmcp.gms GAMSLIB (135) MCP 43 356hansmge.gms "(147) MCP 43 793harkmcp.gms GAMSLIB (128) MCP 32 103harmge.gms "(148) MCP 9 81hydroc06.gms Distillation NE 29 223hydroc20.gms " NE 99 740josephy.gms MCPLIB NCP 4 16kehomge.gms GAMSLIB (149) MCP 9 81kojshin.gms MCPLIB NCP 4 16kormcp.gms GAMSLIB (130) MCP 78 346mathi*.gms Walrasian NCP 4 11methan08.gms Distillation NE 31 226nash.gms Nash equil. MCP 10 100oligomcp.gms GAMSLIB (133) MCP 6 16pgvon105.gms Von Th�unen NCP 105 795pgvon106.gms " NCP 106 899pies.gms PIES model MCP 42 184powell.gms Powell NLP 16 188powell mcp.gms " NCP 8 47sammge.gms GAMSLIB (151) MCP 14 170scarfa*.gms Walrasian NCP 14 96scarfb*.gms " NCP 40 575scarfmge.gms " NCP 20 348shovmge.gms GAMSLIB (153) MCP 10 100sppe.gms Spatial price MCP 27 84tobin.gms " MCP 42 202transmcp.gms GAMSLIB (126) MCP 11 24two3mcp.gms GAMSLIB (131) MCP 6 24unstmge.gms GAMSLIB (155) MCP 5 25vonthmge.gms Von Th�unen MCP 80 842wallmcp.gms GAMSLIB (127) MCP 6 2023

Table 3: Performance ResultsProblem st. NE/SQP PATH QPCOMP SMOOTHName pt. sec. f(J) sec. f(J) sec. f(J) sec. f(J)bertsekas 1 fail fail 0.08 27(6) 2.83 151(44) 0.24 113(27)bertsekas 2 fail fail 0.04 5(5) 2.41 126(40) 0.05 7(7)billups 1 fail fail fail fail 0.11 23(22) fail failcafemge 1 18.16 16(10) 0.29 9(7) 20.11 16(10) 0.41 9(8)cafemge 2 16.57 15(8) 0.26 6(6) 14.19 15(8) 0.25 6(6)choi 1 2.00 5(4) 2.09 5(5) 2.28 5(4) 2.10 5(5)colvdual 1 fail fail 0.11 15(13) 5.76 252(78) 0.11 40(15)colvdual 2 fail fail 0.09 16(12) 5.39 184(59) 0.10 52(17)ehl k60 1 16.11 11(8) 1.56 6(6) 16.91 11(8) 1.59 6(6)ehl k60 2 fail fail 25.16 84(66) 147.22 186(84) 14.71 106(34)ehl k60 3 fail fail 44.97 99(50) 492.33 1030(98) fail failehl k80 1 fail fail 2.37 6(6) 313.15 98(95) 2.93 6(6)ehl k80 2 fail fail 131.99 541(44) 129.02 72(33) 6.57 24(12)ehl k80 3 435.77 442(86) 56.58 132(43) 729.89 556(135) 85.26 425(72)ehl kost 1 fail fail 3.86 6(6) 611.41 108(105) 4.73 6(6)ehl kost 2 248.79 97(30) 13.56 19(19) 250.28 97(30) 12.58 21(12)ehl kost 3 fail fail 9.76 11(11) 866.08 409(79) 90.38 262(55)freebert 1 fail fail 0.07 5(5) 2.72 151(44) 0.04 6(6)freebert 3 fail fail 0.05 5(5) 2.86 173(45) 0.04 6(6)freebert 4 fail fail 0.09 27(6) 2.47 151(44) fail failfreebert 5 fail fail 0.04 5(5) 1.38 116(23) 0.04 5(5)freebert 6 fail fail 0.08 27(6) 3.02 173(45) fail failhanskoop 5 fail fail 0.09 19(11) 0.70 27(11) 0.30 102(34)hanskoop 7 fail fail 0.05 11(6) 0.86 45(13) 0.22 83(25)hansmcp 1 fail fail 0.47 45(18) fail fail 0.13 10(8)hansmge 1 3.14 11(8) 0.36 12(8) 2.86 11(8) 0.64 26(13)harkmcp 1 1.27 34(11) 0.05 8(8) 1.06 23(10) 0.07 10(8)harkmcp 4 6.96 29(13) 0.12 13(6) 9.31 27(14) 0.37 31(17)harmge 1 fail fail 0.06 11(7) 1.86 132(57) 0.09 33(11)harmge 2 fail fail 0.03 5(5) 0.14 5(4) 0.03 5(5)harmge 3 fail fail 0.04 5(5) 0.13 5(4) 0.04 5(5)harmge 4 fail fail 0.05 8(6) 0.15 5(4) 0.04 8(6)harmge 5 fail fail 0.05 8(6) 0.16 8(5) 0.04 8(6)harmge 6 fail fail 0.06 13(8) 3.24 379(78) 2.08 1117(139)hydroc20 1 16.11 10(8) 0.38 11(9) 13.31 10(8) 0.36 10(9)josephy 1 fail fail 0.03 7(7) 0.08 13(7) 0.03 24(9)josephy 2 fail fail 0.04 15(11) 0.07 15(7) 0.02 9(6)josephy 4 fail fail 0.02 4(4) 0.04 5(4) 0.02 5(4)josephy 6 0.04 4(3) fail fail 0.05 12(6) 0.02 9(6)24

Table 3: Performance Results (cont.)Problem st. NE/SQP PATH QPCOMP SMOOTHName pt. sec. f(J) sec. f(J) sec. f(J) sec. f(J)kojshin 1 fail fail 0.03 6(6) 0.07 16(7) 0.03 33(10)kojshin 3 fail fail 0.06 17(17) 0.12 35(10) 0.11 189(27)kormcp 1 2.82 4(3) 0.08 4(4) 2.82 4(3) 0.05 4(4)pgvon105 1 fail fail 1.54 64(16) fail fail fail failpgvon105 2 41.51 199(39) 0.77 27(10) 50.91 213(30) fail failpgvon105 3 33.47 153(32) 1.58 63(14) 58.80 322(40) fail failpgvon105 4 fail fail fail fail fail fail fail failpgvon106 1 fail fail 19.77 772(101) fail fail 125.46 6428(482)pgvon106 2 fail fail 1.80 48(36) fail fail 5.37 109(37)pgvon106 3 fail fail 1.29 39(20) fail fail 8.48 233(49)pgvon106 4 fail fail fail fail fail fail fail failpgvon106 5 fail fail fail fail fail fail fail failpgvon106 6 fail fail fail fail fail fail 3.76 58(27)pies 1 fail fail 0.13 13(13) 7.26 54(49) 0.27 41(14)sammge 1 fail fail 0.01 1(1) fail fail 0.00 1(1)sammge 10 fail fail 0.01 1(1) fail fail 0.01 1(1)scarfasum 2 fail fail 0.04 5(5) 1.51 73(26) 0.10 23(6)scarfbnum 1 6.27 70(20) 0.39 24(14) 6.42 76(21) 0.32 71(20)scarfbnum 2 6.01 97(22) 0.44 25(15) 6.09 58(19) 0.32 95(24)scarfbsum 1 fail fail fail fail 8.77 26(22) 0.24 24(11)scarfbsum 2 fail fail 2.37 66(18) 31.11 157(83) 0.66 103(24)scarfmge 4 1.02 17(12) 0.18 25(11) 0.97 17(12) 0.17 20(12)shovmge 2 1.02 4(3) 0.09 4(4) 1.11 4(3) 0.10 4(4)shovmge 4 1.19 10(4) 0.08 4(4) 1.96 20(4) 0.08 4(4)tobin 1 1.33 15(10) 0.08 12(9) 1.49 15(10) 0.13 31(12)tobin 2 1.83 18(11) 0.10 13(9) 1.78 18(11) 0.09 17(12)transmcp 1 fail fail 0.04 12(12) 1.22 69(67) 0.05 24(15)transmcp 2 fail fail 0.01 1(1) fail fail 0.00 1(1)vonthmge 1 fail fail 1.06 34(22) fail fail 17.14 730(278)
25

subproblems. The inability of QPCOMP to achieve higher accuracy on these problems appears tobe a symptom of this di�culty.The fact that QPCOMP is not as fast as PATH and SMOOTH is not surprising; our intentwas to demonstrate the robustness of our approach. In contrast to the slow execution times ofQPCOMP, note that the number of function and Jacobian evaluations required by the QPCOMPalgorithm is often quite reasonable. This indicates that a much more e�cient version of the codemight be attainable by using a faster QP solver. It is important also to recognize that PATHand SMOOTH are �nely tuned codes which include numerous enhancements that greatly improvetheir performance. For example both algorithms employ a projected Newton preprocessor, whichalthough unreliable, often produces an approximate solution extremely quickly. In addition, version2.8 of PATH uses a proximal perturbation heuristic that was motivated by the success of QPCOMP.In contrast, the version of QPCOMP we tested here is exactly the version for which we proved ourconvergence results.6 ConclusionsIn this paper, we have demonstrated that our strategy for solving a sequence of perturbed subprob-lems is very e�ective in enhancing the robustness of an algorithm. Our numerical results indicatethat the NE/SQP algorithm is considerably less robust than either PATH, or SMOOTH. However,it is certainly capable of being used as a solver for perturbed problems that are strongly mono-tone. We were thus able to develop the QPCOMP algorithm which is theoretically more robustthan any superlinearly or quadratically convergent algorithms currently available. The test resultsdemonstrate a dramatic improvement in robustness over the NE/SQP algorithm.There are several weaknesses in the NE/SQP solver which became evident in developing andtesting QPCOMP. The �rst lies in the de�nition of the H function, which is fundamental to thecalculation of the direction taken at each step. In our opinion, search directions for complementarityproblems are best calculated by incorporating both function information and boundary information.However, the H function used by NE/SQP uses only one or the other at each iteration. The secondweakness lies in the fact that a quadratic program is solved at each iteration. This is not only moreexpensive than solving a linear system, but also causes problems with ill-conditioning. While thisapproach was necessary in NE/SQP to ensure that the subproblems were always solvable, it is notrequired if a perturbation strategy is used, since any unsolvable subproblem can be handled by asimple perturbation. We are therefore anxious to try our perturbation strategy on more promisingfundamental algorithms.References[1] S. C. Billups, Algorithms for Complementarity Problems and Generalized Equations (Ph.D.thesis, University of Wisconsin{Madison, Madison, Wisconsin, 1995).[2] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User's Guide (The Scienti�c Press, SouthSan Francisco, CA, 1988).[3] C. Chen and O. L. Mangasarian, \A class of smoothing functions for nonlinear and mixedcomplementarity problems", Computational Optimization and Applications 5 (1996) 97{138.[4] S. P. Dirkse and M. C. Ferris, \MCPLIB: A collection of nonlinear mixed complementarityproblems", Optimization Methods and Software 5 (1995) 319{345.26

[5] S. P. Dirkse and M. C. Ferris, \The PATH solver: A non-monotone stabilization scheme formixed complementarity problems", Optimization Methods and Software 5 (1995) 123{156.[6] S. P. Dirkse, M. C. Ferris, P. V. Preckel and T. Rutherford, \The GAMS callable programlibrary for variational and complementarity solvers", Mathematical Programming TechnicalReport 94-07, Computer Sciences Department, University of Wisconsin (Madison, Wisconsin,1994), Available from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/.[7] M. C. Ferris and J. S. Pang, \Engineering and economic applications of complementarity prob-lems", Discussion Papers in Economics 95{4, Department of Economics, University of Colorado(Boulder, Colorado, 1995), Available from ftp://ftp.cs.wisc.edu/math-prog/tech-reports/.[8] S. A. Gabriel, Algorithms for the Nonlinear Complementarity Problem: The NE/SQP Methodand Extensions (Ph.D. thesis, The Johns Hopkins University, Baltimore, Maryland, 1992).[9] P. T. Harker and J. S. Pang, \Finite{dimensional variational inequality and nonlinear com-plementarity problems: A survey of theory, algorithms and applications", Mathematical Pro-gramming 48 (1990) 161{220.[10] P. T. Harker and B. Xiao, \Newton's method for the nonlinear complementarity problem: AB{di�erentiable equation approach", Mathematical Programming 48 (1990) 339{358.[11] O. L. Mangasarian, Nonlinear Programming (McGraw{Hill, New York, 1969), SIAM Classicsin Applied Mathematics 10, SIAM, Philadelphia, 1994.[12] B. A. Murtagh and M. A. Saunders, \MINOS 5.0 user's guide", Technical Report SOL 83.20,Stanford University (Stanford, California, 1983).[13] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in SeveralVariables (Academic Press, San Diego, California, 1970).[14] J. S. Pang and S. A. Gabriel, \NE/SQP: A robust algorithm for the nonlinear complementarityproblem", Mathematical Programming 60 (1993) 295{338.[15] D. Ralph, \Global convergence of damped Newton's method for nonsmooth equations, via thepath search", Mathematics of Operations Research 19 (1994) 352{389.[16] R. T. Rockafellar, \Monotone operators and augmented Lagrangian methods in nonlinearprogramming", in: O. L. Mangasarian, R. R. Meyer and S. M. Robinson eds., NonlinearProgramming 3 (Academic Press, London, 1978) pp. 1{26.[17] T. F. Rutherford, \MILES: A mixed inequality and nonlinear equation solver", Working Paper,Department of Economics, University of Colorado, Boulder.[18] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill{Posed Problems (John Wiley & Sons, NewYork, 1977). 27

