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Abstract

QPCOMP is an extremely robust algorithm for solving mixed nonlinear complementarity
problems that has fast local convergence behavior. Based in part on the NE/SQP method of
Pang and Gabriel[14], this algorithm represents a significant advance in robustness at no cost
in efficiency. In particular, the algorithm is shown to solve any solvable Lipschitz continuous,
continuously differentiable, pseudo-monotone mixed nonlinear complementarity problem. QP-
COMP also extends the NE/SQP method for the nonlinear complementarity problem to the
more general mixed nonlinear complementarity problem. Computational results are provided,
which demonstrate the effectiveness of the algorithm.

1 Introduction

This paper describes a new algorithm for solving the mixed nonlinear complementarity problem
(MCP), which provides a significant improvement in robustness over previous superlinearly or
quadratically convergent algorithms, while preserving these fast local convergence properties.

The MCP is defined in terms of a box IB := []/;[/;, w;] and a function f: B — IR", where for
each i, —oo < I; < u; < oo. The problem MCP(f,B) is to find 2 € IB such that

(0 =07 F(@)y = (u— )T f(x)- =0,

where f(z)4 represents the projection of f(z) onto the positive orthant, and f(z)_ := f(z)+— f(2).
Further, in the above definition, we agree that oo x 0 = 0.

Note that by choosing [ = 0 and u = oo, the MCP reduces to the standard nonlinear comple-
mentarity problem (NCP), which is to find > 0 such that

f(z) >0 and e’ f(z) = 0.

Complementarity problems (both MCP and NCP) arise in many applications [4, 7] and are
the subject of much recent computational work. Indeed in recent years, a significant number of
algorithms have been developed to solve complementarity problems. Most of these algorithms can
be classified as descent methods; they work to minimize a nonnegative merit function, which is
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chosen so that zeros of the merit function correspond to solutions of the complementarity problem.
Among the algorithms included in this class are PATH [5, 15], MILES [17], SMOOTH [3], NE/SQP
[14], and BDIFF [10]. Within this basic framework, there are substantial differences between the
algorithms; the algorithms differ in the choice of merit function, the techniques used for determining
search directions, and the globalization strategies used to guarantee descent of the merit function.
However, because all of these algorithms work to minimize a merit function, their global convergence
behavior is limited by the same fundamental difficulty: the merit function may have local minima
that are not solutions of the complementarity problem. This difficulty manifests itself in different
ways for different algorithms. In PATH and MILES, it arises as a rank-deficient basis or as a linear
complementarity subproblem which is not solvable. In SMOQOTH, it appears as a singular Jacobian
matrix. In NE/SQP it arises as convergence to a point that fails some regularity condition.

Due to this difficulty, the best these algorithms can hope for, in terms of global convergence be-
havior, is to guarantee finding a solution only when the merit function has no strict local minimizers
that are not global minimizers. In general, this means that the function f must be monotonic in
order to guarantee convergence from arbitrary starting points.

This paper describes and implements an algorithm QPCOMP that does not suffer from the
above difficulty, and hence is more robust than many other MCP algorithms. QPCOMP is based
upon a strategy presented in Section 2 of this paper. This strategy provides a means of extending
any algorithm which reliably solves strongly monotone MCPs so that it will solve a much broader
class of problems. In particular, it will solve any problem which satisfies a pseudo-monotonicity con-
dition at a solution. Applying this strategy to the NE/SQP algorithm[14], results in the QPCOMP
algorithm.

NE/SQP is an algorithm for solving nonlinear complementarity problems that has a number of
theoretical advantages. We present this algorithm in Section 3, along with extensions to the MCP
framework that are necessary for its use in our context. When we tested this algorithm on our
suite of test problems, we found that NE/SQP compares poorly to PATH, SMOOTH, and MILES
in terms of robustness. In fact, we shall show in Section 3 that the algorithm cannot reliably solve
even one dimensional monotone linear complementarity problems. However, NE/SQP works well
on strongly monotone problems, which is all that is required for our strategy to work.

In Section 4, we present the QPCOMP algorithm. The main convergence result for this algo-
rithm is given in Theorem 4.1, which shows global convergence under the assumption of pseudo-
monotonicity at a solution, whenever f is a Lipschitz continuous, continuously differentiable func-
tion. The effectiveness of the algorithm is demonstrated convincingly by the test results given in
Section 5. This is in spite of the poor performance of the NE/SQP algorithm on which QPCOMP
is based.

Before we begin, a word about notation is in order. Iteration numbers appear as superscripts
on vectors and matrices and as subscripts on scalars. Subscripts on a vector (or matrix) represent
either subvectors (or submatrices) or components of the vector or matrix . For example, if M
is an n X n matrix with elements M;;,j,k = 1,...,n, and J and K are index sets such that
J,K C {1,...,n}, then Mg denotes the |J| x |K| submatrix of M consisting of the elements
M;,,5 € J,k € K. Similarly, z; represents the jth component of the vector #. The notation x4
and z_ refers to the positive and negative components of the vector . Specifically, x4 is the vector
whose ith component is given by max(z;,0), and z_ := x4y — 2. The directional derivative of a
function f:IB — IR™ evaluated at the point z in the direction d is denoted by

Ve d) o iy 4 & T AD) = f(2)
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provided the limit exists. Note that if  is a stationary point of f on IB, then f'(2;d) =0V d such
that 24d € IB. The Euclidean and max norms are denoted by ||| and ||-|| ., respectively. Through-
out the paper, we use the standard definitions of monotone and strongly monotone functions [13,
Definition 5.4.2]. Similarly, in discussing convergence rates, we use the standard definitions of
Q-superlinear and Q-quadratic convergence [13, Chapter 9]. Finally, we use the symbol IRy to
represent the nonnegative real numbers.

2 The Basic Idea

As mentioned in the introduction, numerous algorithms exist which are extremely proficient at
solving monotone or strongly monotone mixed complementarity problems. The challenge then is
to develop an efficient algorithm that solves a broader class of problems. In this section we present
a strategy for taking algorithms which work well on strongly monotone MCPs and extending them
to solve MCPs for which a considerably weakened monotonicity condition is satisfied. To state this
condition, we first need to define the concept of pseudo-monotonicity:

Definition 2.1 Given a set IB C IR”™, the mapping f : 1B — IR” is said to be pseudo-monotone at
a point z* € 1B if Yy € 1B,

f@) T (y—2) 20 implies f(y)T (y—a%) > 0. (1)
15 said to be pseudo-monotone on IB #f 2t 1s pseudo-monotone at every point in 1B.
. A to b d e d C,

It is known [9] that if a function ¢ : IR™ — IR is pseudo-convex [11, Definition 9.3.1], then
Vg is a pseudo-monotone function. However, if ¢ is only pseudo-convex at a point z*, it does not
necessarily follow that Vg is pseudo-monotone at z*.

Pseudo-monotonicity is a weaker condition than monotonicity. In particular, every monotone
function is pseudo-monotone. But the converse is not true. For example, consider the function
f(z) := 2/2 + sin(z). This function is pseudo-monotone, but is not monotone. Note further that
the natural merit function ||f(z)||* /2 has strict local minima that are not global minima. Thus,
we see that the natural merit function of a pseudo-monotone function can have local minima that
are not global minima.

In order to guarantee global convergence of our algorithm we shall require that the following
assumption be satisfied:

Assumption 2.2 MCP(f,1B) has a solution x* such that f is pseudo-monotone at z*.

If MCP(f, B) satisfies Assumption 2.2, we say that MCP(f, B) is pseudo-monotone at a solu-
tion. However, for simplicity, we will abuse terminology somewhat and say simply that MCP(f, IB)
is pseudo-monotone. This should not cause any confusion since all of our discussion will refer to
problems which satisfy Assumption 2.2.

The strategy we present for pseudo-monotone MCPs is based upon extending a descent-based
algorithm for strongly monotone MCPs. The idea behind a descent-based algorithm is to reformu-
late the MCP as a minimization problem involving a nonnegative merit function 6 : IB — [R4. The
merit function is defined in such a way that #(z) = 0 if and only if = is a solution to MCP(f, IB).
If f is strongly monotone, it is easy to construct a merit function which has no local minima. It
is then a simple task to find the global minimizer of 8, thereby giving a solution to the MCP. If
however f is not monotone, then the merit function chosen will, in all likelihood, contain local



minima for which # # 0. The algorithm may then terminate at such a local minimum, rather than
at the solution.

To overcome this difficulty, we would like to find some way to “escape” from this local minimum.
This can be accomplished by constructing an improved starting point & where (%) is smaller than
the value of 8 at the local minimum. Since the descent-based algorithm never allows the value of
# to increase, the algorithm can be restarted from # with the guarantee that it will never return
to the local minimum. Obviously, finding such an improved starting point is not a straightforward
task. However, this can be achieved when the problem is pseudo-monotone. The remainder of this
section describes how to construct this improved starting point.

We begin by defining a particular merit function for our algorithm: To do this, we first introduce
the mapping H : IB — IR" defined by

H;(z) := min(z; — {;, max(z; — u, fi(z))). (2)

It is easily shown that H(z) = 0 if and only if z solves MCP(f, IB). Using this function, we define
the merit function

0() = %H(m)TH(x). (3)

Clearly,  is a solution to MCP(f,IB) if and only if « is a minimizer of § with §(z) = 0.

In Section 3 we will present a basic algorithm for solving strongly monotone MCPs, which is
based on minimizing this particular choice of . However, for now, we simply assume that such an
algorithm exists. Moreover we assume that the algorithm will fail in a finite number of iterations
whenever it cannot solve the problem.

Now suppose the basic algorithm fails at a point z°. Our strategy will be to solve a sequence
of perturbed problems, generating a sequence of solutions {z*} that leads to an improved starting
point Z. The perturbed problems we solve are based on the following perturbation of f: given a
centering point & € 1B, and a number A > 0, let

fA’f(x) = f(z) + Mz — 7).

If fis Lipschitz continuous, then for X large enough, f% is strongly monotone. Thus, the basic
algorithm will be able to solve the perturbed problem MCP(f"%).

With a sufficiently large A we can then generate a sequence of iterates as follows: given a point
2V, then for k = 0,. .., choose 2*! as the solution to MCP(fA’Ik7 IB). Note that every subproblem
in the sequence uses the same choice of A, but a different choice of centering point. In particular
the centering point for one subproblem is the solution of the previous subproblem. This is very
reminiscent of the proximal point algorithm [16] and of Tikhonov regularization [18].

The following lemma gives sufficient conditions for a subsequence of these iterates to converge
to a solution of MCP(f, B).

Theorem 2.3 Let A > 0 and let {x*},k = 0,1, ... be a sequence of points in 1B such that for each
k, 2*t1 is a solution to MCP(fA’Ik7 B). If MCP(f,1B) satisfies Assumption 2.2, then

1. {2*} has a subsequence that converges to a solution & of MCP(f,1B);
2. every accumulation point of {x*} is a solution of MCP(f,B);

3. if f is pseudo-monotone at any accumulation point T of {x*}, then the iterates converge to
z.



Proof Let z* be the solution to MCP(f, B) given by Assumption 2.2. Since 2F*1 is a solution to
MCP(fA’Ik7 IB), then for each component 7, exactly one of the following is true:

Lo2f = and fi(a® 1) + M@ —2b) >0,
2. 6 < eft! <wjand fi(a") + AT —2F) = 0,
3. 2 = w; and fi (2%t + M2t — 2F) <0,

Let I}, Iy and I, be the sets of indices which satisfy the first, second, and third conditions respec-
tively.
For i € 1;, it follows that 0 < xf - xf"’l < fi(xk"'l)//\. Also, xf"’l —af=1l—27<0,s0
(@ —af)(af — ) > file™H ) (@ - ah) /A (4)

7 -

By similar reasoning, this inequality holds for 7 € I,. Finally, for ¢ € Iy, f?’xk(wk"'l) = 0, so

af — 2t = fi (2P /X, whereupon it follows that (4) is satisfied as an equality.
Thus in all cases, inequality (4) is satisfied, which gives us the following.

(ch—an)? = (f* —ap 4ok — k)2

K3

= (@ =) b 20 = ) ek - ) o+ (oF -l

K3 K3 K3 K3

> (@ =) 2@ (@ = an) A+ (af 2T by (4).

K3

Summing over all components,

2 > ka+1 _ P Lof(ettT ($k+1 _ x*) A+ ka _ $k+1H2.

Under Assumption 2.2, the inner product term above is nonnegative. Thus,

2 2 2
ka_x* ZHOEHI_OE* _I_HQCIC_QCICHH7

SO {Hwk — 2*||} is a decreasing sequence, and ka — wk‘HH — 0. It follows that {z*} has an accu-
mulation point. Let Z be any accumulation point. Then there is a subsequence {z% :j =0,1,...)

converging to T. Since ka - xk‘HH — 0, we also see that 2%+ — Z. Finally, since 251! solves

MCP(fA’I?7 B), we conclude by a straightforward continuity argument that z solves MCP(fM, B),
which implies that # solves MCP(f,1B). This proves items 1 and 2.

To prove item 3, note that if f is pseudo-monotone at an accumulation point z, then by item 2,
Z is a solution, so the above analysis can be repeated with z* replaced by . We can then conclude
that {ka -z

that ka - QEH — 0. 0

‘} is a decreasing sequence. But since Z is an accumulation point of {z*}, it follows

Note that Theorem 2.3 did not make any assumptions on the choice of A. Thus, even if A is
too small to ensure that f“% is strongly monotone, the strategy will still work so long as each
subproblem is solvable.

To illustrate the technique, it is useful to look at a simple example. Let IB := IRy and let
f IR+ — IR be defined by

f(z) = (z — 1)* - 1.01.



Table 1: lterates produced by solving sequence of perturbed problems, with (A = 1.1)

0 0 -.01 .00005
1] .9110 | -1.0021 | .5021
2 | 1.5521 | -.7052 | .2487
3 | 1.8356 | -.3118 | .0486
41 1.9439 | -.1191 | .0071
51 1.9832 | -.0433 | .00094
6 | 1.9973 | -.0155 | .00012
71 2.0023 | -.0055 | .00002

This deceptively simple problem proved intractable for all of the descent-based methods we tested.
In particular, we tried to solve this problem using PATH, MILES, NE/SQP, and SMOOTH. All
four algorithms failed from a starting point of x = 0. But this should not be surprising since f is
not monotone. However, f is pseudo-monotone on IB. Thus, it is easily solved by our technique.
For example, using A = 1.1 and a starting point 2° = 0, the strategy generates the sequence of
iterates shown in Table 1.

Note that at the 7th iteration, an improved starting point is found, (i.e, #(z7) < 6(2°)). At this
point, a basic algorithm (e.g., Newton’s method) can be used to obtain the final solution.

In this section, we have introduced a basic strategy for taking descent-based algorithms that
solve strongly monotone MCPs, and extending them to solve pseudo-monotone MCPs. This is, in
fact, the main idea presented in this paper. However, to turn this strategy into a working algorithm,
a number of details must be addressed:

1. We must ensure that the basic algorithm (for solving the strongly monotone MCPs) terminates
in a finite number of iterations. This issue will be addressed in detail in Section 3.

2. Since we require finite termination of the basic algorithm, we must allow inexact solutions of
the perturbed subproblems. We shall therefore need to incorporate control parameters into
our strategy which govern the accuracy demanded by each subproblem. In the our actual
implementation of the algorithm we demand very little accuracy for each subproblem. In
fact, except in extreme circumstances, we allow only one step of the basic algorithm before
updating the perturbed problem. To guarantee convergence of this approach requires more
laborious analysis which we defer until Section 4.

3. Since we have no a priori information regarding the Lipschitz continuity of f, we shall have
to incorporate some adaptive strategy for choosing A in order to ensure that, eventually, the
subproblems all become solvable.

The next two sections of the paper are devoted to addressing these details.

3 Subproblem Solution

In this section, we present an algorithm for solving strongly monotone MCPs, which is based on the
NE/SQP algorithm [14]. NE/SQP was originally developed as a method for solving the nonlinear



complementarity problem. When it was first introduced, NE/SQP offered a significant advance in
the robustness of NCP solvers because the subproblems it needs to solve at each iteration are convex
quadratic programs, which are always solvable. Today, its robustness has been greatly surpassed
by PATH, MILES, and SMOOTH (see Section 5). However, NE/SQP is still a viable technique for
solving strongly monotone MCPs. Moreover, NE/SQP has the very desirable feature of evaluating
the function f only on its domain IB. This is in marked contrast to the SMOOTH algorithm which
requires f to be defined on all of R".

In this section, we first present the NE/SQP algorithm extended to the MCP framework. Since
the development closely parallels that given in [14], we are deliberately terse in our presentation.
Moreover, we omit the proofs to Proposition 3.1, Theorem 3.4 and Lemma 3.5. However, detailed
proofs for these results are given in [1, Chapter 2]. Once the extended NE/SQP algorithm is
presented we will then modify it to ensure finite termination. We note that Gabriel [8] also extended
NE/SQP to address the upper bound nonlinear complementarity problem, a special case of MCP
where [ = 0 and u > 0 is finite.

3.1 Extension of NE/SQP to the MCP Framework

Recall that a vector z solves MCP(f,B) if and only if #(z) = 0, where 6 is defined by (2) and
(3). The NE/SQP algorithm attempts to solve this problem by solving the minimization problem
mingep 6(z). We will use 6 as a merit function for the MCP. To describe the algorithm in detail
we need to partition the indices {1,...,n} into five sets as follows:

L(z) = {i:zi—1 < fi(z)}
Ia(z) = {i:z;—1; = fi(z)}
Ii(z) = {i:a;—w < fi(z) <a; -1}

Iw(z) = {itz;—w = fi(2)}
{tra; —u > fi(2)}.

:\'
—~
]
—
ll

It will at times be convenient to refer also to the index sets Ji(z) := [j(z) Ul (2) and Jy (z) :=
I, (2) Uleu(2). As in the original description of NE/SQP, the subscripts of these sets are chosen
to reflect their meaning. For example, the subscripts [, f, and u correspond to the indices where
Hi(z) = (z; = 1), fi(z), and (2; — u;) respectively. The subscripts el and eu correspond to the
indices where f;(z) is equal to /; and u;, respectively.

These index sets are used to define an iteration function ¢ : IB X R"” — IR as follows: ¢(z,d) :=
Yorq ¢i(z,d), where

Mai— L+ d;)? i€ Li(z)Ula(x)
¢i(w,d) = (2 — w4 d;)? i€ L) Ul (2) i=1,...,n.
%(fi(x)—l—Vfi(x)Td)Q i€ ls(x)
k

Given a point z® € IB, the algorithm chooses a descent direction d* by solving the convex
quadratic programming problem (QPj) given by

QP : min (b(xk,d).
xk+deB
We note that in the original NE/SQP algorithm, an additional constraint was added to this
quadratic program, namely, d; = 0 if fz(xk) = 0 and xf =1 or xf = wu;. However, this con-
straint is unnecessary for the convergence results, so we omit it from our algorithm.



To ensure descent of the merit function 8, we will need to perform a linesearch along the
direction d*. To describe this linesearch, we use a forcing function z : IB X IR® — IRy, defined by
z(x,d) =", z(x,d), where

zi(z,d) == { %d? g 1) i=1,...,n.
s(Vfile)Td)? i€ Ip(x)

This forcing function will be used to guarantee sufficient decrease in the merit function at each
iteration. The following proposition summarizes some essential properties of the functions ¢ and z:

Proposition 3.1 ([1], Lemmas 2.2.5 and 2.2.6) The following properties hold:
1. If 2F € B, then (QPy) has at least one optimal solution.
2. ¢(z,d) — ¢(x,0) — z(z,d) > 0'(2;d) for all (z,d) € IB x IR™.

3. If d* is an optimal solution to (QPy) and ¢(x,d*) < &(z,0), then for any o € (0,1), there
exists a scalar T > 0 such that for all 7 € [0, T]

0(z + rd*) — 0(z) < —orz(z,d").
4. If d* is an optimal solution to (QPy), then z(z*,d*) < 8(z*).

Item (1) in the above proposition ensures that each QP is solvable. Item (2) ensures that the
solution to the QP will be a descent direction for # unless z is a stationary point of 6. Item (3)
allows us to use a Armijo type linesearch which will be guaranteed to terminate in a finite number
of iterations. Item (4) will be used in the proof of Theorem 3.14. We now state the algorithm.

Algorithm NE/SQP
Step 1 [Initialization] Select p, o € (0, 1), and a starting vector 2° € IB. Set k = 0.

Step 2 [Direction generation] Solve (QPy), giving the direction d*.
If ¢(z*, d*) = 6(2*), terminate the algorithm; otherwise, continue.

Step 3 [Steplength determination] Let my be the smallest nonnegative integer m such that
0" + p"d¥) — B(a*) < —op™z(at, d¥); 5)
set aFtl = ok 4 prrdh,

Step 4 [Termination check] If 2%*! satisfies a prescribed stopping rule, stop. Otherwise,
return to Step 2, with k£ replaced by k + 1.

The convergence results of this algorithm are based on two regularity conditions: b-regularity
and s-regularity. 1t is convenient to partition the index sets as follows in order to define these
regularity conditions.

Ity = {iely:z;—1; >0}

el .

Iz = el rx;—u; =0
%) = {i€lq:a;—1;=0} Of() {. f }
! ; Ieu(x) = {Z €l iz —u = 0}
]f(x) = {ielf:az; —1; =0} .
n y Ie_u(x) = {Z € Ieu T U < 0}
If($) = {ielfrz;—u; <0<z —1;}

Note that for z € IB, the sets Il(w),I;';(w),Igl(w),I}(w),I?(x),]}‘(x),lgu,lez(w), and [,(z) form a
partition of the indices {1,...,n}.



Definition 3.2 A nonnegative vector x is said to be b-reqular if for every index set « satisfying

I}?(x) CaClf(z) Ulel(w) Uleu(x),
the principal submatriz V, f,(x) is nonsingular.

Definition 3.3 A nonnegative vector x is said to be s-reqular if the following linear inequality
system has a solution in y:

ri—lLi+yi=0 i€ l(a) file) +Vfi(x)Ty <0 ielf(x)
ri—ui+y;, =0 i€ L,(x) i —lLi+y; <0 iEI;';(x)
Jil@) + Vi) Ty=0 ielf(z)  file) +Vfi(x)Ty <0 icf()
i —lLi+y; >0 iEIchac) zi—u+y; >0 1€l
file)+Vfix)Ty>0 ieli(x) fi(x)+Vfilz)Ty>0 iel,
z; —u; +y; <0 iEI}‘(x)

Note that when { = 0, u = oo the above definition is identical to the concept of s-regularity [14,
Definition 1].

The following theorem parallels the convergence results of [14, Theorems 1 and 2] and establishes
the fact that the NE/SQP algorithm has very good local convergence behavior.

Theorem 3.4 ([1], Theorems 2.2.12 and 2.2.15) Let f : IB — IR" be a once continuously
differentiable function. Let 2° € 1B be arbitrary. The following statements hold:

1. NE/SQP generates a well defined sequence of iterates {x*}, with z* € B, along with a
sequence of optimal solutions {d*} for the subproblems (QPy);

2. if ¥* is an accumulation point of {x*}, and if x* is both b-regular and s-regular, then the

following hold:

(a) x* is a solution of MCP(f,1B).

(b) there exists an integer K > 0 such that for all k > K, the stepsize 7, = p™* =1, hence,
PR+ = gk 4 gk

(c) the sequence {x*} converges to x* Q-superlinearly;

(d) if V f is Lipschitzian in a neighborhood of x*, then the convergence is Q)-quadratic.

The global convergence results contained above are not very useful from a practical standpoint.
The problem is that the s-regularity and b-regularity conditions are dependent not only on the
problem, but also on the algorithm. In particular, they depend on the particular choice of merit
function used. A result that will be more useful for our purposes is available as a result of the
following lemma:

Lemma 3.5 ([1], Lemma 2.2.17) If f is strongly monotone, then all points x € B are both
b-reqular and s-reqular.

It should be noted that the strong monotonicity assumption above is essential. For example,
consider the monotone function f : Ry — IR given by f(z) = 1, and let IB := Ry. For this
choice of f and IB, it is easily verified that V& > 1, z is neither b-regular or s-regular. As a
consequence, even though MCP(f, IB) has the trivial solution z = 0, NE/SQP fails to find it with
any starting point @ > 1. Thus, we see that NE/SQP cannot be relied upon to solve monotone
linear complementarity problems.

We now state our main convergence result of the NE/SQP algorithm.



Theorem 3.6 Suppose f is strongly monotone. If x* is an accumulation point of the iterates {x*}
produced by the NE/SQP algorithm, then * is a solution of MCP(f,1B) and the sequence {z*}
converges to x* with the local convergence rates specified in Theorem 3.4.

Proof By Lemma 3.5, z* is both b-regular and s-regular. Therefore, by Theorem 3.4, z* is a
solution of MCP(f, B) and the iterates {*} generated by the NE/SQP algorithm converge to z*
with convergence rates specified in Theorem 3.4. 0

3.2 Modification of NE/SQP to Guarantee Finite Termination

The NE/SQP algorithm has the drawback that it does not necessarily terminate in a finite number
of iterations unless it converges to a solution. In particular, while the algorithm guarantees descent
of § at every iteration, the sequence {#(x*)} may not converge to 0. This can happen either by
generating an unbounded sequence of points, or by converging slowly to an irregular point. This will
clearly be unacceptable if we are to use the algorithm to solve a sequence of perturbed subproblems.
We therefore present a modified NE/SQP algorithm which has the same local convergence properties
as the original NE/SQP algorithm, but which also guarantees finite termination, even when it fails.

Modified NE/SQP Algorithm

Step 1 [Initialization] Given a starting vector 2° € IB, a convergence tolerance tol, and ter-
mination parameters v € (0,1), and A > 11, select p,o € (0,1), and set k = 0.

Step 2 [Direction generation] Solve (QP}), giving the direction dF.

2
If ¢(z*, d*) > (1—)0(z*), orif HdkH > Af(z?), then terminate the algorithm, returning

k

the point z% along with a failure message; otherwise, continue.

Step 3 [Steplength determination] Let my be the smallest nonnegative integer m such that
(" 4+ pmd¥) — 0(a*) < —ap™z(a®, d"). (7)
Set 251 = 2% 4 p™kd* and continue.

Step 4 [Termination check] If 8(z**!) < tol terminate the algorithm, returning the solution
2%*+1. Otherwise, return to Step 2, with k replaced by k + 1.

Note that by setting v = 0 and A = oo, the modified algorithm is identical to NE/SQP, with
the addition of a particular stopping criteria in Step 4. However, by choosing v € (0,1) and
A < oo, we can ensure that the algorithm will terminate in a finite number of iterations, which
we will prove in Theorem 3.14. This has the drawback that the modified algorithm may fail when
the original algorithm would have succeeded. However, we shall overcome this drawback in the
QPCOMP algorithm by carefully controlling the parameter v. Moreover, the modified algorithm
also has the same local convergence properties as the original algorithm. To establish this fact, we
use the following two lemmas to show that if ¥ is near a b-regular solution of MCP(f, B), then
the tests in Step 2 can never cause failure.

Lemma 3.7 ([1], Lemma 2.2.14) Let & be a solution of MCP(f,1B). If & is b-reqular, then there
exists a constant ¢ > 0 such that for any vector z* € B close enough to ,

9

| < el

where d* is any solution to the quadratic program (QPy).
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Observe, that when 2" is close enough to a b-regular solution,

N < [HE)] /e, so

HdkH < ||H (2%)]|, and therefore, ‘dkH2 < AB(2°). Thus, when z* is close to a b-regular solution,

the second test in Step 2 of the Modified NE/SQP algorithm cannot cause failure. We now show
that the first test in Step 2 cannot cause failure either.

Lemma 3.8 ([1], Lemma 2.2.19) Let & be a solution of MCP(f,B). If © is b-reqular, then for
any € € (0,1/2), there is a neighborhood N C 1B of # such that if z* € N, then

o(a*,d¥) < ef(a"),
where d* is an optimal solution of (QPy).

The above lemmas show that for z* close enough to z, the modified algorithm will not terminate
in Step 2, as long as z is b-regular. Thus, the modified algorithm has the same local convergence
properties as the original algorithm. This establishes the following theorem:

Theorem 3.9 Under the conditions of Theorem 3.4, the Modified NE/SQP algorithm generates
a well defined sequence of iterates {z*} C B, along with a sequence of optimal solutions {d*} for
the subproblems (QPy). Furthermore, if x* is an accumulation point of {x*}, and if either f is
strongly monotone, or x* is both b-regular and s-regular, then x* is a solution of MCP(f,1B) and
the iterates converge to x* at the rates specified in Theorem 3.J.

The remainder of this section is aimed at proving that the Modified NE/SQP algorithm ter-
minates. This is accomplished by considering what happens if the algorithm does not terminate.
In this case, we shall show that the iterates {z*} converge to a point z*. Using this fact, we will
place bounds on certain quantities, which will then be used to establish a minimum rate of decrease
for the merit function 8. This will then force the merit function to zero, which means that the
algorithm will terminate after all, by the test in Step 4.

For ease of discussion, we define the function ¢,(d) := ¢(z,d). The following lemma is a
technical result needed in several ensuing proofs.

Lemma 3.10 ([1], Lemma 2.2.21) If ¢,(d) < (1 —7)8(x) then z(z,d) > $7?0(z).

We now prove that the iterates converge.

Lemma 3.11 Suppose f is continuously differentiable. If the Modified NE/SQP algorithm, with
v € (0,1) and A < oo, fails to terminate, then the iterates {z*} produced by the algorithm will
converge to a point x* € B with §(x*) > 0.

Proof Let ¢y(d) := ¢(2*,d) and let z,(d) := z(2¥,d). By the test in Step 2 of the algorithm,
¢r(d) < (1 —v)0(2%). Thus, by Lemma 3.10, z(d) > $7260(a").

Let {71} be the sequence of steplengths generated in step 3 of the algorithm, i.e., 7 1= p™*.
Then,

O(z*1) = 0% + mpd")

ANVAN
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Let ﬁk = omy?/2. Then
k

Oz <o) JT (1 - ;).

=0

Since 6(z*) is bounded away from 0, it follows that
H 1—5) >

But this implies that $2°° 3 is finite, which means that 52 7 is finite.
2
Now, by the test in Step 2 of the algorithm, H < Af(2°). Thus,

o]
ZTk HdkH < 00,

k=0

H is bounded, so

From this it follows that the sequence of iterates {z*} converges to some point z*. Clearly, 8(z*) > 0,
or the algorithm would terminate in Step 4. 0

Using the fact that the iterates converge, together with straightforward continuity arguments,
bounds can be placed on several quantities, which will be useful in proving Lemma 3.13.

Lemma 3.12 ([1], Lemma 2.2.23) Under the hypotheses of Lemma 3.11, there exist constants
My, My, and L, depending on the starting point z°, such that for all T € [0,1], the following
inequalities hold:

|fia® +rd)| < My, [V fi(2® +rdb)| < My (8)

and

Jilahy =L ||d| < gileh 4 rdb) < file) L. (9)

Furthermore, for any § > 0, we can choose 7(8) > 0 such that for k sufficiently large, the following
holds for all T € [0,7(4)]:

|fi(a® 4+ 7d")| <

fi@®) + TV fi(aF) T | 4 7o |t (10)
We are now able to establish a minimum rate of decrease for the merit function.
Lemma 3.13 Under the hypotheses of Lemma 3.11, there exists a constant p € (0,1) such that
0(x"1) < pB(2), ¥ k sufficiently large.

Proof Suppose 6 € (0,1), and let 7 € [0,7(d)] where 7(J) is chosen according to Lemma 3.12.
Suppose that k is large enough that (10) holds. We shall examine the terms H; (2" + 7d*)? in order
to establish an upper bound on 8(z*+t1) = ", H; (2" 4 7d*)?/2.

To simplify notation, we drop the superscripts k. Thus, we let 2 := 2% and d := d*, etc. We
shall also find it convenient to define the scalar function qAﬁZ : IR+ — IR+, as follows:

Observe that ¢7(0) = z(z, d), so

To bound H;(x + 7d)?, we have to look at two different cases:

12



Case 1: ¢ € I¢(z). Note that |H;(z 4+ 7d)| < |fi(z 4+ 7d)|. Thus, by (10),

Hi(x +7d)* < (fi(x) + 7V filx) Td)* + 276 | fi(z) + vai(w)—rd‘ | + 726 |d]* .

But, (fi(z) + 7V fi(2)Td)? = 2¢; () = 26:(0) + 27¢4(0) + 7267 (0), so

Hi(x 4 7d)? < 26:(0) + 27¢4(0) + 7267 (0) + 276

Case 2: ¢ ¢ I¢(z). We look only at the case i € [j(z) e (2); the argument for ¢ € I, (z) U Leu(2)
is similar.

If H;(z 4 7d) is negative, then

Hi(zx+71d) = fi(z+ 7d)
> Jilz) = rL[d] by (9)
> z;—l+71d; —7(d;+ L||d||) since fi(z) > z; -1
> wi—lit+rd —7(L+1)[|d].
Thus,
Hi(z +7d)? < (a;—li47d)? = 2r(x; — i + 7ds) (L + 1) ||d]) + 72(L + 1)%]|d])?
< (wi— L+ Td) L+ D)2 )

If Hi(z 4 7d) is nonnegative, this ineguality holAds trivially since H;(z + 7d;) < z; — I; + 7d;.
Finally, (2; — l; + 7d;)* = 26:(1) = 2¢:(0) + 27¢(0) 4 7°¢7(0), so

Hi(x +7d)* < 26:(0) +2767(0) + 7267 (0) + 72 (L + 1)* ||d||*. (13)

Summing over all components, we get

O(z + 7d) = %Z H;(z + 7d)* < ¢,(0) + 79 (0;d) + 760+ ¢, (14)
where
ni= > |fi@) + TV @) Td] ],
iEIf(l’)
and .
Ci=3 00 0)+ Y (L+D* PP+ Do 8l

=1 igIs(x) i€y (z)

We now establish bounds for  and ¢. By (8),
Z filz) + TVfZ'($)Td‘ < f(@)|| + Mz ||d|| < My 4+ M3/ AB(2°) =: C4.
iEIf(l’)

Thus, n < Cq ||d|| < C1/AO(20) =: K;.
For ¢, we deduce from (11) that

Z #!(0) = z(z,d) < 8(z), by item 4 of Proposition 3.1.

13



Thus,

< 0(@) + [Id* (n(L + 1)* + nd?)

< (A4 nA(L+1)246%)0(2%), since ||d|* < Af(z°)
< 1(27

where Ky := (14+nA((L+1)*+1))8(2°). This last inequality holds since § < 1. Returning to (14),

Oz +7d) < &:(0)+ 7¢,(0;d) + 70K, + 72 K>
= O(z)+ 78 (z;d) + 70K + T2K;.

By Item 2 of Proposition 3.1,

0/($;d) (bx(d) _(bx(o) _Z($7d)
(1—v)8(z) — 0(z) — z(z,d), by the test in Step 2

—y0(x) — z(z,d).

<
<

Thus,
O(x +7d) — 0(z) < 7(=70(2) — 2(x,d)) + 76 K1 + T2 K>.
Note that the definitions of K; and K, are independent of §. We can therefore consider a

particular choice of §: let § := min(1,~v6(2*)/(2K1)) and let 7 := min(7(5),v0(2*)/(2K3)). Note
that § > 0 and 7 > 0, since #(z*) > 0. It follows that for all 7 < 7, and for k sufficiently large,

O(z + 7d) — 0(x) —rz(x,d) — 7v0(x) + T0(2*) /2 + TT K>
—rz(x,d) — 7v0(x) + Tv0(x) /2 + Ty0(x) /2, since O(a*) < O(x)
—71z(z,d)

< —orz(z,d), Vo<l

INCIA

(15)

Observe that the steplength p™ generated by Step 3 of the algorithm is chosen such that m is
the smallest integer satisfying (7). Thus, 7 := p™~! cannot satisfy (15). But this means that

p™ "t > 7, which implies p™ > p7.

It follows by the linesearch test (7) and Lemma 3.10 that

0(x +p"d) < 0(x) —opTz(z,d) < (1 -
By setting p := 1 — op7y?%/2, the proof is complete. 0

Theorem 3.14 If~y € (0,1) and A < oo, then the modified NE/SQP algorithm will terminate in
a finite number of iterations provided that f is continuously differentiable on IB.

Proof Let tol > 0 be the stopping tolerance used in the algorithm. If the algorithm does not
terminate, then by Lemma 3.13, there exists p € (0,1) such that for k sufficiently large, f(z*+1) <
ﬁ0($k) Thus, after sufficiently many iterations, 0($k) < tol, and the algorithm will terminate in
Step 4. 0

14



4 The QPCOMP Algorithm

The basic idea behind QPCOMP is simple. The algorithm first tries to solve the problem using the
modified NE/SQP algorithm. If this fails, QPCOMP then solves a sequence of perturbed problems
in order to find a point with an improved value of the merit function. Once this point is found,
QPCOMP returns to running the modified NE/SQP algorithm on the original problem, starting
from this improved point.

One complication of the algorithm is that the subproblems must be solved inexactly in order
to guarantee that they are each completed in a finite amount of time. To handle this we have
introduced a sequence of tolerances {7;} which control the accuracy demanded by each subproblem.

Another complication is that the best choices of the parameters A and v cannot be known
in advance. We now state the algorithm, including a description of how these parameters are
adaptively chosen.

Algorithm QPCOMP

Step 1 [Initialization] Given a starting vector 2% € 1B and a convergence tolerance ¢ > 0,
choose 6 > 0, 1 € (0,1),v € (0,1), v € (0,1), and set k = 0.

Step 2 [Attempt NE/SQP] Run the Modified NE/SQP algorithm with starting point ¥, with
tol = ¢, to generate a point Z.

Step 3 [Termination check] If Z solves MCP(f, B), stop; otherwise continue with step 4.

Step 4 [Generate better starting point] Set Gp.s; 1= 6(Z), set y* = &, set j = 0, and choose
A > 0, and choose a positive sequence {n;} | 0.

Step 4a Run the Modified NE/SQP algorithm to solve the perturbed problem
MCP(f*¥ | IB) from starting point 3/, with tol = m/(l—l—”yj |). This generates
a point .

Step 4b If g fails to solve the perturbed problem to the requested accuracy, set
A > A+ 6§ and v < vy, and goto step 4a; otherwise, continue.

Step 4c [Check point] If 6(§) < ubpess, set "+ = 7 and return to step 2, with &
replaced by k + 1. Otherwise, set /! := 7 and return to step 4a, with j
replaced by j + 1.

Observe, that the QPCOMP algorithm has the same local convergence properties as NE/SQP.
In particular, by Theorem 3.9, for any b-regular solution z*, there is a neighborhood such that the
modified NE/SQP algorithm is identical to NE/SQP within this neighborhood. Thus, in Step 2 of
the QPCOMP algorithm, if z* is sufficiently close to z*, then the modified NE/SQP algorithm will
converge to x™ at the rates specified by Theorem 3.4.

We now establish global convergence properties for the algorithm:

Theorem 4.1 If f is Lipschitz continuous and continuously differentiable on 1B, and if MCP(f,1B)
satisfies Assumption 2.2, then for any € > 0 the QPCOMP algorithm generates an iterate x*
satisfying 0($k) < € in a finite number of iterations.

The remainder of this section is devoted to proving this theorem. As an introduction to the
proof, note that if Step 4 is always successful at generating an improved starting point, then even
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if the Modified NE/SQP always fails in Step 2, the merit function values {#(z*)} will converge to
0 at least linearly, since 8(z*+1) < u#(2*) for all k. Thus, our convergence analysis is reduced to
proving that Step 4 always generates an improved starting point.

In the analysis that follows, it will be convenient to define perturbed index sets by

NE B Az i

J,M(x) = {iiei—li< fZM(x)} Pi(e) = e —ui= ()
D) = b= 5 @) ) o
I? () == {ira;—u; < f?’l’(x) <=} “ ' oo '

We shall also use the following obvious perturbations of the functions H, 6, ¢, and z:

H/\i’(x) := min(z; — [;, max(z; — U“fo(w)))v

V(e = 4 @)
<b“’<d> W(m d) == 32 67" (2, d), where
) 3@ —lit+ d)? e @)U (@)
67 (@, d) = Lai - ui+ di)? e M@ UL(@)  i=1,....n.
S @)+ V@) Td)? i e I ()

I\
8 >
El
—~
U
S’
Il
I\
}/
8
—~
&
U
S’
Il

S 2N (2, d), where
) i ¢ 1}7“:“’(9@)
D) Td)? Qe I ()

=
S

1=1,...,n.

I
= }/
il
—~
d&
=2
e
(l
——
[N T AN
—~
<
s

To show that Step 4 is always successful at generating an improved starting point, we begin
by assuming that the Modified NE/SQP algorithm in Step 4a of QPCOMP fails at most a finite
number of times. Later, we will remove this assumption. It follows that after a finite number of
iterations, § always solves the perturbed problem to the desired accuracy, so the algorithm always
continues past Step 4b to Step 4c. Thus, either an improved point will eventually be found, or the
algorithm will generate a sequence of iterates {37} such that

o

= T vl

We then use the fact that {;} converges to 0 to show that 6(y’) — 0. This result is proved in the
following lemma:

Lemma 4.2 Let f be a Lipschitz continuous function and let {n;} be a sequence of positive numbers
that converges to 0. Let A > 0 and let {z*} be a sequence of points in 1B such that

HH/\,xk(xk-I—l)H < W k. (16)

Suppose MCP(f,1B) satisfies Assumption 2.2, then for any € > 0, there exists an iterate 7 € {z*}
such that 8(x7) < e.

Proof Let z* be the solution to MCP(f, IB) guaranteed by Assumption 2.2 which satisfies (1),
and let y* := HA’xk(wk"'l). In the same spirit as the proof to Theorem 2.3, we establish a lower
bound on the term (zf+h — 2%)(aF — 25F1).

K3 K3 K3
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k+1

Case 1: yf = 2% — [; and 27 < 2. Observe that

okt .
x j—
(@ (ot et = @ PO Y (17)
where i
. +1y _ ).
wf = (aft - 2)) (xf—xfﬂ——fl(w /\) yl).
Now, 0 < (¥t —a%) <ol — 1 = yb. Also, o — 2+ > 1, — 2+ = —yb. Thus,

wh o= (@ ) (eh - T g/A) - @ ) (/)
yE (=uF b /A) = It )]/

—(y)? = 1yF| [ fi(a* )| /A,

v

v

Returning to (17), we get

@i =l = o) 2 @ = en) (R = ) A - 92 - B ne)

(18)

Case 2: yf = xf"’ —1l;, and z} > xf"’l In this case, fZ <" (x k"'l) > f —I; = y¥. Thus,
(@) M@ — k) > yFso @b — 2B < (fi(aP ) — yF) /AL Since 2T — 27 <0, we get
(! = ap)(af — 2k > @B =) (A = w) /0 (19)

Case 3: yF = f?’xk(xk"'l). In this case, y# = f;(zF+1) + A(aFT! — 2F), s0 b — 2FF = (fi (2"t -
y¥)/A. Thus,

(a8 — ) (ah — b = @B = a7y (A" = uF) /0

Case 4: yF = xk‘H Ui, T k"'l > x7. By similar arguments to Case 2, inequality (19) is satisfied.
Case 5: y = xk‘H Uiy & k"'l < x7. By similar arguments to Case 1, inequality (18) is satisfied.

In every case above, inequality (18) holds. Thus,

(o —a0)? = (o = af k- )2
= (@ a2l =) (of - ) + (o - a2

(= a2 1 2 ) (Fi@™*1) = yl) /A= 2(y8)?
—3lyfl @Y + @ =22 by (19),

v

Summing over all components, we get

2 ‘xk-l—l e 2 f(aH )T (xk-l—l _ x) /A2 (yk)T (xk-l—l _ x) /A

2 -z ek s et -
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Now, let L be the Lipschitz constant for f. Then Hf(xk"'l)H < Hf(xk"'l) — f(ac*)H + | f(z")]] <
L Hwk"'l - x*H + ||£(z*)||. Further, by Assumption 2.2, f(z*t1)T (wk"'l — x*) > 0. Thus,

2 2 2
L I Lanbts InE] U L Lanita TASE] 14

o [yt (2 ot =) [t =
> fotst o o (1 o) - ()
—2ne (1 k4 |+ @) /(o) + 2 = ok
= ‘xk“ — 2 ‘2 + Hwk - wk“Hz — 20 B,
(20)
where H [ *H (L ” k41 *H_I_Hf( *)H)
X — T n X — T X
S = ST et N+ =)
Note that
B < [t = 2| L+ 1/ A+ o+ (151N (21)

Let C':= (nL + 1)/XA+no + n||f(z*)|| /A. Then §; > C implies that Hwk'i'l - OC*H > 1. Now,
let {Br : k € K} be the subsequence of {f;} for which g > C,Vk € k. It follows then that

k .« . . k 2 . . .
Hx o x*H > 1,Vk € k. If we divide each side of (21) by Hx o x*H , it is easily seen that

{Bk/ ”wk"'l - x*H2 : k € K} is bounded.

2
However, dividing (20) by Hwk"'l — x*H gives
2 2
N L
L L P L P

Since 7 | 0, the last term above converges to 0. Thus, for k € k large enough,

|~ =]

1
JoF ¥ = 7 2
ot - o] (21"~ | + 1560)
2ok — o n (2L 2% — o + 1 £@)]
B < S )+ T e T L+ [J2F]) |
Observe that
i o e R

< < * 1.
CF ) < e <

Thus, the subsequence {fy : k € k} is bounded, from which it follows that {3;} is bounded.

Now, assume the lemma is false. Then there exists an ¢ > 0 such that for all k, 8(z%) > €2/2,
which implies HH(wk)H > €. Furthermore, for k large enough, 7, < €. Without loss of generality,
we can assume that this inequality holds for all k.
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Since f is Lipschitz continuous, H " is also Lipschitz continuous with some Lipschitz constant

K. But then,

6—62

H(ack)H — Mk
1 @) | [ | (10 o)
H/\xk(wk) _ HA,ggk(ka)‘

K Hwk"'l - ka

INCINIAN A

Thus, for € small enough,
e/(2K) < (e~ ) /K < Hwk‘H — ka .

Finally, since the sequence {n;/3x} converges to 0, then for all £ sufficiently large, ni0r < €/(8K).
Thus, from (20)

T
> [eM = | 4 e/ 20) - /(1K)
S E R eTS)
But, then N
ka _ > Ze/(élK) =00 > ka _
k+1
The lemma is thus proved by contradiction. 0

Note that Lemma 4.2 did not make any assumption on the choice of A other than that it is
greater than 0. Thus, even if A is smaller than the Lipschitz constant, we can guarantee convergence.

The next stage in our analysis is to prove that the Modified NE/SQP algorithm can fail at most
a finite number of times in Step 4a of QPCOMP. This is accomplished by observing that after each
failure, the value of A is increased, while the value of v is decreased. Thus, the result will be proved
if we can show that for A large enough, and 4 small enough, the Modified NE/SQP algorithm will
always solve the perturbed problem MCP(fA’yJ,IB). This is accomplished by the following two
lemmas.

Lemma 4.3 ([1], Lemma 2.3.3) Suppose [ is Lipschilz continuous with Lipschitz constant L,
and let v and T be arbitrary points in B. If X > 2L + 2, and if d satisfies o7 (d) < ¢%(0), then

1] < 116N ().

Lemma 4.4 Suppose [ is Lipschitz continuous. There exist constants ¥ > 0, and A > 0, such that
for any A > X, the modified NE/SQP algorithm applied to MCP(f*%) will not terminate in Step 2
Jor any v <% and z € B.

Proof Suppose the lemma is false. Then there must exist a sequence {A;,7;}, with A — oo and
~ ] 0 such that for each j there exists a perturbed problem MCP(fAJ’W,IB) where the modified
NE/SQP algorithm with v := v, fails in Step 2 when run on MCP (% B)}.

Define f/(z), H(z), 6;(z), and &;(x,d), to be the f, H, 6, and ¢ functions corresponding to
the jth perturbed problem. For example f7(z) := f*# (), etc. Then for the jth problem to fail
in Step 2, there must exist a point 2/ and a direction d’ such that d’ is an optimal solution to the
quadratic program (QP;) defined by

min  ¢; (2, d)
z)+delB
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and also d’ fails one of the two tests in Step 2 of the algorithm. Without loss of generality, we can
assume \; > 2L 42,Vj. By Lemma 4.3, ||dj||2 < 118;(2?) < Af;(27). Thus, the failure must occur
because of the first test in Step 2. In other words,

¢j(a,d’) > (1= ;)8;(x7), Vi, (22)
Since ¢;(z/,d?) < ¢;(x?,0) = 0;(27), and also, v; | 0, we see that

(b]'(xj, dj) _
7% (xf) =1. (23)

lim

Let I; := I?J’EJ (z7), J; be the set of indices not in 1,

(27) H} (a)
Aj = 7“ H and B;:= 7“ A H
1H (7)) [[H7 (7))
We first show that lim;_,., A; = 0. To do this, we examine a particular choice of j. Let

H7 = H(27). We can then rewrite ¢;(z7, d), as follows:
, 1 : : 12
62’ d) =3 |7 + Diya+ 1)
where o
Mo V)T ifiel Dl .- A ifiel;
o 0 if + € J;. " 1 ifie J;.
Observe that wf —au; < HZ] < wf — [;. Note that for d defined by

i —H!/\ ifiel;
' 0 if i € J;

it follows that z7 + dc IB, since A > 1. Furthermore

1

J

(M? + Di)d+ 1’ = [ (Md)y, ] .

Now, since d is an optimal solution to (QP;),

. . R . Lo~ 12 o~ 2
oyl ) < oy(atd) = i+ p)ydr | = & (v,

)

A g ) < s (2,204 7).

IN

Thus, by (23),

(od 12 A2
1:1imwgliminf ZJ 4 B2y,
0;(x7)

But, since {A4;} is bounded, and A; — oo, we see that 1 < liminf BJZ. Furthermore, B; < 1, so
lim B; = 1, which implies that 4; — 0.
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Let us now examine the direction finding subproblem (QP;) for large j. For some « € [0, 1],
define d by
o ifiel
Y —eH! ifie ;.
Here we see that

(MY + D)d + H? =

Hi + (Md), ]

(1),
Thus,
oifal di) < E a4 DiYd 4 i)
= 5 ([l + v |+ - 02 )
< 3 (| ol e+ e + - )
< 5 (A [HID? +24; | HY| L((dH +L? HdH2 +((1 - a)B; ||Hj||>2)
< LHIP (A2 42450l + 0?12+ (1 - 0)?B?)
< 0($j) (A? +2A;0L 4+ (1 - 20+ (L + 1)042)) , since B; < 1.

Choosing o = 1/(1 + L?), we get &;(2/,d?) < 6(2?) (A;(2L/(14+ L*) + A;) + 1 —1/(1 + L?). But
since lim A; = 0, we see that
¢ (!, d’)

limsup =————+ <1— — < 1,

O(x7) 14 L2
contradicting (23). Thus, the lemma is proved by contradiction. 0

We can now combine the results of the previous three lemmas to prove that Step 4 always
generates an improved starting point.

Lemma 4.5 Suppose that [ is Lipschitz continuous and continuously differentiable on IB and that
MCP(f,B) satisfies Assumption 2.2. If the QPCOMP algorithm fails to terminate, it will execute
Step 2 an infinite number of times.

Proof Assume the lemma is false. It then follows that after a finite number of statements are
executed, the algorithm never returns to Step 2. But this means that, thereafter, the test in Step
4c of the algorithm is never satisfied.

By Theorem 3.14, the modified NE/SQP algorithm will always terminate in a finite number
of steps. Thus, Step 4b of the QPCOMP algorithm will be executed an infinite number of times.
But the test in Step 4b can fail only a finite number of times. After that, A will be large enough
and 4 will be small enough that by Lemma 4.4 the Modified NE/SQP algorithm will always find a
solution to the perturbed problems. Thus we see that Step 4c is visited an infinite number of times,
and moreover, after a finite number of iterations, the value of A is fixed. But then Lemma 4.2
guarantees that the test in Step 4c¢ will be satisfied after a finite number of iterations. But this
contradicts our original assumption, so the lemma is true. 0

We are now ready to prove Theorem 4.1
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Proof (of Theorem 4.1)

By Lemma 4.5 either the algorithm will terminate with a solution in Step 3, or Step 2 will be
executed an infinite number of times. But if Step 2 is executed an infinite number of times, then
we have

O(zF 1) < pf (") = (") < pu*o(2?),

so B(2*) converges to zero. 0

5 Implementation and Testing

The QPCOMP algorithm was coded in ANSI C, using double precision arithmetic. The Fortran
package MINOS [12] was used to solve the quadratic subproblems. The algorithm allows for a great
deal of flexibility in the choice of parameters, which can be specified in an options file. For testing
purposes, we used the following choices of parameters in the QPCOMP and Modified NE/SQP
algorithms: = .9, A = 1.0e4, p = .5, 0 = .5. The sequence {n;} used in Step 4 of the QPCOMP
algorithm was given by n;41 = 0.999 x 7;, with 79 set to 1000. This effectively caused the Modified
NE/SQP algorithm to perform only one iteration before returning control back to QPCOMP. The
parameter A was updated as follows:

1. In Step 4, X is set to Opeq.

2. In Step 4b, if 7 fails to solve the perturbed problem, A is set to max(.1, 10A); otherwise, it is
multiplied by .9.

Finally, the parameter v is initially chosen to be .01. Thereafter, in Step 4b, it is set to min(1/A, v).
For practical considerations, we also placed a limit on the number of allowable iterations of the
linesearch in Step 3 of the modified NE/SQP algorithm. This limit is set to 10 when the Modified
NE/SQP algorithm is called from Step 2 of QPCOMP, and is increased by 4 whenever the Modified
NE/SQP algorithm fails, up to a maximum of 30.

QPCOMP was interfaced with the GAMS modeling language [2, 6], allowing problems to be
easily specified in GAMS, and the algorithm to be tested using MCPLIB [4] and GAMSLIB [2].
Specifically, we tested QPCOMP on every problem with fewer than 110 variables in MCPLIB and
GAMSLIB. Larger problems were excluded because our implementation of QPCOMP uses a dense
solver for the QP subproblems. Table 2 summarizes the features of the problems tested.

We also tested NE/SQP, PATH version 2.8 [5], and SMOOTH version 3.0 [3] on the problems
in Table 2. To run NE/SQP, we simply used the QPCOMP algorithm with A = oo and y = 0. A
comparison of the performance of the algorithms is given in Table 3. Many of the problems in the
library are specified with more than one starting point. The particular starting point used is shown
in the second column of the table. For each problem we report the execution time (in seconds) and
the number of function and Jacobian evaluation, f and J. To save space, we have omitted from this
table any problems which all four algorithms solved in less than a second. All of the problems were
solved to an accuracy of 1076, Specifically, for QPCOMP the stopping criteria was ||H (z)]] < 107.

The results of the testing demonstrate the high degree of robustness of the QPCOMP algorithm.
We note that although it did not solve the Von Thiinen problems, QPCOMP was able to solve these
problems to an accuracy of 10~%. Experimentation with the Von Thiinen problems suggests that the
Jacobian matrix is singular at the solution. Thus, near the solution, the Jacobian matrix is poorly
conditioned. This ill-conditioning is exacerbated in QPCOMP by the fact that the QP subproblems
are formulated using the square of the Jacobian matrix, resulting in extremely ill-conditioned QP
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Table 2: Models

GAMS file Model origin Type | Size | Nonzeros
bertsekas.gms | Traffic assignment | NCP | 15 75
billups.gms Section 2 NCP 1 1
cafemge.gms GAMSLIB (139) | MCP | 47 316
choi.gms Nash equil. NCP | 13 169
colvnep.gms Colville #2 NLP | 15 99
colvdual.gms | Colville #2 (Dual) | NLP | 20 149
ehl_k60.gms Lubrication MCP | 61 3721
ehl_k80.gms 7 MCP | 81 6561
ehl_kost.gms 7 MCP | 101 10201
freebert.gms Traffic assignment | MCP | 15 75
gafni.gms 7 MCP | 5 25
hanskoop.gms Capital stock NCP | 14 116
hansmcp.gms GAMSLIB (135) | MCP | 43 356
hansmge.gms 7(147) MCP | 43 793
harkmep.gms GAMSLIB (128) | MCP | 32 103
harmge.gms 7(148) MCP | 9 81
hydroc06.gms Distillation NE 29 223
hydroc20.gms 7 NE 99 740
josephy.gms MCPLIB NCP 4 16
kehomge.gms GAMSLIB (149) | MCP | 9 81
kojshin.gms MCPLIB NCP 4 16
kormep.gms GAMSLIB (130) | MCP | 78 346
mathi*.gms Walrasian NCP | 4 11
methan08.gms Distillation NE 31 226
nash.gms Nash equil. MCP | 10 100
oligomep.gms GAMSLIB (133) | MCP | 6 16
pgvonl05.gms Von Thiinen NCP | 105 795
pgvonl06.gms 7 NCP | 106 899
pies.gms PIES model MCP | 42 184
powell.gms Powell NLP | 16 188
powell_mcp.gms ” NCP 8 47
sammge.gms GAMSLIB (151) | MCP | 14 170
scarfa*.gms Walrasian NCP | 14 96
scarfb*.gms 7 NCP | 40 575
scarfmge.gms 7 NCP | 20 348
shovmge.gms GAMSLIB (153) | MCP | 10 100
sppe.gms Spatial price MCP | 27 84
tobin.gms 7 MCP | 42 202
transmep.gms GAMSLIB (126) | MCP | 11 24
two3mep.gms GAMSLIB (131) | MCP | 6 24
unstmge.gms GAMSLIB (155) | MCP | 5 25
vonthmge.gms Von Thiinen MCP | 80 842
wallmep.gms GAMSLIB (127) | MCP | 6 20
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Table 3: Performance Results

Problem | st. NE/SQP PATH QPCOMP SMOOTH

Name pt. sec. f(J) sec. f(J) sec. f(J) | sec. f(J)
bertsekas | 1|  fail fail | 0.08 | 27(6) | 2.83 | 151(44) | 0.24 | 113(27)
bertsekas | 2 fail fail 0.04 5(5) 2.41 | 126(40) | 0.05 7(7)
billups 1 fail fail fail fail 0.11 23(22) fail fail
cafemge | 1| 18.16| 16(10) | 029 9(7)| 2011 | 16(10) | 0.41 9(8)
cafemge | 2| 1657 | 15(8)| 026| 6(6)| 14.19| 15(8) | 0.25 6(6)
choi 1| 200| 54)] 209| 55| 228 5(4) | 2.10 5(5)
colvdual 1 fail fail 0.11 | 15(13) 5.76 | 252(78) | 0.11 40(15)
colvdual 2 fail fail 0.09 | 16(12) 5.39 | 184(59) | 0.10 52(17)
ehl k60 1| 1611 11(8) | 1.56|  6(6)| 1691 | 11(8) | 1.59 6(6)
ehl_k60 2 fail fail | 25.16 | 84(66) | 147.22 | 186(84) | 14.71 106(34)
ehl_k60 3| fail fail | 44.97 | 99(50) | 492.33 | 1030(98) | fail fail
chl k80 1| fail fail | 2.37|  6(6) | 313.15 | 98(95) | 2.93 6(6)
ehl_k80 2 fail fail | 131.99 | 541(44) | 129.02 72(33) | 6.57 24(12)
chl k8O | 3 |435.77 | 442(86) | 56.58 | 132(43) | 729.89 | 556(135) | 85.26 |  425(72)
ehl _kost 1 fail fail 3.86 6(6) | 611.41 | 108(105) | 4.73 6(6)
chlkost | 2|248.79 | 97(30) | 13.56 | 19(19) | 250.28 | 97(30) | 12.58 | 21(12)
chlkost | 3| fail fail | 9.76 | 11(11) | 866.08 | 409(79) | 90.38 |  262(55)
freebert 1 fail fail 0.07 5(5) 2.72 | 151(44) | 0.04 6(6)
freebert 3 fail fail 0.05 5(5) 2.86 | 173(45) | 0.04 6(6)
freebert 4 fail fail 0.09 27(6) 247 | 151(44) fail fail
freebert 5 fail fail 0.04 5(5) 1.38 | 116(23) | 0.04 5(5)
freebert 6 fail fail 0.08 27(6) 3.02 | 173(45) fail fail
hanskoop | 5 fail fail 0.09 | 19(11) 0.70 27(11) | 0.30 102(34)
hanskoop | 7 fail fail 0.05 11(6) 0.86 45(13) | 0.22 83(25)
hansmep 1 fail fail 0.47 | 45(18) fail fail | 0.13 10(8)
hansmge | 1| 3.14| 11(8)| 036| 12(8)| 286 | 11(8)| 0.64| 26(13)
harkmep | 1| 1.27| 34(11)| 0.05| 8(®)| 1.06| 23(10)| 0.07 10(8)
harkmep | 4| 6.96| 20(13) | 012 13(6) | 9.31| 27(14)| 0.37|  31(17)
harmge 1 fail fail 0.06 11(7) 1.86 | 132(57) | 0.09 33(11)
harmge 2 fail fail 0.03 5(5) 0.14 5(4) | 0.03 5(5)
harmge 3 fail fail 0.04 5(5) 0.13 5(4) | 0.04 5(5)
harmge 4 fail fail 0.05 8(6) 0.15 5(4) | 0.04 8(6)
harmge 5 fail fail 0.05 8(6) 0.16 8(5) | 0.04 8(6)
harmge | 6| fail fail | 0.06 | 13(8) | 3.24 | 379(78) | 2.08 | 1117(139)
hydroc20 | 1| 16.11] 10(8)| 0.38| 11(9) | 13.31| 10(8) | 0.36 10(9)
josephy 1 fail fail 0.03 7(7) 0.08 13(7) | 0.03 24(9)
josephy 2 fail fail 0.04 | 15(11) 0.07 15(7) | 0.02 9(6)
josephy 4 fail fail 0.02 4(4) 0.04 5(4) | 0.02 5(4)
josephy 6 0.04 4(3) fail fail 0.05 12(6) | 0.02 9(6)
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Table 3: Performance Results (cont.)

Problem | st. NE/SQP PATH QPCOMP SMOOTH
Name pt. | sec. f(J) | sec. f(J) | sec. f(J) sec. f(J)
kojshin | 1| fail fail | 0.03 6(6) | 0.07 | 16(7)| 0.03|  33(10)
kojshin | 3| fail fail | 0.06 | 17(17)| 0.12| 35(10) | 0.11| 189(27)
kormep | 1| 2.82|  4(3)| 0.08 4(4) | 282  43)| 0.05 4(4)
pgvonl05 1 fail fail | 1.54 64(16) fail fail fail fail
pgvonl05 | 2| 41.51 | 199(39) | 0.77 | 27(10) | 50.91 | 213(30) | fail fail
pgvonl05 | 3 |33.47 | 153(32) | 1.58 | 63(14) | 58.80 | 322(40) | fail fail
pgvonl05 4 fail fail fail fail fail fail fail fail
pgvonl06 1 fail fail | 19.77 | 772(101) fail fail | 125.46 | 6428(482)
pgvonl06 2| fail fail | 1.80 48(36) fail fail 5.37 109(37)
pgvonl06 3 fail fail | 1.29 39(20) fail fail 8.48 233(49)
pgvon106 4 fail fail fail fail fail fail fail fail
pgvon106 5 fail fail fail fail fail fail fail fail
pgvonl06 6 fail fail fail fail fail fail 3.76 58(27)
pies 1| fail fail | 0.13 | 13(13) | 7.26 | 54(49) | 027 |  41(14)
sammege 1 fail fail | 0.01 1(1) fail fail 0.00 1(1)
sammge | 10 fail fail | 0.01 1(1) fail fail 0.01 1(1)
scarfasum | 2| fail fail | 0.04 5(5) | 1.51 | 73(26) 0.10 23(6)
scarfbnum | 1| 6.27 | 70(20) | 0.39 | 24(14) | 6.42| 76(21) | 032|  71(20)
scarfbnum | 2| 6.01 | 97(22) | 0.44 25(15) | 6.09 | 58(19) 0.32 95(24)
scarfbsum 1 fail fail fail fail | 8.77 | 26(22) 0.24 24(11)
scarfbsum | 2| fail fail | 2.37 66(18) | 31.11 157(83) 0.66 103(24)
scarfmge | 4| 1.02 | 17(12) | 018 | 25(11) | 097 | 17(12) | 017 |  20(12)
shovmge | 2| 1.02|  4(3)| 0.09 4(4) | L1t 4@) | 0.10 4(4)
shovmge | 4| 1.19| 10(4) | 0.08 4(4) | 1.96 20(4) 0.08 4(4)
tobin 1| 133 15(10) | 0.08| 12(9)| 1.49| 15(10) | 0.3 |  31(12)
tobin 2| 1.83| 18(11) | 0.10| 13(9) | L78| 18(11)| 0.09|  17(12)
transmep 1 fail fail | 0.04 12(12) | 1.22 | 69(67) 0.05 24(15)
transmep 2 fail fail | 0.01 1(1) fail fail 0.00 1(1)
vonthmge 1 fail fail | 1.06 34(22) fail fail | 17.14 | 730(278)
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subproblems. The inability of QPCOMP to achieve higher accuracy on these problems appears to
be a symptom of this difficulty.

The fact that QPCOMP is not as fast as PATH and SMOOTH is not surprising; our intent
was to demonstrate the robustness of our approach. In contrast to the slow execution times of
QPCOMP, note that the number of function and Jacobian evaluations required by the QPCOMP
algorithm is often quite reasonable. This indicates that a much more efficient version of the code
might be attainable by using a faster QP solver. It is important also to recognize that PATH
and SMOOTH are finely tuned codes which include numerous enhancements that greatly improve
their performance. For example both algorithms employ a projected Newton preprocessor, which
although unreliable, often produces an approximate solution extremely quickly. In addition, version
2.8 of PATH uses a proximal perturbation heuristic that was motivated by the success of QPCOMP.
In contrast, the version of QPCOMP we tested here is exactly the version for which we proved our
convergence results.

6 Conclusions

In this paper, we have demonstrated that our strategy for solving a sequence of perturbed subprob-
lems is very effective in enhancing the robustness of an algorithm. Our numerical results indicate
that the NE/SQP algorithm is considerably less robust than either PATH, or SMOOTH. However,
it is certainly capable of being used as a solver for perturbed problems that are strongly mono-
tone. We were thus able to develop the QPCOMP algorithm which is theoretically more robust
than any superlinearly or quadratically convergent algorithms currently available. The test results
demonstrate a dramatic improvement in robustness over the NE/SQP algorithm.

There are several weaknesses in the NE/SQP solver which became evident in developing and
testing QPCOMP. The first lies in the definition of the H function, which is fundamental to the
calculation of the direction taken at each step. In our opinion, search directions for complementarity
problems are best calculated by incorporating both function information and boundary information.
However, the H function used by NE/SQP uses only one or the other at each iteration. The second
weakness lies in the fact that a quadratic program is solved at each iteration. This is not only more
expensive than solving a linear system, but also causes problems with ill-conditioning. While this
approach was necessary in NE/SQP to ensure that the subproblems were always solvable, it is not
required if a perturbation strategy is used, since any unsolvable subproblem can be handled by a
simple perturbation. We are therefore anxious to try our perturbation strategy on more promising
fundamental algorithms.
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