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Adaptive Communication among Collaborative Agents:

Preliminary Results with Symbol Grounding

Yoosook Lee† Jason Riggle§ Travis C. Collier† Edward Stabler§

Charles E. Taylor†∗

Abstract

Communication among adaptive agents can be framed as language acquisition and broken down into

three problems; symbol grounding, language learning, and language evolution. We propose that this

view clarifies many of the difficulties framing issues of collaboration and self-organization. Additionally,

we demonstrate simple classification systems that can provide the first step in grounding real-world

data and provide general schema for constructing other such systems. The first system classifies

auditory input from frog calls and is presented as a model of grounding objects. The second system

uses the minimum description length framework to distinguish patterns of robot movement as a model

of grounding actions.

1 Introduction

1.1 The Vision and Approach

Adaptive collaboration holds great promise for ar-
tificial life and engineering generally. At present
there is no good theory of self-organization and col-
laboration, though the benefits are obvious. These
include concurrent specialization by different indi-
viduals; distributed presence (for triangulation or
“extending the eyes and ears of a small party”);
robustness of individuals or functions that can be
assumed by others; ability to avoid high risk or high
cost behaviors until needed, among others.
The long term goal of our research is to produce a

collection of heterogeneous robots that learn about
their environment, communicate with one another
about it, affect the environment in ways that take
advantage of one another’s special abilities and cir-
cumstances, and report to human observers.
The work described here is directed toward cre-

ation of robots, or more abstractly agents, which
can learn to bind symbols to sensory patterns from
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their environment and to evolve a language that
will enable them to use those symbols for meaning-
ful communication among themselves. This lan-
guage will also provide a logic to facilitate reason-
ing.

1.2 Language at the Core

At this point the principal challenges are to fur-
ther develop the cognitive and linguistic features of
the system. It is desirable that agents be able to
acquire their own language. First, an acquired lan-
guage can evolve over time to adapt its structure
to various types of noise and different types of in-
formation to be transmitted, thus providing a truly
flexible communications channel. Also, agents with
heterogeneous sensor modalities can map the same
symbol to an environmental stimulus despite hav-
ing very different internal representations. This
requires agents to acquire their own symbol-to-
meaning mappings, based on how their own ob-
servations correlate with the symbols that other
agents transmit. Finally, language also provides
a logical manipulation facility for cognitive reason-
ing. Our approach has been explained in more de-
tail elsewhere1.
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1.3 Language Acquisition

Language acquisition provides a well explored
framework for many of the problems in designing
collaborative agents. From a linguistic perspec-
tive, the primary problems are: symbol grounding,
language expression and learnability, and language
evolution.

The problem of symbol grounding is, given a fi-
nite sequence of sensory impressions, each with
potentially infinite detail and accompanied by a
sentence, how does one come to associate partic-
ular lexical items intended meanings2? Symbol
grounding, in the most general case, is known to
be intractable. However, Siskind3 and others have
shown that when there is a consistent shared hier-
archy of salience, then computational systems can
overcome the grounding problem in quite general
circumstances.

Language learning is the identification of a
possibly infinite language and its syntactic rules
from a finite sequence of examples. For a long
time, reasonably expressive languages were con-
sidered unlearnable4; however, recent progress by
Angluin5, extended by Kanazawa6, Denis7, and
Stabler8, 9, has demonstrated that a class of quite
expressively powerful languages can be learned.

The third problem, language evolution, involves
determining how the language used by a collection
of agents will change over time. This aspect is
closely related to just what information needs to
be expressed and to the kinds and quantities of
noise the agents have to deal with. Parameters such
as the maximum amount of communication chan-
nel noise that can exist before the agents lose their
ability to communicate in a common language have
been determined for simple regimes10. Doing such
analysis for the system we envision may not be an-
alytically tractable, but empirical studies informed
by the theoretical results for simpler systems are
possible.

In this paper we will focus our discussion on the
the first of these language acquisition problems –
symbol grounding.

1.4 Symbol Grounding

In symbolic systems, transfer of information is ac-
complished by associating symbols with words, ges-
tures, or other behaviors that can be sensed by oth-

ers. Establishing this association between a sym-
bol and the information it conveys is called ground-

ing. In an adaptive system, the meaning of a sym-
bol might vary, and so a language learner needs
to somehow ground its linguistic experience in the
cognitive domain, establishing the semantic values
of the symbols.
Grounding, the learning of culturally common se-

mantic values on the basis of similar experience,
also allows for language change. Like other in-
stances of phenotypic plasticity, this can allow a
single organism to adapt and survive where a fixed
system might fail. Humans can quite quickly adapt
to widely different sorts of vocal tracts and other
synthesizers in spite of vastly different acoustic
properties, and even when vocal communication
becomes impossible, there are often other means.
Robots can have similar capabilities. Note in par-
ticular that in the situation where two robots al-
ready have had a common language and previ-
ous communication so that each has a model of
the other, then if a change in language is needed,
grounding the changed language can be very quick
and efficient.
Various approaches to the roles of perception and

language adaptation in grounding problems have
been explored11, 12, 13. Here we focus on ideas in
simple acoustic classification and the minimal de-

scription length (MDL) framework14, 15, 16.

2 Grounding Objects

The first task any symbolic communication system
must solve is how to classify non-symbolic sensory
input. This is a prerequisite for further processing
functions, such as localization. For the communi-
cation that allows collaboration to occur, a classi-
fication system is needed to bind actual perceptual
information into symbolic tokens that can carry the
semantic meaning.
Our model for this step has been an aural rec-

ognizer that quickly discriminates between differ-
ent species of frog calls with reasonably low error.
Frog calls provide a good model because as they
are typically simple, short, and well deliminated.
As such, they are useful in a variety of model sit-
uations, including localization17. Besides their in-
trinsic interest to biologists, frogs are often a bell-
wether of ecological disturbance such as pollution
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and climate change, so that, monitoring species dis-
tributions and abundances could provide an early
warning of environmental problems.
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Figure 1: Signal detection of frog calls. Detected
starting points (− ·−·) and ending points (−−−).
A. Amplitude of input source. B. Power and esti-
mated noise (· · ·) derived from amplitude data.

Our system works as follows. Given raw audi-
tory input the agent starts off by determining the
beginning and ending points of potential signals as
shown in Figure 1A. This is accomplished by keep-
ing a running estimate of noise and looking for in-
creases (or decreases) in the signal-to-noise ratio as
depicted in Figure 1B. When a signal has been
detected, the spectrogram for the signal is com-
puted and compared to spectrograms of previously
identified sounds. This signal spectrogram compar-
ison is simply the maximum cross correlation coef-
ficient which has been shown to properly correlate
to the probability that two samples are identical
except for additive white-noise18. If the new signal
does not correlate well with any previously identi-
fied sounds, it is considered to be a new sound, and
is saved so that additional signals can be compared
to it as well as to the previously identified ones.

Figure 2 shows the first results from real data
(the published recorded calls of frogs and toads in
French Guyana19); 1507 potential signals from 62
different frog species. Using 0.7 as the similarity
threshold for matching and 0.65 as the threshold
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Figure 2: Classification performance from frog
calls. Correct classification (·); Incorrect classifi-
cation (∗). Each new signal is either assigned to an
existing class or creates a new class.

below which the signal is considered new, we failed
to classify 15% of the signals and misclassified less
than 5%.
This general strategy of detecting potential sig-

nals, transforming the signal data to extract rel-
evant features for comparison, and then applying
a statistical comparison to assign the signal to a
class of known signals (or else create a new class
of known signals) is easily extended. More sophis-
ticated techniques are possible, and we are cur-
rently collaborating with engineers and computer
scientists to explore pitch, duration, power-spectra,
and other measurements. Multiple metric analysis
opens up the possibility of doing hierarchical clas-
sification, including subclasses that correspond to
adjectives.
Although far from perfect, this simple method

works much better than one would expect after
reading the very discouraging literature on related
tasks such as speech-recognition20. Interesting pat-
terns that can potentially distinguish real biologi-
cal hypothesis are discernible even at this stage, al-
though clearly more work needs to be done. We
are currently working with herpetologists to ex-
plore strength of species relatedness, environmental
conditions, and inter-specific competition for band-
width in determining the similarity between differ-
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ent frog species calls.

3 Grounding Events

Sequences of symbolic data, either produced by ob-
ject grounding or directly from sensors, can also
be grounded with linguistic inputs to produce the
equivalent of verbs and adverbs. Our work in this
direction is focused on analyzing behavioral data
from animals and robots using the MDL as a basis
for generalization.

3.1 Minimal Description Length

The MDL framework14, 15, 16 is essentially an
implementation of standard Bayesian induction,
where the priors are set by the representational
complexities of the hypotheses. The basic idea is
that the learner prefers the simplest description of
the evidence, where the measure of simplicity is
given by the representational complexity of the hy-
pothesis together with its encoding of the evidence.
A hypothesis that specifies a sufficiently general
tendency in the data will make the encoding of the
data smaller, for an overall improvement in simplic-
ity.
Many different learning models can be repre-

sented in this framework, and they have proven
useful already in theories of perception21 and lan-
guage learning22, 23, 24, 25. We have deployed these
models in a few of preliminary domains: au-
tomata induction26, and recently in identifying
wall-following and other robotic behavior.
Finding an absolutely minimal description is im-

possible and unnecessary. The best compression
of a set of finite strings is not, in general, a
computable function27. Moreover, for simple, fi-
nite strings, we are often interested in differences
smaller than the constant bound distinguishing dif-
ferent universal machines28. For our purposes, a
simple and efficient metric of hypothesis complex-
ity will be most useful in guiding generalization.

3.2 A Simple Example of MDL

A simple example is presented in Figure 3 which
illustrates sensors distributed in a room. A robot
wandering around the room activates the sensor in
the region it occupies. The following stimulus sets
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Figure 3: A robot wandering around a room where
array of sensors are distributed.

include elements that represents the movement of a
robot at each time, kindly provided to us by Brooks
and Friedlander.

A = {[ a, a, e, f, f, f, d, d, f, c, a, a ],
[ c, c, f, f, c, b, b, b, b, f, c, a ],
[ a, b, b, c, f, f, e, a, a, d, f, e ]}

B = {[ c, d, f, a, c, d, f, a, c, d, f, a ],
[ c, d, f, a, c, d, f, a, c, d, f, f, f ],
[ c, d, f, a, c, d, f, a ]}

The question is, can we characterize the differ-
ence between random and patterned behavior of
this robot?
We will represent our hypotheses as determin-

istic finite state automata(FSA). Even with this
restricted representation scheme finding a globally
optimal encoding is not feasible because the range
of possible hypotheses grows exponentially with the
amount of data in the sample.
At one extreme we can generate a machine which

accepts only previously seen examples as instances
of the concept. This can be encoded as a deter-
ministic FSA that accepts exactly the examples
seen[Figure 4 A, B]. At the other extreme we can
encode concepts with a universal acceptor which
simply accepts any string at all [Figure 4 A′].
The goal here is to find the optimal point be-

tween these two extremes that generalizes beyond
the observed data but not too far. To this end
we propose the local search algorithm presented in
Table 1, which finds an approximately minimum
description length. It is similar, but not identical,
to that used earlier by Teal et al.29.
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Figure 4: A. Prefix tree acceptor derived from data set A. B. Prefix tree acceptor derived from data set
B. A′. MDL machine found for data set A. B′. MDL machine found for data set B.

Table 1: Local Search Algorithm

Step Task
1 Build a prefix tree acceptor for the ob-

served strings.
2 Try merging each pair of nodes in the

machine keeping only new machines for
which the cost of the machine + the
cost of encoding the strings is cheaper
than the best seen so far.

3 Repeat step 2 on the new machines un-
til no single merger yields a cheaper ma-
chine + encoding pair.

Following this algorithm, an initial prefix tree ac-
ceptors for set A and B are constructed as Figure
4A and Figure 4B. The size of a given hypothesis of
the data can be calculated as the cost of the binary
encoding of the machine plus the cost of encoding
the observed stimuli in that machine. The cost of
encoding a given deterministic FSA is defined as
the following:

|d|
(

2 log2 |Q|+ log2 |S|
)

+ |F | log2 |Q|

where |Q| is the number of nodes in the machine,
|S| is the number of symbols used, |d| is the number
of arcs in the machine and |F | is the number of final
states.

The cost of encoding a message in a given deter-
ministic FSA is :

m
∑

i=1

|Si|
∑

j=1

log2 Zi,j

Table 2: MDL Encoding Costs

Set A Set B

Initial Figure 4 A B

cost of encoding machine 467.9 147.2
cost of encoding messages 5 3
Total cost 472.9 148.2
Final Figure 4 A′ B′

cost of encoding machine 15.5 34
cost of encoding messages 101.1 22.4
Total cost 116.6 56.3

Where m is the number of sentences in the se-
quence of strings encoded, |Si| is the length of the
ith string si, and zi,j is the number of ways to exit
the state reached on the ith symbol of the string si.
This is just one(particularly simple) metric of the
size of a given encoding. The local search algorithm
described in Table 1 reduces the cost of encoding a
message.

3.3 Results of Local-search MDL

Figure 4 A′ and B′ are the final deterministic FSA
resulting from the analysis of example data sets A

and B. The cost of each FSA and encoding are
compared in Table 2.

The machine found for data set A (Figure 4A′)
encodes the strings from set B less efficiently than
the machine found for data set B (Figure 4B′); a
cost of 92.6 for the messages, yielding a total cost
of 108.5 compared to a total cost of 56.3 for B ′.
The machine found for data set B won’t recognize
strings from data set A at all. This algorithm cor-
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rectly distinguishes the random behavior in data
set A from the patterned behavior in data set B.
Finally we should note that while this metric of de-
scription length was effective in discriminating sim-
ple patterns in the data for robot movement behav-
ior, different domains will require different metrics
of generalization.

4 Discussion and Conclusion

The framework provided by viewing collaboration
of heterogeneous agents as language acquisition
provides a well explored theoretical basis for many
of the most vexing problems. As a first step in im-
plementing such a language acquisition system, we
have bound real-world sensor data to symbols using
both a classification system for object grounding
and an MDL approach for event grounding.
Within the scope of auditory data from frog

calls a simple classification system has been imple-
mented and provides a general model that can be
easily extended. The combination of a relatively
easy data source combined with the fact that the
linguistic grounding process can tolerate some mis-
classification errors motivates more sophisticated
work on good, but not perfect, classifiers.
The MDL strategy presented above is effective

for distinguishing among some simple patterns of
sensory data corresponding to different types of
events. The next logical step in attempting to
ground events is to develop strategies for more com-
plex events and noisier data. To this end we have
begun preliminary investigations using MDL tech-
niques on ethograms.
Originally devised by naturalists studying an-

imal behavior, ethograms catalog the behavioral
events (or specific action patterns) that animals
use during different behavioral states or contexts.
Since ethograms can be encoded as series of behav-
ioral events, it seems plausible to extract a gener-
alized pattern of behavior of a given animal from
its ethogram using MDL method.
Our initial examinations of marmot ethograms

(obtained from Dr. David Blumstein at UCLA) us-
ing the MDL method presented above did not yield
any patterns that could be encoded with determin-
istic finite automata other than a universal accep-
tor. This serves to illustrate the crucial relationship
between the representation scheme used to formu-

late the hypotheses and the concepts that are the
target of generalization. For future investigation of
ethograms and other noisy patterns probabilistic
nondeterministic finite automata may prove more
effective. We are currently exploring this possibil-
ity.
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