
Near-Optimal Bounded-Degree Spanning Trees

Jennie C. Hansen
Department of Actuarial Mathematics & Statistics

Heriot-Watt University
Edinburgh, Scotland, UK
J.Hansen@ma.hw.ac.uk

Fax 0131-451-3249

Eric Schmutz
Department of Mathematics and Computer Science

Drexel University
Philadelphia, Pennsylvania, 19104

eschmutz@mcs.drexel.edu

September 14, 2000

Abstract

Random costs C(i, j) are assigned to the arcs of a complete directed graph on n labelled
vertices. Given the cost matrix Cn = (C(i, j)), let T ∗

k = T ∗
k (Cn) be the spanning tree

that has minimum cost among spanning trees with in-degree less than or equal to k.
Since it is NP-hard to find T ∗

k , we instead consider an efficient algorithm that finds a near-
optimal spanning tree T a

k . If the edge costs are independent, with a common exponential(1)
distribution, then as n → ∞

E(Cost(T a
k)) = E(Cost(T ∗

k)) + o(1).

Upper and lower bounds for E(Cost(T ∗
k)) are also obtained for k ≥ 2.

§1 Introduction

In this paper random costs are assigned to the edges of the complete directed graph,
and the expected cost of the cheapest k-tree is estimated. (By “k-tree”, we mean an in-
directed spanning tree whose maximum in-degree is at most k.) Let Cn = (C(i, j)) denote
an n × n matrix whose entries are independent exp(1) random variables. The variable
C(i, j) is understood to be the cost of the directed edge, (i, j), from vertex i to vertex j
in the complete directed graph, Dn, with vertices labelled 1, 2, ..., n. Note that loops (i, i)
are included in Dn (so Dn has n2 directed edges.)

It is an NP-hard problem to find an optimal k-tree given a cost matrix Cn as input
(Lemma A.1 in the appendix). Since it is hard to find an optimal k-tree, we propose a
heuristic algorithm. A near-optimal bounded-degree spanning tree can, with high prob-
ability, be obtained by easy modifications of the cheapest k-map. (A k-map is subgraph
of Dn such that each vertex in the subgraph has out-degree 1 and has in-degree less than
or equal to k.) This is significant because it is computationally easy to find the cheapest
k-map. To analyze the algorithm, we prove that the average cost of the optimal k-tree
is asymptotically close to the average cost of the cheapest k-map. We also provide upper
and lower bounds for the expected cost of the optimal k-map (and hence, bounds for the
expected cost of the optimal k-tree) for all k ≥ 2.

We note that, for k = 1, a k-map is in fact a permutation. So our problem is related to
the assignment problem. Our methods for obtaining a lower bound for the expected cost
of the optimal k-map are different from those of Goemans and Kodialam [1] and Olin [2]
who compute the expected value of a feasible solution to the dual linear program for the
assignment problem. We believe their methods yield better bounds than ours in the case
k = 1, but that our methods give better results for k ≥ 2. Coppersmith and Sorkin[3] have
recently made significant progress on the upper bound for the assignment problem. Their
methods are appealing, and may be relevant here, but we have not been able to exploit
them directly. The work of Frieze et.al. ([4],[5],[6]) deals with analagous problems for
undirected graphs. There is also a literature dealing with bounded degree spanning trees
in the plane and other “geometric”analogues (e.g. Khuller, Raghavachari, and Young[7]).
These problems are only superficially similar to our problem.

To obtain an upper bound on the expected cost of the optimal k-tree, we bound the
expected cost of a k-map that is constructed using a greedy heuristic algorithm. Although
this greedy heuristic is not optimal, it yields a map whose expected cost is bounded and
surprisingly close to the optimum. It is interesting to compare this with greedy heuristics
for the assignment problem which yield very poor assignments having Θ(log n) expected
cost. As a referee pointed out, this is because the case k = 1 is more constrained: when
edges are added using a greedy heuristic, the number of potential edges decreases steadily
so that the last few edges contribute significantly to the expected cost. This is less of a
problem for k ≥ 2 because there is more flexibility in selecting edges.

Finally, we remark that the case k = ∞ is the problem of finding the optimal spanning
tree with no degree restrictions. In this case, greedy heuristics work well asymptotically.
In particular, greedy methods have been used to obtain limit theorems for the expected

1

cost of the optimal spanning tree, and for the distribution of the cost of the optimal tree
as n → ∞. (Hansen[8], McDiarmid[9]). Thus, when estimating the expected cost of the
optimal k-tree, k = 1 is the difficult case, k = ∞ is the easy case, and 2 ≤ k < ∞ is
intermediate in difficulty.

A little notation is needed to proceed. For 1 ≤ i ≤ n, let c(1)(i), c(2)(i), ..., c(n)(i)
denote the order statistics of the variables {C(i, j) : 1 ≤ j ≤ n}. The joint distribution of
the order statistics of i.i.d. exponential random variables is well understood. We will make
use of the fact that c(k)(i) ∼ Rn + Rn−1 + ... + Rn−k+1 where {Rm, 1 ≤ m ≤ n} are inde-
pendent random variables with Rm ∼ exp(m). It is also a consequence of the ‘memoryless’
property of the exponential distribution that c(1)(i), c(2)(i) − c(1)(i), ..., c(n)(i) − c(n−1)(i)
are independent with c(k)(i) − c(k−1)(i) ∼ exp(n − k + 1) for 1 ≤ k ≤ n. Finally, for
1 ≤ i ≤ n and any vertex v, define X(i)(v) = j if and only if C(v, j) = c(i)(v). For
each vertex v, the vector (X(1)(v), X(2)(v), ..., X(n)(v)) is a uniform random permuta-
tion of the vertices 1, 2, ..., n. One can also verify that for each vertex v, the variables
{X(i)(v) : 1 ≤ i ≤ n} and {c(i)(v) : 1 ≤ i ≤ n} are independent. It follows that the
σ-algebras σ{X(i)(v) : 1 ≤ i ≤ n, 1 ≤ v ≤ n} and σ{c(i)(v) : 1 ≤ i ≤ n, 1 ≤ v ≤ n} are
independent too.

Given Cn, let T ∗
k = T ∗

k (Cn) be the cheapest k-tree, and let M∗
k = M∗

k (Cn) be the
cheapest k-map. It is helpful to think of M∗

k as a (non-uniform) random map; we write
M∗

k (v) = w iff (v, w) ∈ M∗
k . Hansen [8] observed that M∗

n is in some sense close to being a
minimum spanning tree in Dn: by breaking a few cycles in M∗

n and redirecting some edges
one can obtain a spanning tree whose expected cost is asymptotically optimal. A similar
strategy is developed here for bounded-degree spanning trees. The idea is very simple.
First create a forest by removing one edge from each cycle of M∗

k . Then patch together the
components of the forest to form a tree. If r is the root of a tree in a forest, call v available
for r if the in-degree of v is less than k and v is not in the same weak component as r. If
we adjoin the edge from r to v, the result is a forest with one less component. This is the
basis for

Algorithm 1
1. Find M∗

k .
2. Let T a

k be the forest obtained by deleting the most expensive edge from every
cycle of M∗

k , and let κ be the number of components that T a
k has.

3. For i = 1, . . . , κ − 1{
Let ri be the root of the smallest component of T a

k .
Add to T a

k the cheapest edge in Dn from ri to a vertex that is available
to ri.}

Algorithm 1 creates a k-tree T a
k in polynomial time. To see this consider the following

linear program LP (Cn, k):

Minimize z =
n∑

i=1

n∑
j=1

C(i, j)xi,j

2

Subject to:
n∑

i=1

xi,j ≤ k (j = 1, 2, . . . , n)
n∑

j=1

xi,j = 1 (i = 1, 2, . . . , n)

xi,j ≥ 0 (1 ≤ i, j ≤ n)
Any 0-1 feasible solution to this LP corresponds to a k-map M . The correspondence is
xi,j = 1 if (i, j) ∈ M , and xi,j = 0 otherwise. The first n constraints say that each
vertex has in-degree less than or equal to k, and the second n constraints say that each
vertex has out-degree one. It is a well known theorem in linear programming that the
optimal solution to this kind of transportation problem in fact an integral solution, and
so the optimal solution to the linear program LP (Cn, k) is a 0-1 solution[10]. Since M∗

k

corresponds to the optimal solution to the LP, the first step in Algorithm 1 can be solved
in polynomial time and the remaining steps can also be carried out in polynomial time.

In this paper we prove that Algorithm 1 is asymptotically optimal: in section 2 we
show that E(Cost(T a

k)) = E(Cost(T ∗
k)) + o(1). In section 3 we obtain a lower bound for

E(Cost(T ∗
k)) and in section 4 we obtain an upper bound by analyzing a ‘greedy’ algorithm.

§2. Analysis of Algorithm 1

The main goal of this section is to prove

Theorem 2.1 If k ≥ 2, then E(Cost(T a
k)) = E(Cost(T ∗

k)) + o(1).

We establish Theorem 2.1 by showing that E(Cost(M∗
k)) is close to both E(Cost(T a

k))
and E(Cost(T ∗

k)). The argument is similar to Karp and Steele’s [11] analysis of a patching
algorithm for the asymmetric travelling salesman problem. The first step is to prove

Theorem 2.2 If k ≥ 2, then E(Cost(T a
k)) = E(Cost(M∗

k)) + o(1).

Proof. Fix k ≥ 2 and define the subgraph D′
n of Dn as follows: edge (i, j) ∈ D′

n if and
only if C(i, j) < L(n) where L(n) = 50 log2 n

n . Let M ′
k denote the cheapest k-map in D′

n,
provided such a map exists. (M ′

k does not exist if, for example, there is a vertex i such
that (i, j) /∈ D′

n for every 1 ≤ j ≤ n). Let M̂k = M ′
k if M ′

k exists; otherwise, let M̂k = M∗
k

and consider the following modification of Algorithm 1.

Algorithm 1′

1. Find M̂k.
2. Let T̂ a

k be the forest obtained by deleting the most expensive edge from every
cycle of M̂k, and let κ̂ be the number of components that T̂ a

k has.
3. For i = 1, . . . , κ̂ − 1{

Let ri be the root of the smallest component of T̂ a
k .

Add to T̂ a
k the cheapest edge in Dn from ri to a vertex that is available

to ri.

3

}
Now let Bn = {M̂k = M ′

k, κ̂ < log2 n, Fi ≤ log4 n, i = 1, 2, ..., n} where Fi = |{j : C(i, j) ≤
L(n)}|. Given Bn, the combined cost of the edges deleted in Step 2 of Algorithm 1′ is at
most κ̂ · L(n) ≤ 50 log4 n

n . Hence,

E(Cost(M̂k)|Bn) − 50 log4 n

n
≤ E(Cost(T̂ a

k)|Bn)

≤ E(Cost(M̂k)|Bn) + E(Cost(added edges)|Bn).

We show below that E(Cost(added edges)|Bn) ≤ 100 log4 n
n by bounding the expected cost

of each edge added by Algorithm 1′.

For i < κ̂ < log2 n, consider the i’th iteration of step 3 in Algorithm 1′. Let Ai =
Ai(ri) denote the set of vertices that are available to ri at the beginning of the i’th iteration
of step 3. The edges out of ri are examined in increasing order of cost until an edge that
points to a vertex vi ∈ Ai is found, then the edge (ri, vi) is added to T̂ a

k and the added
cost is C(ri, vi). Thus,

E(Cost(added edges)|Bn) = E(
κ̂−1∑
i=1

C(ri, vi)|Bn)

=
log2 n∑
i=1

E(C(ri, vi)|i < κ̂,Bn) Pr(i < κ̂|Bn)

≤
log2 n∑
i=1

E(C(ri, vi)|i < κ̂,Bn).

To bound E(C(ri, vi)|i < κ̂,Bn) for each i ≤ log2 n, we analyze a more expensive ‘patching’
operation which is described below.

Fix i ≤ log2 n. Given i < κ̂ and Bn, let mi = n − Fri = |{j : C(ri, j) > L(n)}|, and
let A′

i = {j ∈ Ai : C(ri, j) > L(n)}. Call any edge (ri, j) with C(ri, j) > L(n) a costly
edge. Now modify the i’th iteration of the patching operation in Step 3 of Algorithm 1′ as
follows: add to T̂ a

k the cheapest edge from ri to a vertex in A′
i. In other words, at the i’th

iteration of the algorithm we examine only costly edges out of ri in increasing order of cost
until we encounter one that points to a vertex wi ∈ A′

i and edge (ri, wi) is the new edge
that is added to T̂ a

k . Observe that C(ri, vi) ≤ C(ri, wi) always, where vi is the cheapest
vertex available to ri in Ai. Thus any upper bound for E(C(ri, wi)|i < κ̂,Bn) is also an
upper bound for E(C(ri, vi)|i < κ̂,Bn).

To bound E(C(ri, wi)|i < κ̂,Bn), observe that given that the edge C(ri, w) > L(n),
we have C(ri, w) ∼ L(n) + X, where X ∼ exp(1). (We use the fact that if M ′

k exists,
then a ‘cheap’ k-map has been constructed without examining any of the costly edges, so

4

we have no extra information about the costly edges). It follows from standard results for
order statistics of exponential random variables that if there are mi costly edges out of
vertex ri and if the d’th cheapest costly edge out of ri is added to T̂ a

k , then

E
(
C(ri, wi)

∣∣∣d,mi, i < κ̂, Bn

)
= L(n) +

1
mi

+
1

mi − 1
+ ... +

1
mi − d + 1

.

The random variable d has the same distribution as the number of draws, without replace-
ment, until a black ball is drawn from an urn with |A′

i| black balls and mi − |A′
i| white

balls. In Lemma 2.9 we prove that |Ai| > n
4 , so |A′

i| ≥ |Ai| − Fri ≥ n
4 − log4 n ≥ n

5 for all
large n. Hence

Pr
(
d > 5 log n

∣∣∣mi, i < κ̂, Bn

)
≤ (1 − |A′

i|
n

)5 log n ≤
(

4
5

)5 log n

≤ 1
n

for all large n. Also, given Bn, we have mi ≥ n − log4 n and thus

E
(
C(ri, vi)

∣∣∣i < κ̂,Bn

)
≤ E

(
C(ri, wi)

∣∣∣i < κ̂,Bn

)

≤≤ L(n) +
5 log n

n − log4 n − 5 log n
+

(
n∑

k=1

1
k

)
Pr

(
d > 5 log n

∣∣∣i < κ̂,Bn

)
≤ 2L(n)

for all sufficiently large n. Hence

E(Cost(added edges)|Bn) ≤
log2 n∑
i=1

E(C(ri, vi)|i < κ̂,Bn)

≤ 2L(n) log2 n =
100 log4 n

n
.

In Lemma 2.8 we prove that Pr(Bc
n) = O(1

n5), so it follows that for all large n,

∣∣∣E(Cost(M̂k)) − E(Cost(T̂ a
k))

∣∣∣ ≤
150 log4 n

n
+

∣∣∣E(
(Cost(M̂k) − Cost(T̂ a

k)) · 1{Bc
n}

)∣∣∣
≤ 150 log4 n

n
+

(
E(Cost(M̂k)2)1/2 + E(Cost(T̂ a

k)2)1/2
)

(Pr(Bc
n))1/2.

Cost(M̂k) ≤ ∑n
i=1 c(n)(i) always, so we have

E(Cost(M̂k)2) ≤ E(
n∑

i=1

c(n)(i))2 = V ar(
n∑

i=1

c(n)(i)) + (E(
n∑

i=1

c(n)(i)))2

5

= nV ar(c(n)(1)) + n2(E(c(n)(1)))2 = n

n∑
k=1

1
k2

+ n2(
n∑

k=1

1
k

)2 ≤ 2n2 log2 n

since c(n)(1) ∼ R1 + R2 + ... + Rn. Similarly, E(Cost(T̂ a
k)2) ≤ 2n2 log2 n. Thus

∣∣∣E(Cost(M̂k)) − E(Cost(T̂ a
k))

∣∣∣ ≤ 250 log4 n

n
.

To finish the proof, we note that whenever M̂k = M∗
k we must have T̂ a

k = T a
k too. Now it

follows from Lemma 2.4 below that Pr(M̂k = M∗
k) ≥ Pr(M̂k = M ′

k = M∗
k) = 1 − O(1

n5),
and so by arguments similar to those given above, we have

|E(Cost(M∗
k) − Cost(T a

k)| ≤ 250 log4 n

n
+

∣∣∣E(
(Cost(M∗

k) − Cost(T a
k)) · 1{M̂k 6= M∗

k}
)∣∣∣

≤ 300 log4 n

n

and except for the unproved lemmas that were cited, we have now completed the proof of
the theorem.

The proof of Theorem 2.2 used several lemmas that must now be proved. In particular,
a key step in the proof of Theorem 2.2 is the observation that M ′

k exists and equals M∗
k

with high probability. To establish this we modify an argument from Karp and Steele [11].
We begin by defining the directed subgraph G(Cn) of Dn in which

(i, j) is an edge of G(Cn) ⇔ C(i, j) < p(n) =
16 log n

n
.

For any subset S ⊆ [n], define Γ(S) =
{
j : (i, j) ∈ G(Cn) for some i ∈ S

}
and Γ−1(S) ={

i : (i, j) ∈ G(Cn) for some j ∈ S
}
. The directed graph G(Cn) is called expanding if for

any subset of vertices S ⊆ [n], the following inequalities both hold:

|Γ(S)| ≥ min
{
2|S| + 1,

n + 1
2

}
and |Γ−1(S)| ≥ min

{
2|S| + 1,

n + 1
2

}
.

Then we have

Lemma 2.3 Pr
(
G(Cn) is not expanding

)
= O(1

n5).

Proof. This lemma is essentially Lemma 7 of Karp and Steele [11]. The only difference
is that Karp and Steele use uniformly distributed cost variables and set p(n) = 10 log n/n
to obtain a probability bound which is O(1/n2). Their proof goes through with trivial

6

modifications when the cost variables are exponential(1) and p(n) = 16 log n/n, so we do
not repeat the argument here.

Lemma 2.4 With probability 1−O(1
n5), every edge of M∗

k has cost less than L(n) =
50 log2 n

n .

Proof. Observe that by Lemma 2.3, it is enough to prove that if G(Cn) is expanding,
then every edge of M∗

k has cost less than 50 log2 n
n . So suppose G(Cn) is expanding but

C(i′,M∗
k (i′)) ≥ 50 log2 n

n for some 1 ≤ i′ ≤ n. We show that the mapping M∗
k can be

modified to obtain a feasible soluition Mk which is cheaper than M∗
k .

The first step is to define a sequence of subsets of vertices as follows. Let Γ(1) = Γ({i′})
and for l ≥ 2, let Γ(l) = Γ((M∗

k)−1(Γ(l − 1))). Let A(M∗
k) denote the set of vertices in

M∗
k with in-degree less than k. Since each vertex has in-degree at most k under M∗

k , we
must have |A(M∗

k)| ≥ dn/2e. We claim that {l : Γ(l) ∩ A(M∗
k) 6= ∅} 6= ∅. To see this,

note that if |Γ(l)| ≥ n+1
2 for some l, then Γ(l) ∩ A(M∗

k) 6= ∅ (since |A(M∗
k)| ≥ dn/2e). So

if {l : Γ(l) ∩ A(M∗
k) 6= ∅} = ∅, then |Γ(l)| < n+1

2 for all l ≥ 1. On the other hand, since
G(Cn) is expanding, |Γ(1)| ≥ min(2, n+1

2), and since Γ(1) ∩ A(M∗
k) = ∅, every vertex in

Γ(1) must have in-degree k under M∗
k . It follows that |(M∗

k)−1(Γ(1))| ≥ 2k and |Γ(2)| =
|Γ((M∗

k)−1(Γ(1)))| ≥ min(22k, n+1
2). Now induction shows that |Γ(l)| ≥ min(2lkl−1, n+1

2)
for all l ≥ 1, and so |Γ(l)| ≥ n+1

2 for l ≥ 2 log n. Thus we can’t have |Γ(l)| < n+1
2 for all

l ≥ 1.

Let m = min{` : Γ(`) ∩ A(M∗
k) 6= ∅} and note that it follows from the argument

above that m ≤ 2 log n. The next step is to define two sequences of vertices i1, i2, ..., im
and j1, j2, ..., jm. Let i1 = i′ and let jm be a vertex in Γ(m) ∩ A(M∗

k) 6= ∅. Since
jm ∈ Γ(m) ∩ A(M∗

k) there is a vertex im ∈ (M∗
k)−1(Γ(m − 1)) such that C(im, jm) <

p(n) = 16 log n
n . The remaining vertices in the sequence are defined recursively as follows.

For 1 ≤ l ≤ m − 1, let jl = M∗
k (il+1) ∈ Γ(l) = Γ((M∗

k)−1(Γ(l − 1))). For 2 ≤ l ≤ m − 1,
choose il ∈ (M∗

k)−1(Γ(l − 1)) such that C(il, jl) < p(n). Observe that jm 6= M∗
k (il+1) = jl

for 1 ≤ l ≤ m − 1 since M∗
k (il+1) ∈ Γ(l) and Γ(l) ∩ A(M∗

k) = ∅ for 1 ≤ l ≤ m − 1.

Given the two sequences i1, i2, ..., im and j1, j2, ..., jm, define a new mapping Mk by
setting Mk(i) = M∗

k (i) if i /∈ {i1, i2, ..., im} and setting Mk(il) = jl for 1 ≤ l ≤ n. In other
words, Mk is constructed from the optimal mapping M∗

k by deleting the edges (il,M∗
k (il))

and adding the edges (il, jl) for 1 ≤ l ≤ n. To see that Mk is a feasible solution, we note
that for each 2 ≤ l ≤ m, the deletion of edge (il,M∗

k (il)) makes vertex M∗
k (il) ‘available’

and so the addtion of the edge (il−1, jl−1) = (il−1,M
∗
k (il)) does not violate the degree

constraint at vertex M∗
k (il). Also, since jm 6= jl for 1 ≤ l ≤ m − 1, the vertex jm is still

‘available’ after the addition of the edges {(il, jl) : 1 ≤ l ≤ m − 1}, so the addition of
edge (im, jm) does not violate the degree constraint at vertex jm. So the mapping Mk is
a feasible solution.

7

Finally, observe that

Cost(Mk) − Cost(M∗
k) =

m∑
t=1

C(it, jt) −
m∑

t=1

C(it,M∗
k (it))

≤
m∑

t=1

C(it, jt) − C(i1,M∗
k (i1))

≤ m · p(n) − 50 log2 n

n

≤ 2 log n · p(n) − 50 log2 n

n
=

−18 log2 n

n

which contradicts the optimality of M∗
k .

Next we establish that, with high probabilty, M∗
k has less than log2 n components. It

is well known that, for uniform random maps, the number of components is O(log n) with
high probabilty, and it would not be difficult to prove the same fact for uniform random
k-maps. However M∗

k is a non-uniform random k-map. Nevertheless, the corresponding
statement is a consequence of the following

Lemma 2.5 Let f and g be two k-maps that differ only by a transposition of the values
they assign to two vertices, i.e. there exist i1, i2 such that f(i1) = g(i2), f(i2) = g(i1),
and for v 6= i1, i2, f(v) = g(v). Then

Pr(f is optimal) = Pr(g is optimal)

Proof. Let C be the set of cost matrices, and for any k-map M , let OM ⊆ C be the set of
cost matrices for which M is optimal. We want to prove that Pr(Of) = Pr(Og). Define
H : C → C by H(C) = C ′, where

C ′(i, j) =




C(i2, j) if i = i1
C(i1, j) if i = i2
C(i, j) else

We know Pr(Of) = Pr(H(Of)) because costs are assumed i.i.d. It therefore suffices to
prove that H(Of) = Og.

Let C ∈ Of . To prove that H(Of) ⊆ Og, it suffices to show that g is optimal for the
instance C ′. First note that Cost(f, C) = Cost(g, C ′):

Cost(f, C) = C(i1, f(i1)) + C(i2, f(i2)) +
∑

i6=i1,i2

C(i, f(i))

8

= C(i1, g(i2)) + C(i2, g(i1)) +
∑

i6=i1,i2

C(i, g(i))

= C ′(i2, g(i2)) + C ′(i1, g(i1)) +
∑

i6=i1,i2

C ′(i, g(i))

= Cost(g, C ′).

Now we prove by contradiction that g is optimal for C ′. Suppose on the contrary,
that h is a k-map and Cost(h,C ′) < Cost(g, C ′). Define h′ by h′(i1) = h(i2), h′(i2) =
h(i1), and for i 6= i1, i2, h′(i) = h(i). Then Cost(h′, C) = Cost(h,C ′) < Cost(g, C ′) =
Cost(f, C) This contradicts the optimality of f , and completes the proof that

H(Of) ⊆ Og. (2.1)

By the same argument,
H(Og) ⊆ Of . (2.2)

Observe that H2 is the identity. Hence, by applying H to equation (2.2) we get

Og ⊆ H(Of). (2.3)

Combining (2.1) and (2.3) we get H(Of) = Og.

For any map M , let Z = Z(M) = {i : M t(i) = i for some t ≥ 1} be the set of cyclic
vertices of M . Then M |Z is a permutation on Z. The following corollary asserts that,
given the set Z of cyclic vertices, all permutations are equally likely to occur as M∗

k |Z .

Corollary 2.6 For any set Z ⊆ {1, 2, .., n} and any permutation σ on Z,

Pr
(
M∗

k

∣∣
Z = σ

∣∣∣Z(M∗
k) = Z

)
=

1
|Z|!

Proof. For any two permutations π, σ of Z, there is a sequence τ1, τ2, . . . , τm of transposi-

tions such that π = σ ◦
m∏

i=1

τi. By Lemma 2.5, we have

Pr
(
M∗

k

∣∣
Z = σ ◦

`−1∏
i=1

τi

∣∣∣Z(M∗
k) = Z

)
= Pr

(
M∗

k

∣∣
Z = σ ◦

∏̀
i=1

τi

∣∣∣Z(M∗
k) = Z

)

for 1 ≤ ` ≤ m.

Lemma 2.7 With probabilty 1 + o(1
n5), M∗

k has less than log2 n components.

Proof. Let m ≤ n be the number of cyclic vertices, and κ the number of cycles. By the
Corollary 2.6, we need only estimate the probability that a uniform random permutation
on m letters has more than log2 n cycles. It is well known (e.g. Flajolet and Soria[12])

9

that this probability is negligible: there is a constant C > 0 and a positive constant α < 1
such that for all t > 0

Pr
(

κ − log m√
log m

) > t
∣∣∣|Z(M∗

k)| = m

)
< Cαt.

Take t = log4/3 n to obtain the result.

Lemma 2.8 Pr(Bn) = 1 − O(1
n5).

Proof. Recall that Bn = {M̂k = M ′
k, κ̂ < log2 n, Fi ≤ log4 n, i = 1, 2, ..., n} where Fi =

|{j : C(i, j) ≤ L(n)}|. Therefore

Pr(Bc
n) ≤ Pr(M̂k 6= M ′

k) + Pr(κ̂ ≥ log2 n) +
n∑

i=1

Pr(Fi > log4 n).

Now if every edge of M∗
k has cost less than L(n) = 50 log2 n

n then M ′
k must exist and

M ′
k = M∗

k . So it follows from Lemma 2.4 that

P (M̂k = M ′
k) ≥ Pr(M̂k = M ′

k = M∗
k) ≥ 1 − O(

1
n5

).

Thus

Pr(Bc
n) ≤ Pr(κ̂ ≥ log2 n, M̂k = M ′

k = M∗
k) + O(

1
n5

) +
n∑

i=1

Pr(Fi > log4 n)

≤ Pr(κ ≥ log2 n) + nPr(F1 > log4 n) + O(
1
n5

).

By Lemma 2.7, Pr(κ ≥ log2 n) = o(1
n5). Finally, since F1 ∼ Bin(n, 1 − exp(−L(n))),

Pr(F1 > log4 n) = Pr(eF1 > nlog3 n) ≤ E(eF1)
nlog3n

≤ e50(e−1) log2 n

nlog3n
= o(

1
n6

).

Lastly, we prove
Lemma 2.9 For 1 ≤ i < κ̂, |Ai| > n

4

Proof. Let Fi be the forest that consists of all components other than that of ri. Let dj(Fi)
denote the number of vertices in Fi having in-degree j. The number of available vertices
is

|Ai| =
k−1∑
j=0

dj(Fi)

10

The number of vertices in Fi is

v(i) =
k∑

j=0

dj(Fi).

Since Fi has v(i) vertices and κ̂ − i components number of edges of Fi is

v(i) − κ̂ + i =
k∑

j=1

jdj(Fi).

It follows that

0 < κ̂− i = v(i)−
k∑

j=1

jdj(Fi) < v(i)− d1(Fi)− 2(
k∑

j=2

dj(Fi)) = −v(i) + 2d0(Fi) + d1(Fi).

Hence
2(d0(Fi) + d1(Fi)) ≥ v(i).

Provided k ≥ 2, we have |Ai| ≥ (d0(Fi) + d1(Fi)). We know v(i) ≥ n
2 because ri was the

root of the smallest component. Therefore |Ai| ≥ n
4 .

Now that the lemmas are proved, the proof of Theorem 2.2 is complete. However our main
aim is to prove

Theorem 2.1 If k ≥ 2, then E(Cost(T a
k)) = E(Cost(T ∗

k)) + o(1).

Proof. Let r be the root of T ∗
k , and let (r, w) be the cheapest edge from r to a vertex

having in-degree less than k in T ∗
k . Then

Cost(M∗
k) ≤ Cost(T ∗

k) + Cost((r, w))

and consequently

E(Cost(T ∗
k)) ≥ E(Cost(M∗

k)) − E(Cost((r, w))

We claim that E(Cost((r, w))) ≤ 2 log4 n
n for all large n. To prove this we show that C(r, w)

is bounded above by a random variable Y whose expected value is bounded by 2 log4 n
n . To

define Y we introduce some notation. For each 1 ≤ i ≤ n, let Tk(i) be the cheapest k-tree
rooted at vertex i, and let (i, wi) denote the cheapest edge from i to a vertex having in-
degree less than k in Tk(i). Note that the variables Cost(1, w1), Cost(2, w2), ..., Cost(n,wn)
are identically distributed, though not independent. Now let Y = max1≤i≤n Cost(i, wi).

11

Since T ∗
k = Tk(i) and (r, w) = (i, wi) for some 1 ≤ i ≤ n, we have Cost(r, w) ≤ Y . Observe

that

E(Y) ≤ log4 n

n
+ E

(
Y · 1{Y ≥ log4 n

n
}
)

≤ log4 n

n
+ (E(Y 2))1/2

(
Pr

(
Y ≥ log4 n

n

))1/2

≤ log4 n

n
+ (E(Y 2))1/2

(∑
i

Pr
(
Cost(i, wi) ≥ log4 n

n

))1/2

≤ log4 n

n
+ (E(Y 2))1/2

(
nPr

(
Cost(1, w1) ≥ log4 n

n

))1/2

.

(2.4)

To bound (E(Y 2))1/2, let Z = max{C(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n} and note that
(E(Y 2))1/2 ≤ E(Z2)1/2. The variable Z has density f(z) = n2e−z(1 − e−z)n2−1, so

(E(Y 2))1/2 ≤
(

n2

∫ ∞

0

z2e−z(1 − e−z)n2−1dz

)1/2

≤
(

n2

∫ ∞

0

z2e−zdz

)1/2

=
√

2n.

Next, let W = |{j : C(1, j) ≤ log4 n
n }| and let U denote the random set of vertices in Tk(1)

with in-degree equal to k. Since W ′ := n − W ∼ Bin(n, exp(− log4 n
n)), we have

Pr(W ≤ log2 n) = P (W ′ ≥ n − log2 n) ≤ elog2 nE(eW ′
)

en
<

C

elog3 n
(2.5)

for some constant C which does not depend on n. Also, since at most n
k vertices in Tk(1)

can have in-degree k, |U| ≤ n
k always. For 1 ≤ i ≤ n, let X(i) = X(i)(1) denote the vertex to

which the i’th cheapest edge out of vertex 1 points, then (X(1), X(2), ..., X(n)) is a uniformly
distributed random permutation of the set {1, 2, ..., n}. The variables X(1), X(2), ..., X(n)

are measurable with respect to the σ-algebra generated by the variables {C(1, j) : 1 ≤
j ≤ n}, whereas the random tree Tk(1), and hence the random set of unavailable vertices
U , is determined by the variables {C(i, j) : 2 ≤ i ≤ n, 1 ≤ j ≤ n}, so the variables
X(1), X(2), ..., X(n) and the random set U are independent. Now given the event W ≥ b

and the set U , we have Cost(1, w1) ≥ log4 n
n only if X(1), X(2), ..., X(b) ∈ U , i.e. we must

reject at least the first b vertices that are examined and this happens only if all of those
vertices are in U . So

Pr
(

Cost(1, w1) ≥ log4 n

n

∣∣∣W ≥ b,U = U

)
≤ Pr

(
X(1), X(2), ..., X(b) ∈ U

∣∣∣W ≥ b,U = U
)

=
(|U |

n

)(|U | − 1
n − 1

)
· · ·

(|U | − b + 1
n − b + 1

)

≤
(

1
k

)b (
1 − b

n

)−b

12

since |U | ≤ n
k . Using this bound, we obtain

Pr
(
Cost(1, w1

)
≥ log4 n

n
)

≤
∑
U

Pr
(

Cost(1, w1) ≥ log4 n

n

∣∣∣W ≥ b,U = U

)
Pr(W ≥ b,U = U) + Pr(W ≤ b)

≤
(

1
k

)b (
1 − b

n

)−b

· Pr(W ≥ b) + Pr(W ≤ b)

(2.6)

where the sum is over all possible set values for the random set U . It follows from (2.5)
and (2.6) with b = log2 n, that

Pr
(
Cost(1, w1) ≥ log4 n

n

)
≤ C ′

n(log 2)(log n)

where C ′ is a constant which may depend on k but which does not depend on n. Using
this bound and the bound for (E(Y 2))1/2 in (2.4) we obtain

E(Cost(r, w)) ≤ E(Y) ≤ 2 log4 n

n

for all large n.
Finally, since Cost(T ∗

k) ≤ Cost(T a
k) by the definition of T ∗

k , and since E(Cost(T a
k)) =

E(Cost(M∗
k)) + o(1) by Theorem 2.2, we have for all large n

E(Cost(M∗
k)) − 2 log4 n

n
≤ E(Cost(T ∗

k)) ≤ E(Cost(T a
k)) = E(Cost(M∗

k)) + o(1).

§3 Lower Bound

In this section we prove the following lower bound for the optimal tree’s expected cost:
Theorem 3.1 If k ≥ 2, then

lim inf
n→∞ E(Cost(T ∗

k)) ≥ 1 +
1
e

∑
m>k

1
m!

m−k∑
`=1

m − k − ` + 1
m − ` + 1

.

Proof. By Theorems 2.1 and 2.2, it suffices to prove that

lim inf
n→∞ E(Cost(M∗

k)) ≥ 1 +
1
e

∑
m>k

1
m!

m−k∑
`=1

m − k − ` + 1
m − ` + 1

.

13

Since the optimal mapping M∗
k must have one edge out of each vertex, a crude lower bound

is
Cost(M∗

k) ≥
∑

v

c(1)(v) = Cost(M∗)

where c(i)(v) denotes the cost of the i’th cheapest edge out of v, and M∗ = M∗
n is the

cheapest map (with no restrictions on the in-degrees of the vertices). With high probability,
a positive proportion of the vertices of M∗ have in-degree larger than k. Hence a positive
proportion of the edges in M∗ cannot be used in M∗

k . Each time the cheapest edge is not
used, we pay a penalty, and the idea is to estimate this penalty.

First some notation is needed. For any vertex v and 1 ≤ i ≤ n, let ei(v) denote the
i’th cheapest edge out of v, i.e. Cost(ei(v)) = c(i)(v). Also, let D(v) := c(2)(v)− c(1)(v) ∼
exp(n − 1), and observe that

Cost(M∗
k) − Cost(M∗) ≥

∑
v s.t. e1(v)/∈M∗

k

c(2)(v) − c(1)(v) =
∑

v s.t. e1(v)/∈M∗
k

D(v).

We interpret D(v) as the penalty which is paid for not using edge e1(v). For any map f
from {1, 2, ..., n} into {1, 2, ..., n} and any vertex v, let ρ(v, f) denote the in-degree of v in
Gf , the directed graph representing the mapping f . For 0 ≤ m ≤ n, let
Vm(f) :=

{
v : ρ(v, f) = m

}
and for any vertex y, let B(y, f) :=

{
v : f(v) = y

}
. In the

special case where f = M∗, we write Vm for Vm(M∗) and B(y) for B(y,M∗).

Now given y ∈ Vm and B(y) =
{
x1, x2, . . . , xm

}
, let D(1)(B(y)), D(2)(B(y)), ...,denote

the order statistics of the variables D(x1), D(x2), ..., D(xm). For each vertex y, we define
X(y) = 0 if y /∈ Vm for some m > k and X(y) =

∑m−k
i=1 D(i)(B(y)) if y ∈ Vm for some

m > k. The variable X(y) is a lower bound on the cost of redirecting edges that go into
vertex y under M∗. In particular, if y /∈ Vm for some m > k then it is possible that none
of the edges into y under M∗ are redirected under the optimal solution M∗

k , whereas, if
y ∈ Vm for some m > k, then at least m − k of the edges into y (under M∗) must be
redirected under M∗

k and the cost of redirecting edges will be at least
∑m−k

i=1 D(i)(B(y)).
Using the variables X(1), X(2), ..., X(n), we define a variable Un that underestimates the
cost of M∗

k :

Cost(M∗
k) ≥ Un := Cost(M∗) +

∑
m>k

∑
y∈Vm

m−k∑
i=1

D(i)(B(y))) = Cost(M∗) +
n∑

y=1

X(y).

The variable Un is the sum of the cost of the cheapest edge out of each vertex, plus an
additional penalty for vertices y with in-degree m > k. The variables X(1), X(2), ..., X(n)
are identically distributed, so

E(Un) = E(Cost(M∗)) + nE(X(1)) = 1 + nE(X(1))

since E(Cost(M∗)) = nE(c(1)(1)) = 1.

14

Let pm(n) = Pr(1 ∈ Vm) = Pr(ρ(1,M∗) = m) =
(

n
m

)
(1

n)m(1 − 1
n)n−m ∼ 1

em! , then
we have

E(X(1)) =
n∑

m>k

E(X(1)
∣∣1 ∈ Vm)pm(n).

To compute E(X(1)
∣∣1 ∈ Vm) we write

E(X(1)
∣∣1 ∈ Vm) =

∑
A

E(X(1)
∣∣B(1) = A) Pr(B(1) = A∣∣1 ∈ Vm)

where the sum is over all subsets A ⊆ {1, 2, ..., n} such that |A| = m. Recall that the
σ-algebras σ{X(i)(v) : 1 ≤ i ≤ n, 1 ≤ v ≤ n} and σ{c(i)(v) : 1 ≤ i ≤ n, 1 ≤ v ≤ n}
are independent. Now observe that given B(1) = A, then X(1) =

∑m−k
i=1 D(i)(A). For

any subset A, the event {B(1) = A} is measurable with respect to σ{X(i)(v) : 1 ≤ i ≤
n, 1 ≤ v ≤ n} whereas the variable X(1) =

∑m−k
i=1 D(i)(A) is measurable with respect to

σ{c(i)(v) : 1 ≤ i ≤ n, 1 ≤ v ≤ n}. So by independence of the σ-algebras, we have

E(X(1)|B(1) = A) = E
(m−k∑

i=1

D(i)(A)
∣∣∣B(1) = A

)
=

m−k∑
i=1

E(D(i)(A))

for any subset A ∈ {1, 2, ..., n} such that |A| = m. Also, for any subset A ∈ {1, 2, ..., n}
we have

m−k∑
i=1

E(D(i)(A)) =
m−k∑
i=1

E(D(i)(A′))

where A′ = {1, 2, ...,m}, since the variables {D(i) : 1 ≤ i ≤ m} and {D(x) : x ∈ A} have
the same joint distribution. Since the variables D(1), D(2), ..., D(m) are i.i.d. exp(n − 1)
random variables, it follows from Lemma 3.2 below that

E(X(1))
∣∣1 ∈ Vm) =

∑
A

m−k∑
i=1

E(D(i)(A′)) Pr(B(1) = A∣∣1 ∈ Vm)

=
m−k∑
i=1

E(D(i)(A′))

=
1

n − 1

m−k∑
l=1

m − k − l + 1
m − l + 1

where the sum is over all subsets A ⊆ {1, 2, ..., n} such that |A| = m.

Finally, since limn→∞ pm(n) = 1
em! , and pm(n) · ∑m−k

l=1
m−k−l+1

m−l+1 ≤ 1
m! · m for each

15

m ≥ 0, we obtain

lim
n→∞E(Un) = 1 + lim

n→∞nE(X(1))

= 1 + lim
n→∞

n

n − 1

∑
m>k

pm(n)
m−k∑
l=1

m − k − l + 1
m − l + 1

= 1 +
1
e

∑
m>k

1
m!

m−k∑
`=1

m − k − ` + 1
m − ` + 1

by dominated convergence, and the result follows.

The proof of Theorem 3.1 depends on a fact about the order statistics of the expo-
nential distribution which we state as a lemma.

Lemma 3.2 Let X1, X2, . . . , Xm be independent exponential random variables with

parameter λ > 0. Let S =
s∑

i=1

X(i) be the sum of the s smallest of these m random

variables. Then

E(S) =
s∑

j=1

(s − j + 1)
λ(m − j + 1)

.

Proof. The lemma follows from the fact that the expected value of the i’th order statistic
from a sample of m exponential random variables with parameter λ is

E(X(i)) =
i∑

j=1

1
λ(m − j + 1)

,

and therefore

E(S) =
s∑

i=1

i∑
j=1

1
λ(m − j + 1)

=
s∑

j=1

s∑
i=j

1
λ(m − j + 1)

=
s∑

j=1

(s − j + 1)
λ(m − j + 1)

§4 Upper Bound

In this section prove

16

Theorem 4.1 For k ≥ 2

lim sup
n→∞

E(Cost(T ∗
k)) ≤ 1 +

∑
m>k

1
em!

m−k∑
`=1

m − k − ` + 1
m − ` + 1

+
k∑

m=0

1
em!


 ∞∑

j=k−m+1

λje−λ

j!

j+m−k∑
l=1

j + m − k − l + 1
j + m − l + 1




+ λ

(
1 −

k∑
m=0

1
em!

)

+ log(
α

α − β
) − β

where

λ = λ(k) =
k−1∑
m=0

(k − m)
em!

− (k − 1)

α = α(k) =
k−1∑
m=0

1
em!

k−m−1∑
j=0

λje−λ

j!

β = β(k) =


 k−1∑

m=0

1
em!

k−m−1∑
j=0

(k − m − j)λje−λ

j!


 − (k − 1).

The proof of the theorem is based on the analysis of a greedy algorithm. The algo-
rithm constructs a k-map Ma

k for which E(Cost(Ma
k)) can be bounded. We know that

Cost(M∗
k) ≤ Cost(Ma

k), so Theorems 2.1 and 2.2 together imply that E(Cost(T ∗
k)) ≤

E(Cost(Ma
k)) + o(1).

To construct the map Ma
k , we start with the optimal unrestricted random mapping,

M∗, and make the modifications necessary to convert it to a k-map. This is carried out
in three phases as follows. In Phase 1 we start with M∗, and at each vertex v with
ρ(v,M∗) > k, cut ρ(v,M∗) − k edges into v. These edges are selected so as to minimize
the “redirection cost” at the beginning of Phase 2 when the cut edges are replaced by new,
more expensive edges. The redirection process may result in overfull vertices. Hence there
is another round of cutting at the end of Phase 2. The edges that are cut at the end of
Phase 2 get replaced by more expensive edges in Phase 3 using a simple greedy procedure.

To describe the algorithm in more detail, we need some notation. Given a map f and a
vertex v, recall that B(v, f) = {x : f(x) = v}. For x ∈ B(v, f), let D(x, f) be the difference
between the cost of the current edge (x, f(x)) and the next cheapest edge, i.e. if (x, f(x)) =
ci(x), then D(x, f) = c(i+1)(x) − c(i)(x). If ρ(v, f) = m, let D(1)(v), D(2)(v), ..., D(m)(v)
denote the order statistics of the variables {D(x, f) : x ∈ B(v, f)}. In addition, if ρ(v, f) =
m > k, then let W(v, f) = {x ∈ B(v, f) : D(x, v) = D(j)(v, f) for some 1 ≤ j ≤ m− k} be

17

the m − k vertices for which D(x, f) is smallest. Finally, let F = {v : ρ(v,M∗) > k} and
let C = {v : ρ(v,M∗) ≤ k}. With this notation we can describe an algorithm constructs a
heuristic mapping Ma

k .

PHASE 1

• f = M∗;

R(1) = ∅;
R(2) = ∅;

• For each edge (x, v) such that v ∈ F and x ∈ W(v, f), delete (x, v) from f and add x
to R(1).

PHASE 2

• For all roots x ∈ R(1), add e2(x) to f .

• For every v ∈ F that now has ρ(v, f) > k, delete all edges (x, v) in f such that
x ∈ R(1), and add the vertex x to R(2).

• For every v ∈ C that now has ρ(v, f) > k, for every x ∈ W(v, f), delete (x, v) from f
and add x to R(2).

PHASE 3
• For i = 1, . . . , |R(2)|,{

Let xi be the vertex in R(2) with the ith smallest label. Add to f the cheapest
edge from xi to a vertex that is available to xi and which has not been rejected
in Phases 1-2;}

• Return f ;

Our goal is to bound the expected cost of Ma
k which is the mapping returned by the

algorithm. To this end, let

X =
n∑

v=1

c(1)(v) = Cost(M∗)

be the cost of f at the start of Phase 1, before any edges are deleted. If e1(x) is one of the
edges removed in Phase 1, then e1(x) will not be used in Ma

k and at best the edge out of x
will have cost c(2)(x) in Ma

k . For this reason we refer to (c(2)(x)− c(1)(x)) as the “penalty
for deleting e1(x).” Let Y be the total penalty for deleting edges in Phase 1:

Y =
∑

x∈R(1)
(c(2)(x) − c(1)(x)).

18

Similarly, let W be the penalty for rejecting edges in Phase 2 and let Z be the additional
penalty for adding edges in Phase 3, i.e. the cost over and above that which is accounted
for by X,Y, and W. Then

Cost(Ma
k) = X + Y + W + Z. (4.1)

Proof of Theorem 4.1. Fix k ≥ 2. From the discussion above, it is enough to bound
E(Cost(Ma

k)). We begin by noting that X + Y = Un, so from the proof of Theorem 3.1
we have

E(X + Y) = 1 +
1
e

∑
m>k

1
m!

m−k∑
`=1

m − k − ` + 1
m − ` + 1

+ o(1). (4.2)

Next, to bound E(W) , we write W =
n∑

v=1
Qv, where Qv is the penalty for rejecting edges

into v during Phases 2. Let ρ(v) = ρ(v,M∗), then we have

E(W) =
n∑

v=1

E(Qv)

=
n∑

v=1

{ k∑
m=0

Pr
(
ρ(v) = m

)
E

(
Qv|ρ(v) = m

)
+ Pr

(
ρ(v) > k

)
E

(
Qv|ρ(v) > k

)}

= n

k∑
m=0

Pr
(
ρ = m

)
E

(
Qv1 |ρ = m

)
+ nPr

(
ρ > k

)
E

(
Qv1 |ρ > k

)
(4.3)

where v1 is any fixed vertex and ρ = ρ(v1). Since Pr(ρ = m) → 1
em! as n → ∞, it is

enough to determine lim supn→∞ nE(Qv1 |ρ = m) and lim supn→∞ nE(Qv1 |ρ > k). These
limits are obtained in Lemmas 4.3 and 4.4 below.

To prove the lemmas we first define variables R = |R(1)| and V = |{x ∈ R(1) :
e2(x) = (x, v1)}| where v1 is a fixed vertex. Then we have

Lemma 4.2 For 0 ≤ m ≤ k and j ≥ 0

lim
n→∞Pr(V = j|ρ = m) =

λje−λ

j!

where λ = λ(k).

Proof. Observe that given R = r and ρ = m ≤ k, the distribution of V is Bin(r, 1
n−1).

So if λn − k2n3/4 ≤ r ≤ λn + k2n3/4, it follows from the Poisson approximation for the
Binomial distribution that

|Pr(V = j|R = r, ρ = m) − e−λλj

j!
| ≤ Cj

n1/4

19

where Cj is a constant which may depend on j but which does not depend on n. Martingale
concentration results (see, for example, [15] and the appendix) establish that
Pr(λn − k2n3/4 ≤ R ≤ λn + k2n3/4) > 1 − exp(−n1/4) for all large n. Furthermore, since
Pr(ρ = m) is bounded away from zero as n → ∞, we also have

Pr
(
λn − k2n3/4 ≤ R ≤ λn + k2n3/4

∣∣∣ρ = m
)

> 1 − Cm exp(−n1/4),

where Cm is a constant which may depend on m but which does not depend on n. Using
these bounds, we obtain

|Pr(V = j|ρ = m) − e−λλj

j!
|

≤
∑

{r:|r−λn|≤k2n3/4}

∣∣∣ Pr(V = j|R = r, ρ = m) − e−λλj

j!

∣∣∣ Pr(R = r|ρ = m)

+
∑

{r:|r−λn|>k2n3/4}

∣∣∣ Pr(V = j|R = r, ρ = m) − e−λλj

j!

∣∣∣ Pr(R = r|ρ = m)

≤ Cj

n1/4
+ 2Cm exp(−n1/4)

and the lemma follows.

Remark. We also note here that Pr(V = j|R = r, ρ = m) =
(
r
j

)
(1

n−1)j(1 − 1
n−1)r−j ≤ 1

j!

for all possible values of r, so Pr(V = j|ρ = m) ≤ 1
j! for all j ≥ 0.

Lemma 4.3 For 0 ≤ m ≤ k

lim
n→∞nE(Qv1 |ρ = m) =

∞∑
j=k−m+1

λje−λ

j!

j+m−k∑
l=1

j + m − k − l + 1
j + m − l + 1

where λ = λ(k).

Proof. The first step is to write

lim
n→∞nE(Qv1 |ρ = m) =

lim
n→∞

n−m∑
j=k−m+1

nE(Qv1 |V = j, ρ = m) Pr(V = j|ρ = m). (4.4)

We compute limn→∞ nE(Qv1 |V = j, ρ = m) by using a further conditioning argument.
The calculation is divided into two cases.
Case 1: m = 0

Let V = {x : x ∈ R(1) and e2(x) = (x, v1)}, then the event {V = A, ρ = 0},
where A ⊆ [n] and |A| = j, is measurable with respect to the σ-algebra generated by the

20

variables {X(i)(v) : i = 1, 2, and 1 ≤ v ≤ n} ∪ {c(2)(v) − c(1)(v) : 1 ≤ v ≤ n} (as defined
in Section 1). In particular, the event {V = A, ρ = 0} is independent of the variables
{c(3)(x)− c(2)(x) : x ∈ A}. Now for any A ⊆ [n] such that |A| = j, let D(1)(A), ..., D(j)(A)
denote the order statistics of the variables {c(3)(x) − c(2)(x) : x ∈ A}. It follows from
Lemma 3.2 that

nE
(
Qv1

∣∣∣V = A, |A| = j, ρ = 0
)

= nE

(
j−k∑
i=1

D(i)(A)
∣∣∣V = A, |A| = j, ρ = 0

)

= nE

(
j−k∑
i=1

D(i)(A)

)

=
n

n − 2

j−k∑
`=1

j − k − ` + 1
j − ` + 1

since the variables {c(3)(x) − c(2)(x) : x ∈ A} are i.i.d. exp(n − 2). It follows that

nE
(
Qv1

∣∣V = j, ρ = 0
)

=
n

n − 2

j−k∑
`=1

j − k − ` + 1
j − ` + 1

≤ 3j. (4.5)

Since Pr(V = j|ρ = 0) ≤ 1
j! for j ≥ 0, the result now follows for m = 0 by Lemma 4.2,

(4.5) and dominated convergence applied to (4.4) with m = 0.

Case 2: 0 < m ≤ k.
Let V be defined as in Case 1 above, then the event {V = A, (M∗)−1(v1) = B, ρ = m},

where A,B ⊆ [n], |A| = j, |B| = m, and B ∩ A = ∅, is measurable with respect to the σ-
algebra generated by the variables {X(i)(v) : i = 1, 2, and 1 ≤ v ≤ n} ∪ {c(2)(v) − c(1)(v) :
1 ≤ v ≤ n, v 6∈ B}. In particular, the event {V = A, (M∗)−1(v1) = B, ρ = m} is
independent of the variables {c(2)(x) − c(1)(x) : x ∈ B} ∪ {c(3)(v) − c(2)(v) : v ∈ A}. Let
A′ = A ∪ B and let D(1)(A′), ..., D(m+j)(A′) denote the order statistics of the variables
{c(2)(x) − c(1)(x) : x ∈ B} ∪ {c(3)(v) − c(2)(v) : v ∈ A}. Then

nE
(
Qv1

∣∣∣V = A, (M∗)−1(v1) = B, |A| = j, ρ = m
)

= nE

(
j+m−k∑

i=1

D(i)(A′)
∣∣∣V = A, (M∗)−1(v1) = B, |A| = j, ρ = m

)

= nE

(
j+m−k∑

i=1

D(i)(A′)

)
.

(4.6)

Now the calculation of nE(
∑j+m−k

i=1 D(i)(A′)) requires some work since the variables
{c(2)(x)− c(1)(x) : x ∈ B} ∪ {c(3)(v)− c(2)(v) : v ∈ A} are independent but not identically
distributed. In particular, c(2)(x)− c(1)(x) ∼ exp(n−1) for every x ∈ B, whereas c(3)(v)−
c(2)(v) ∼ exp(n − 2) for every v ∈ A, so their joint density function is given by

f(u1, ..., uj+m)

21

= (n − 1)m(n − 2)j exp

(
−(n − 1)

m∑
i=1

ui − (n − 2)
j+m∑

i=m+1

ui

)

on (R+)j+m. Define the function g : (R+)j+m → R+ by g(u1, ..., uj+m) =
∑j+m−k

i=1 u(i)

where u(i) is the ith smallest of the coordinates u1, ..., uj+m. Then we have

nE

(
j+m−k∑

i=1

D(i)(A′)

)
= n

∫
(R+)j+m

g(~u) · f(~u)d~u

= n

∫
(R+)j+m

g(~u) · f̃(~u)d~u + n

∫
(R+)j+m

g(~u) · (f(~u) − f̃(~u))d~u (4.7)

where f̃(u1, ..., uj+m) = (n − 2)j+m exp(−(n − 2)
∑j+m

i=1 ui) is the joint density of j + m
i.i.d. exp(n − 2) random variables. By Lemma 3.2 we have

n

∫
(R+)j+m

g(u) · f̃(u)du =
n

n − 2

j+m−k∑
`=1

j + m − k − ` + 1
j + m − ` + 1

(4.8)

To bound the second term on the RHS of (4.7), observe that

n
∣∣∣ ∫

(R+)j+m

g(~u) · (f(~u) − f̃(~u))d~u
∣∣∣

≤ n

∫
(R+)j+m

g(~u) · f̃(~u)
∣∣∣1 − f(~u)

f̃(~u)

∣∣∣d~u

= n

∫
[0, 1√

n
]j+m

g(~u) · f̃(~u)
∣∣∣1 − f(~u)

f̃(~u)

∣∣∣d~u

+ n

∫
([0, 1√

n
]j+m)c

g(~u) · f̃(~u)
∣∣∣1 − f(~u)

f̃(~u)

∣∣∣d~u.

(4.9)

For ~u ∈ [0, 1√
n
]j+m,

∣∣∣1 − f(~u)
f̃(~u)

∣∣∣ =
∣∣∣1 −

(
n − 1
n − 2

)m

e−
∑m

i=1
ui

∣∣∣ ≤ C(k)√
n

(4.10)

where C(k) is a constant which may depend on k but which does not depend on n. Thus

n

∫
[0, 1√

n
]j+m

g(~u) · f̃(~u)
∣∣∣1 − f(~u)

f̃(~u)

∣∣∣d~u ≤ C(k)√
n

· n
∫

(R+)j+m

g(u) · f̃(u)du

=
C(k)√

n
· n

n − 2

j+m−k∑
`=1

j + m − k − ` + 1
j + m − ` + 1

≤ 3C(k)j√
n

. (4.11)

22

To bound the second term on the RHS of (4.9), observe that

n

∫
([0, 1√

n
]j+m)c

g(~u) · f̃(~u)
∣∣∣1 − f(~u)

f̃(~u)

∣∣∣d~u ≤ 2n

j+m∑
i=1

∫
([0, 1√

n
]j+m)c

uif̃(~u)d~u

= 2n(j + m)
∫ ∞

1√
n

(n − 2)ue−(n−2)udu

≤ 4n2 ·
(

2 exp(−(n − 2)/
√

n)√
n

)
≤ 8n3/2 exp(−n1/3).

(4.12)

It follows from (4.6)-(4.12) that

∣∣∣E
(

j+m−k∑
i=1

D(i)(A′)

)
−

j+m−k∑
`=1

j + m − k − ` + 1
j + m − ` + 1

∣∣∣ ≤ C ′(k)j√
n

and hence

∣∣∣nE(Qv1 |V = j, ρ = m) −
j+m−k∑

`=1

j + m − k − ` + 1
j + m − ` + 1

∣∣∣ ≤ C ′(k)j√
n

(4.13)

where C ′(k) is a constant may depend on k but which does not depend on j or n. The
result now follows from Lemma 4.2, (4.13) and dominated convergence applied to (4.4),
since Pr(V = j|ρ = m) ≤ 1

j! for all j ≥ 0.

Lemma 4.4

lim sup
n→∞

nE(Qv1 |ρ > k) Pr(ρ > k) ≤ λ(k) · (1 −
k∑

m=0

1
em!

).

Proof. If ρ = m > k, then all edges which are mapped to v1 at the start of Phase 2
are rejected without making any comparisons. In particular, suppose that x ∈ R(1) and
e2(x) = (x, v1), then the edge e2(x) is rejected. The penalty paid for rejecting e2(x) is the
minimum additional cost of finding a suitable edge out of x, i.e. the penalty for rejecting
e2(x) is c(3)(x) − c(2)(x). Arguments similar to those made in the proof of Lemma 4.3
establish that, that for any A ⊆ [n],

nE(Qv1

∣∣∣V = A, ρ > k) = nE

(∑
x∈A

c(3)(x) − c(2)(x)

)
=

n|A|
n − 2

23

where V is as in the proof of Lemma 4.3. It follows that

nE(Qv1 |ρ > k) Pr(ρ > k) = n

n∑
j=0

E(Qv1

∣∣∣V = j, ρ > k) Pr(V = j|ρ > k) Pr(ρ > k)

=
n

n − 2

n∑
j=0

j Pr(V = j|ρ > k) Pr(ρ > k)

=
n

n − 2
E(V |ρ > k) Pr(ρ > k)

=
n

n − 2

n∑
m=k+1

E(V |ρ = m) Pr(ρ = m)

(4.14)
where V = |V|. Observe that given that ρ = m > k and R = r where R = |R(1)|,
V ∼ Bin(r − m + k, 1

n−1). So

E(V |ρ = m) =
1

n − 1
E(R − m + k|ρ = m).

Since
∑n

t=0 tdt = n =
∑n

t=0 dt, where dt = dt(M∗) denotes the number of vertices in M∗

with in-degree t, we have

R =
∑
t>k

(t − k)dt =
k−1∑
t=0

(k − t)dt − (k − 1)n < n,

Thus

E(V |ρ = m) =
1

n − 1

k−1∑
t=0

(k − t)E(dt|ρ = m) − (k − 1)n + (m − k)
n − 1

≤ 1
n − 1

k−1∑
t=0

(k − t)E(dt|ρ = m) − (k − 1).

(4.15)

Now for 0 ≤ t ≤ k− 1 < m, we must have E(dt|ρ = m) ≤ n− 1, and hence E(V |ρ = m) ≤
k2/2. To obtain a better bound, we note that for 0 ≤ t ≤ k − 1 and k < m ≤ n − k, we
have

E(dt|ρ = m) = (n − 1) Pr(ρ(v′) = t|ρ(v1) = m)

= (n − 1)
(n − m)!

t!(n − m − t)!

(
1
n

)t (1 − 2/n)n−m−t

(1 − 1/n)n−m

≤ (n − 1)
e−1em/n

t!(1 − 2/n)k

where v′ is any vertex other than v1. Substitute this bound into (4.15) to obtain

E(V |ρ = m) ≤ (1 − 2/n)−k
k−1∑
t=0

(k − t)e−1em/n

t!
− (k − 1)

24

for k < m < n − k. Using this bound in (4.14), we obtain

nE(Qv|ρ > k) Pr(ρ > k) ≤
(

n(1 − 2/n)−k

n − 2

)
e

log n
n

(
k−1∑
t=0

(k − t)e−1

t!

)
Pr(k < ρ < log n)

+ k2 Pr(ρ ≥ log n) − (k − 1) Pr(ρ > k)

≤
(

k−1∑
t=0

(k − t)e−1

t!
− (k − 1)

)
Pr(ρ > k) + o(1)

= λ(k)

(
1 −

k∑
m=0

1
em!

)
+ o(1)

since Pr(ρ ≥ log n) ≤ e
(log n)! and Pr(ρ > k) = 1 − ∑k

m=0
1

em! + o(1).

It follows from Lemmas 4.3 and 4.4 that

lim sup
n→∞

E(W) ≤
k∑

m=0

1
em!


 ∞∑

j=k−m+1

λje−λ

j!

j+m−k∑
l=1

j + m − k − l + 1
j + m − l + 1




+ λ

(
1 −

k∑
m=0

1
em!

)
.

(4.16)

It only remains to bound E(Z), where Z is the additional cost for adding edges in
Phase 3, i.e. Z is the cost over and above that which is accounted for by X,Y, and W.
In order to execute Phase 3, we order the elements of R(2) according to the order of
their labels. Suppose that xi is the ith root in R(2) and let Γi denote the additional cost
incurred by adding an edge out of xi in Phase 3. So

E(Z) = E(
R′∑
i=1

Γi)

where R′ = |R(2)|. Let A(2) denote the set of available vertices at the end of Phase 2 and
let A′ = |A(2)|, then

E(Z) =
∑

1≤r≤a

r∑
i=1

E(Γi|R′ = r,A′ = a) Pr(R′ = r,A′ = a).

We claim that for 1 ≤ i ≤ r ≤ a

E(Γi|R′ = r,A′ = a) ≤ n

(n − 10 log n)(a − i + 1)
− 1

(n − 10 log n)
+

1
n3/2

.

To prove the claim, fix 1 ≤ i ≤ r ≤ a. There are two cases to consider:

25

Case 1: xi ∈ R(1)
⋂R(2).

In this case edges e1(xi) and e2(xi) have been rejected by the algorithm. In Phase 3 we
examine edges e3(xi), e4(xi), ... until an acceptable edge is found. Let τi denote the number
of edges examined until an edge for xi is found. Note that if A′

i is the number of available
vertices for vertex xi then τi corresponds to the number of draws without replacement
until a black ball is drawn from an urn containing A′

i black balls and n−A′
i − 2 red balls.

Now if τi = 1, then edge e3(xi) is accepted, and in this case the additional cost is
0 since the incremental cost c(3)(xi) − c(2)(xi) was included in the calculation of W. If
τi = m > 1, then edge em+2(xi) is accepted and the added cost of accepting edge em+2(xi)
is c(m+2)(xi) − c(3)(xi). So for n − 2 ≥ m > 1, we have

E(Γi

∣∣∣xi ∈ R(1) ∩R(2), τi = m,R′ = r,A′ = a)

= E(cm+2(xi) − c3(xi)
∣∣∣xi ∈ R(1) ∩R(2), τi = m,R′ = r,A′ = a)

=
1

n − 3
+

1
n − 4

+ ... +
1

n − 1 − m

≤ m − 1
n − 10 log n

+ 2 log n · 1[m≥6 log n].

It follows from the proof of Lemma 2.9, that |A′
i| ≥ n

4 , so Pr(τi ≥ 6 log n) < (3
4)6 log n < 1

n3/2

and thus
E(Γi|xi ∈ R(1) ∩R(2), R′ = r,A′ = a)

≤ E(τi|xi ∈ R(1) ∩R(2), R′ = r,A′ = a)
n − 10 log n

− 1
(n − 10 log n)

+
2 log n

n3/2
.

Now given A′
i = ai, standard results for sampling without replacement yield

E(τi|xi ∈ R(1) ∩R(2), R′ = r,A′ = a,A′
i = ai) ≤ n

ai
≤ n

a − i + 1

always. The last inequality follows from a simple observation: if there are a available
vertices at the start of Phase 3, then as each root finds a vertex the number of available
vertices is reduced by at most 1, so A′

i ≥ A′ − i + 1 always. It follows that

E(τi|xi ∈ R(1) ∩R(2), R′ = r,A′ = a) ≤ n

a − i + 1

and hence

E(Γi|xi ∈ R(1)∩R(2), R′ = r,A′ = a) ≤ n

(n − 10 log n)(a − i + 1)
− 1

n − 10 log n
+

2 log n

n3/2
.

Case 2: xi ∈ R(2) \ R(1).

26

In this case edge e1(xi) has been rejected by the algorithm during Phase 2. In Phase 3
edges e2(xi), e3(xi), ... are examined until an acceptable edge is found. As in Case 1, Γi = 0
if τi = 1, and for n − 1 ≥ m > 1

E(Γi|xi ∈ R(2) \ R(1), τi = m,R′ = r,A′ = a)
= E(cm+1(xi) − c2(xi)|xi ∈ R(2) \ R(1), τi = m,R′ = r,A′ = a)

=
1

n − 2
+

1
n − 3

+ ... +
1

n − m

≤ m − 1
n − 10 log n

+ 2 log n · 1[k≥6 log n].

The same argument as given in Case 1 yields

E(Γi|xi ∈ R(2)\R(1), R′ = r,A′ = a) ≤ n

(n − 10 log n)(a − i + 1)
− 1

n − 10 log n
+

2 log n

n3/2
.

So we in all cases, for i ≤ r, we have

E(Γi|R′ = r,A′ = a) ≤ n

(n − 10 log n)(a − i + 1)
− 1

n − 10 log n
+

2 log n

n3/2
.

Thus

E(Z) ≤
∑

1≤r≤a

r∑
i=1

E(Γi|R′ = r,A′ = a) Pr(R′ = r,A′ = a)

≤
∑

1≤r≤a

r∑
i=1

(
n

(n − 10 log n)(a − i + 1)
− 1

n − 10 log n
+

2 log n

n3/2

)
Pr(R′ = r,A′ = a)

≤ n

n − 10 log n

(
E

(
log(

A′

A′ − R′)
)
− E(R′)

n

)
+

2E(R′) log n

n3/2
.

In the Appendix we show that there is a constant Ck, which may depend on k but which
does not depend on n, such that for the event

γ = {|A′ − nα(k)| ≤ Ckn3/4, |R′ − nβ(k)| ≤ Ckn3/4}
we have

Pr(γ) ≥ 1 − 4 exp(−n1/4).

It follows that for all large n

E(Z) ≤
(

log
(

α(k)
α(k) − β(k)

)
− β(k) + o(1)

)
Pr(γ) + 2 log(n) Pr(γc)

= log
(

α(k)
α(k) − β(k)

)
− β(k) + o(1)

(4.17)

27

and Theorem 4.1 now follows from (4.2), (4.16), and (4.17).

It is not difficult to describe various ways to improve the algorithm for constructing Ma
k .

However, with each improvement of the algorithm, the analysis of the algorithm becomes
more complicated.

§5 Conclusions

The table below summarizes our results for a few small values of k.

Asymptotic Bounds
k Lower Upper
2 1.03892136 1.06806181
3 1.00656287 1.00755907
4 1.00097152 1.00100255
5 1.00012721 1.00012800
6 1.00001487 1.00001490
7 1.00000156 1.00000157

Limited simulation data for two to four hundred vertices suggest that, in the case k = 2,
the lower bound is sharper than the upper bound. In this paper we have considered exp(1)
costs on the edges. It likely that, as in the k = ∞ case (Hansen[8]), the arguments can be
carried out for other distributions as well, provided the order statistics of the chosen edge
distribution are well behaved.

We note that for exp(1) edge costs, Aldous[13] has shown that the expected cost of
the optimal assignment converges to a constant as n → ∞. This result also holds in the
case k = ∞ for fairly general edge distributions. We speculate that a similar result might
hold 2 ≤ k < ∞. The methods used in the case k = ∞ are insufficient to prove this, but
it may be possible to adapt Aldous’ “objective method”to obtain the result. In the case
k = ∞, the limiting constant can be determined, but it is not known for the assignment
problem with either exp(1) or U(0, 1) edge costs.

Acknowledgement. Our first version of this paper used uniform U(0, 1) edge costs.
We thank the anonymous referees for suggesting exp(1), and also for catching an error in
one of our proofs. The authors also thank Ljubomir Perkovic for use of his computer and
optimization software.

28

References

[1] Goemans, M.X. and Kodialam, M.S., A lower bound on the expected cost of an
optimal assignment, Math. Oper. Res. 18 (1993) 267-274.

[2] Birgitta Olin, Asymptotic properties of random assignment problems, Ph. D. thesis,
Kungl Tekniska Hogskolan, (1992) Stockholm, Sweden.

[3] Don Coppersmith and Gregory Sorkin , Constructive bounds and exact expectations
for the random assignment problem, IBM Research Report RC 21133(94490), (1998)
1 -35.

[4] A.M. Frieze, On the value of a random minimum spanning tree problem, Discrete
Applied Mathematics 10 (1985) 47 – 56.

[5] A. Beveridge, A.M. Frieze and C. J. H. McDiarmid,Random minimum length spanning
trees in regular graphs, preprint.

[6] A.M. Frieze and C. J. H. McDiarmid, On random minimum length spanning trees,
Combinatorica 9 (4) (1989) 363 -374.

[7] Khuller, Raghavachari, and Young,Low-degree spanning trees of small weight, SIAM
J.Comput. 25 (1996) 355–368.

[8] Jennie C. Hansen, Limit laws for the optimal directed tree with random costs, Com-
binatorics, Probability and Computing 6 (1997) 315-335 .

[9] Colin McDiarmid, On the greedy algorithm with random costs, Mathematical Pro-
gramming 36 (1986) 245-255.

[10] Bazaraa, Jarvis, and Sherali, Linear programming and network flows, (1990), page
481.

[11] R.M. Karp and M. Steele, Probabilistic analysis of heuristics, in The traveling sales-
man problem, ed. Eugene L. Lawler et. al. , John Wiley & Sons Ltd.(1985) Great
Britain, pages 181–205.

[12] P.Flajolet and M. Soria, General Combinatorial Schemas with Gausssian Limit Dis-
tributions and Exponential Tails, Discrete Math. 114 (1993) 159-180.

[13] D. Aldous, Asymptotics in the random assignment problem, Probab. Theory Appl.
93 (1992) 507-534.

[14] Garey and Johnson, Computers and Intractability, Freeman (1979),page 206.
[15] J. Michael Steele, Probability in Combinatorial Optimization, SIAM, (1997) Philadel-

phia, PA.

29

Appendix

Let Πk be the following computational problem: given as input a cost matrix C, find
a minimum cost k-tree. Then we have

Lemma A.1 Πk is NP-hard.

Proof. Let Uk be the restriction of Πk to symmetric matrices whose entries are all zeroes
and ones. The instances of Uk correspond, in an obvious way, to instances of the NP-
complete degree-k constrained spanning tree problem for undirected graphs (Garey and
Johnson [14], page 206, comment to ND1). The correspondence is: include an edge {i, j}
in the undirected graph G if and only if Cost((i, j)) = Cost((j, i)) = 0. Then G has
an undirected degree-k spanning tree iff the optimal (directed) k-tree for C has cost 0.
Thus the existence of a polynomial time algorithm for Πk would imply the existence of a
polynomial time algorithm for an NP complete problem.

In the remainder of this appendix, we prove the martingale concentration results used
in the proofs of the main theorems.

Lemma A.2 Let M∗ be a uniform random mapping on {1, 2, ..., n}, then for 0 ≤ k < n
and t > 0,

Pr(|dk − E(dk)| ≥ t) ≤ 2 exp(−t2/2n)

where dk = dk(M∗) denotes the number of vertices with in-degree k in M∗.

Proof. The proof of the lemma is an application of Azuma’s inequality for martingale differ-
ences, and is based on the ideas in Steele [15]. Let Z1, Z2, ..., Zn be i.i.d. random variables
such that Zi corresponds to the ‘choice’ made by vertex i, i.e. Zi = j if and only if M∗(i) =
j. We write dk = dk(Z1, Z2, ..., Zn) to emphasize the dependence of dk on the variables
Z1, Z2, ..., Zn which determine the mapping M∗. Next, let Fi = σ(Z1, ..., Zi) denote the
σ-algebra generated by the variables Z1, Z2, ..., Zi and let F0 denote the trivial σ-algebra.
The variables E(dk|F0), E(dk|F1), ..., E(dk|Fn) form a martingale with E(dk|F0) = E(dk)
and E(dk|Fn) = dk, and the variables Wi = E(dk|Fi) − E(dk|Fi−1), i = 0, 1, 2, ..., n, form
a martingale difference sequence. Since dk − E(dk) =

∑n
i=1 Wi, Azuma’s inequality for

martingale differences tells us that

Pr(|dk − E(dk)| ≥ t) = Pr(|
n∑

i=1

Wi| > t) ≤ 2 exp(−t2/2
n∑

i=1

‖Wi‖2
∞).

So the lemma follows provided that ‖Wi‖2
∞ ≤ 1 for all 1 ≤ i ≤ n.

To bound on ‖Wi‖2
∞ we use the following trick. Let Ẑ1, Ẑ2, ..., Ẑn be a sequence of

i.i.d. random variables which are uniform on {1, 2, ..., n} and which are independent of the
variables Z1, Z2, ..., Zn. We claim that

E(dk(Z1, ..., Zi, ..., Zn)|Fi−1) = E(dk(Z1, ..., Zi−1, Ẑi, Zi+1, ..., Zn)|Fi).

30

To see this, note that the conditional distribution of dk(Z1, ..., Zi−1, Ẑi, Zi+1, ..., Zn) given
Fi is the same as the conditional distribution of dk(Z1, ..., Zi−1, Zi, Zi+1, ..., Zn) given
Fi−1 since the σ-algebra Fi is independent of Ẑi and only gives us information about
Z1, Z2, ..., Zi−1. Thus we can write

Wi = E(dk(Z1, ..., Zi, ..., Zn) − dk(Z1, ..., Zi−1, Ẑi, Zi+1, ..., Zn)|Fi)

i.e., Wi can be written as a single conditional expectation with respect to Fi. Now it is
easy to see that (without conditioning)

|dk(Z1, ..., Zi, ..., Zn) − dk(Z1, ..., Zi−1, Ẑi, Zi+1, ..., Zn)| ≤ 1

since all ‘choices’, except that made by vertex i, are the same and the choices made by Zi

and Ẑi can only create a discrepency of at most 1 in the count of the number of vertices
with in-degree k. Conditioning does not increase the L∞ bound, so we get ‖Wi‖∞ ≤ 1
too. It follows from Azuma’s inequality that for any λ > 0,

Pr(|dk(f) − E(dk(f)| ≥ t) = Pr(|
n∑

i=1

Wi| > t) ≤ 2 exp(−t2/2n).

As an application of Lemma A.2 we have

Corollary A.3 For all large n and fixed k ≥ 2,

Pr(|dm − n

em!
| < n3/4, 0 ≤ m ≤ k) ≥ 1 − exp(−n1/4)

and
Pr(|R − nλ(k)| ≤ k2n3/4) ≥ 1 − exp(−n1/4)

where R = |R(1)| and λ(k) =
∑k−1

m=0
k−m
em! − (k − 1).

Proof. Since E(dm) = n
(

n
m

)
(1

n)m(1 − 1
n)n−m for 0 ≤ m ≤ k, there is a constant Ck which

does not depend on n such that |E(dm) − n
em! | < Ck for 0 ≤ m ≤ k. Applying Lemma

A.2, we obtain

Pr(|dm − n

em!
| > n3/4) ≤ Pr(|dm − E(dm)| >

n3/4

2
) ≤ 2 exp(

−n1/2

8
)

for 0 ≤ m ≤ k and this establishes the first part of the result.
Now recall that

R = |R(1)| =
∑
m>k

(m − k)dm =
k∑

m=0

(k − m)dm − (k − 1)n

31

since
∑n

m=1 mdm = n =
∑n

m=0 dm, so the event {|dm − n
em! | < n3/4, 0 ≤ m ≤ k} is

contained in the event {|R − nλ(k)| ≤ k2n3/4}, and the result follows.

Next, recall that A(2) denotes the set of available vertices at the start of Phase 3
and R(2) denotes the roots at the start of Phase 3 in the algorithm from Section 4. Then
adapting the proof of Lemma A.2, we obtain

Lemma A.4 For all large n and fixed k ≥ 2, there exists a constant Ck which does
not depend on n, such that

Pr(|A′ − α(k)n| ≤ Ckn3/4, |R′ − β(k)n| ≤ Ckn3/4)

≥ 1 − 4 exp(−n1/4)

where A′ = |A(2)|, R′ = |R(2)|,

α(k) =
k−1∑
m=0

1
em!

k−m−1∑
j=0

λje−λ

j!
,

β(k) =


 k−1∑

m=0

1
em!

k−m−1∑
j=0

(k − m − j)λje−λ

j!


 − (k − 1),

and λ = λ(k) (as defined in Corollary A.3).

Proof. We define the random variable

g(d0, d1, ..., dk−1) =
k−1∑
m=0

dm

k−m−1∑
j=0

(
R

j

)(
1

n − 1

)j (
n − 2
n − 1

)R−j

where R = |R(1)| is number of roots at the end of Phase 1. Standard calculations and
approximations establish that if |dm− n

em! | < n3/4 for 0 ≤ m ≤ k, then |R−nλ(k)| ≤ k2n3/4

and there is some constant C ′
k which does not depend on n such that

|g(~d) − nα(k)| ≤ C ′
kn3/4.

We show that

Pr
(
|A′ − g(~d)| < n3/4, |dm − n

em!
| < n3/4, 0 ≤ m ≤ k

)
≥ 1 − 2 exp(−n1/4) (A.1)

and, since

{|A′ − g(~d)| < n3/4, |dm − n

em!
| < n3/4, 0 ≤ m ≤ k} ⊆ {|A′ − nα(k)| ≤ (C ′

k + 1)n3/4},

we obtain

Pr
(
|A′ − nα(k)| ≤ (C ′

k + 1)n3/4
)

> 1 − 2 exp(−n1/4). (A.2)

32

Let A(1) denote the set of available vertices at the end of Phase 1 and let ξ denote
the event that A(1) = A,R(1) = B, and M∗ = f , where f is a mapping such that
|dm(f) − n

em! | < n3/4 for 0 ≤ m ≤ k and A and B are subsets of vertices such that
|B| ≤ |A|. We claim that E(A′|ξ) = g(~d(f)). To see this, suppose that v ∈ A and
ρ(v, f) = m. Then v ∈ A(2) only if the number of roots in B which are mapped to v in
Phase 2 is less than k − m, so

Pr(v ∈ A(2)|ξ, ρ(v, f) = m) =
k−m−1∑

j=0

(
r

j

)(
1

n − 1

)j (
n − 2
n − 1

)r−j

where r = |B| = |R(1)|. It follows that

E(A′|ξ) =
∑
v∈A

Pr(v ∈ A(2)|ξ)

=
k−1∑
m=0

dm(f)
k−m−1∑

j=0

(
r

j

) (
1

n − 1

)j (
n − 2
n − 1

)r−j

= g(~d(f)).

(Note that given the event ξ, the variable g(~d(f)) = g(d0(f), d1(f), ..., dk(f)) is completely
determined, since we have conditioned on M∗ = f).

Now fix ξ , and let Pξ denote the conditional probability measure P (·|ξ).
Let x1, x2, ..., xr denote the vertices in B and let Zi denote the vertex that xi is mapped
to in Phase 2, i.e. Zi = v if e2(xi) = (xi, v). Now given the event ξ, the variables
Z1, Z2, ..., Zr are independent and each variable Zi is uniformly distributed over the set
{1, 2,, n} \ {f(xi)}. In this (conditional) probability space, let Fi = σ(Z1, Z2, ..., Zi)
denote the σ-algebra generated by the variables Z1, Z2, ..., Zi and let F0 denote the trivial
σ- algebra. Let Wk = Eξ(A′|Fi) − Eξ(A′|Fi−1). So Azuma’s inequality tells us that

Pξ(|A′ − g(~d(f))| > n3/4) = Pξ(|A′ − Eξ(A′)| > n3/4) ≤ 2 exp(−n3/2/2
r∑

i=1

‖Wi‖2
∞).

As in the proof of Lemma A.2, let Ẑ1, Ẑ2, ..., Ẑr be a sequence of independent random
variables such that Ẑi ∼ Zi for 1 ≤ i ≤ r and which are also independent of the variables
Z1, Z2, ..., Zr. Then

Wi = Eξ(A′(Z1, ..., Zi, ..., Zr) − A′(Z1, ..., Zi−1, Ẑi, Zi+1, ..., Zr)|Fi)

and ‖Wi‖∞ ≤ 1 for 1 ≤ i ≤ r since given ξ,

|A′(Z1, ..., Zi, ..., Zr) − A′(Z1, ..., Zi−1, Ẑi, Zi+1, ..., Zr)| ≤ 1.

Thus
Pξ(|A′ − g(~d(f))| > n3/4) ≤ 2 exp(−n3/2/2r) ≤ exp(−n1/4)

33

since r = |B| ≤ n. It follows from this and Lemma A.2, that

Pr
(
|A′ − g(~g)| < n3/4, |dm − n

em!
| < n3/4, 0 ≤ m ≤ k

)
=

=
∑

ξ

Pr(|A′ − g(~d(f))| < n3/4|ξ) Pr(ξ)

≥
∑

ξ

(1 − exp(−n1/4)) Pr(ξ)

= (1 − exp(−n1/4) Pr
(
|dm − n

em!
| < n3/4, 0 ≤ m ≤ k

)
≥ (1 − exp(−n1/4)(1 − exp(−n1/4))

where the summation is over all events ξ such that |dm − n
em! | < n3/4, 0 ≤ m ≤ k. This

establishes inequality (A.1) and hence (A.2).

Similar calculations yield a concentration result for R′. In this case, we define the
function

g̃(d0, d1, ..., dk) =

= R −
k−1∑
m=0

dm


k−m−1∑

j=0

(j − k + m)
(

R

j

)(
1

n − 1

)j (
n − 2
n − 1

)R−j

+ (k − m)




=
k−1∑
m=0

dm

k−m−1∑
j=0

(k − m − j)
(

R

j

)(
1

n − 1

)j (
n − 2
n − 1

)R−j

− (k − 1).

(Note: we have used the identity R =
∑k−1

m=0(k−m)dm−(k−1).) Again, routine approxima-
tions establish that if |dm− n

em! | < n3/4 for 0 ≤ m ≤ k then |g̃(d0, ..., dk)−nβ(k)| ≤ C ′
kn3/4

for some constant C ′
k which does not depend on n. So, as in the derivation of inequality

(A.2), it is enough to show that

Pr
(
|R′ − g̃(~d)| < n3/4, |dm − n

em!
| < n3/4, 0 ≤ m ≤ k

)
≥ 1 − 2 exp(−n1/4).

Again, let ξ denote the event A(1) = A,R(1) = B, and M∗ = f , where f is a mapping
such that |dm(f) − n

em! | < n3/4 for 0 ≤ m ≤ k, and A and B are subsets of vertices with
|B| ≤ |A|. We claim that

Eξ(R′) := E(R′|ξ) = g̃(~d(f)).

To see this, note that although it is not necessarily the case that R(2) ⊆ R(1), it is always
the case that R′ ≤ R. In particular, the overall number of roots is only reduced by mapping
vertices in B to available vertices in A(1) = A during Phase 2. Redirecting a vertex x ∈ B
to an unavailable vertex during Phase 2 may result in deleting x from the set of roots,
but in this case another vertex is added to the set of roots and the number of roots is not
decreased. For each v ∈ A, let Yv denote the number of roots which are subtracted from

34

|R(1)| = |B| = r due to the roots in B which are mapped to v in Phase 2, then given the
configuration ξ, we can write

R′ = r −
∑
v∈A

Yv.

If ρ(v, f) = m < k then Yv is at most k − m and for 0 ≤ j ≤ k − m − 1

Pr(Yv = j|ξ, ρ(v, f) = m) =
(

r

j

)(
1

n − 1

)j (
n − 2
n − 1

)r−j

,

whereas

Pr(Yv = k − m|ξ, ρ(v, f) = m) = 1 −
k−m−1∑

j=0

(
r

j

) (
1

n − 1

)j (
n − 2
n − 1

)r−j

.

It follows that

E(Yv|ξ, ρ(v, f) = m) =
k−m−1∑

j=0

(j − k + m)
(

r

j

)(
1

n − 1

)j (
n − 2
n − 1

)r−j

+ (k − m)

and hence

Eξ(R′) = E

(
R −

∑
v∈A

Yv

∣∣∣ξ
)

= g̃
(

~d(f)
)

since E(R|ξ) = r =
∑k−1

m=0(k−m)dm(f)− (k−1). Now let x1, x2, ..., xr denote the vertices
in B. For 1 ≤ i ≤ r, let Zi denote the vertex that xi is mapped to in Phase 2. Let
Fi = σ(Z1, Z2, ..., Zi) denote the σ-algebra generated by the variables Z1, Z2, ..., Zi and
let F0 denote the trivial σ- algebra. Let W ′

i = Eξ(R′|Fi) − Eξ(R′|Fi−1), then Azuma’s
inequality tells us that

Pξ(|R′ − g̃(~d(f))| > n3/4) = Pξ(|R′ − Eξ(R′)| > n3/4) ≤ 2 exp(−n3/2/2
r∑

i=1

‖W ′
i‖2

∞).

It is straightforward to check that ‖W ′
i‖∞ ≤ 1 for 1 ≤ i ≤ r, so

Pξ(|R′ − g̃(~d(f))| > n3/4) ≤ 2 exp(−n3/2/2r) ≤ exp(−n1/4).

Thus
Pr

(
|R′ − g̃(~d)| < n3/4, |dm − n

em!
| < n3/4, 0 ≤ m ≤ k

)
=

=
∑

ξ

Pr
(
|R′ − g̃(~d(f))| < n3/4

∣∣∣ξ) Pr(ξ)

≥
∑

ξ

(1 − exp(−n1/4)) Pr(ξ)

= (1 − exp(−n1/4) Pr
(
|dm − n

em!
| < n3/4, 0 ≤ m ≤ k

)
≥ (1 − exp(−n1/4)(1 − exp(−n1/4))

35

where the summation is over all events ξ such that |dm(f) − n
em! | < n3/4 for 0 ≤ m ≤ k.

Finally, since

{|R′ − g̃(~d(f))| < n3/4, |dm − n

em!
| < n3/4, 0 ≤ m ≤ k}

⊆ {|R′ − nβ(k)| < (C ′
k + 1)n3/4},

we obtain

Pr(|R′ − nβ(k)| < (C ′
k + 1)n3/4) ≥ 1 − 2 exp(−n1/4). (A.3)

The lemma follows from inequalities (A.2) and (A.3).

36

