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given a number of equivalent conditions for an error bound to hold. Thus so far it appears thatfor a general convex g, an asymptotic or some other CQ which is complex to state and di�cult toverify, is needed in addition to the simple Slater CQ (9x̂ : g(x̂) < 0), in order to obtain a globalerror bound.In this work, �rst a very simple global error bound (Theorem 2.2) is obtained on the distancebetween an arbitrary point x in Rn and its projection p(x) on the feasible region S relative to thedistance between x and a point x̂ in S that satis�es a Slater CQ. This error bound depends, as wasthe case in [10], on bounding Lagrange multipliers of the problem of projecting x on S, and containsno unknown condition constant but merely the natural residual and a measure of satisfaction of theordinary Slater CQ (min1�i�m �gi(x̂)). By using this bound on the relative error, we next deriveour principal result (Theorem 3.4) which gives an error bound on the distance between x and itsprojection p(x) on S. This bound is in terms of the natural residual k g(x)+ k1 and a conditionconstant that depends on a strong Slater CQ (De�nition 3.2) which implies the ordinary SlaterCQ, and is characterized by an sup-inf operation (De�nition 3.2). An intuitive interpretation ofthe strong Slater CQ is given by Proposition 3.5 where it is shown that each boundary point ofS must be approachable by a sequence of interior points such that directions between the interiorpoints and the boundary point make a uniformly acute angle with the negative gradient of an activeconstraint at the boundary point.A word about our notation now. The symbol \:=" denotes de�nition. Vectors are columnvectors unless transposed by a 0. For a vector x in the n-dimensional real space Rn, x+ will denotethe vector in Rn with components (x+)i := max fxi; 0g, i = 1; : : : ; n, while kxk, kxk1 and kxk1, willdenote respectively an arbitrary norm, the 1-norm and the1-norm of x. The notation argminx2X f(x)will denote the set of minimizers of f(x) on the set X . For f : Rn �! R which is di�erentiable atx, the notation rf(x) will represent the 1� n gradient vector.2 A Relative Error Bound under the Ordinary Slater CQIn this section we use the ordinary Slater CQ to bound a relative error. The result depends onbounding Lagrange multipliers associated with the projection problem as follows.Lemma 2.1 Let g : Rn �! Rm be convex on Rn and let g(x̂) < 0 for some x̂ 2 Rn. For each x inRn and for an arbitrary norm k � k on Rn, there exist a projection p(x) of x on S, that isp(x) 2 argminp fk p� x k jjj g(p) � 0g; (2)and an optimal Lagrange multiplier w(x) � 0 in Rm, such that (p(x); w(x)) satisfy the Karush-Kuhn-Tucker saddle-point conditions:L(p(x); w; x)� L(p(x); w(x); x)� L(p; w(x); x); 8p 2 Rn; 8w 2 Rm; w � 0; (3)where L(p; w; x) is the Lagrangian associated with the projection problem (2) for a �xed x, that isL(p; w; x) :=k p� x k +w0g(p): (4)Furthermore, k w(x) k1� k x� x̂ k � k x� p(x) kmin1�i�m �gi(x̂) : (5)2



Proof The satisfaction of the KKT saddle-point conditions (3), as well asw(x)0g(p(x)) = 0; (6)follow from the convexity of k p� x k in p for a �xed x and the Slater CQ [9, Theorem 5.4.7]. Wenow establish (5). From (3) and (6) we have, for a �xed x, thatk p(x)� x k=k p(x)� x k +w(x)0g(p(x))�k x̂� x k +w(x)0g(x̂): (7)Hence k w(x) k1 � min1�i�m�gi(x̂) � �w(x)0g(x̂) �k x̂� x k � k p(x)� x k;from which (5) follows.With the bound (5) on the optimal multiplier w(x), we can derive our relative error bound.Theorem 2.2 Relative Error Bound Let g : Rn �! Rm be convex on Rn and let g(x̂) < 0for some x̂ 2 Rn. For each x in Rn, x 6= x̂, the distance to its projection p(x) on S is relativelybounded as follows: k x� p(x) kk x� x̂ k � k g(x)+ k1k g(x)+ k1 +min1�i�m�gi(x̂) : (8)Proof From the saddle-point conditions (3) we havek p(x)� x k�k x� x k +w(x)0g(x) �k w(x) k1 � k g(x)+ k1 :By using the bound (5) from Lemma 2.1 we obtaink p(x)� x k� k x� x̂ k � k x� p(x) kmin1�i�m �gi(x̂) k g(x)+ k1;which gives the desired bound (8).With the help of the relative error bound (8) and an appropriately strengthened Slater CQ, wecan derive our global error bound.3 A Global Error Bound under a Strong Slater CQWe begin this section by de�ning the strong Slater CQ. For that purpose we de�ne the interior andboundary of the feasible region S in terms of our convex and hence continuous function g on Rn.De�nition 3.1 int S := fx jjjg(x) < 0g@S := fx jjjg(x) � 0; g`(x) = 0 for some `; 1 � ` � mgThese de�nitions of interior and boundary points coincide with the corresponding conventionalde�nitions of convex analysis if a Slater CQ is assumed.De�nition 3.2 Strong Slater CQ There exists a positive number 
 such thatsupp2@S infx̂2 int S k x̂� p kmin1�i�m�gi(x̂) � 
 <1: (9)3



An immediate consequence of the strong Slater CQ is the following.Lemma 3.3 Equivalent Strong Slater CQ For 
̂ > 
, the strong Slater CQ (9) implies that8p 2 @S 9x̂(p) 2 int S : k x̂(p)� p kmin1�i�m �gi(x̂(p)) � 
̂ <1: (10)Conversely, (10) implies the strong Slater CQ (9) with 
 = 
̂.Proof From (9) we have that8p 2 @S : infx̂2int S k x̂� p kmin1�i�m�gi(x̂) � 
 <1: (11)From the de�nition of in�mum we have from (11) that for 
̂ > 
:8p 2 @S 9x̂(p) 2 int S : k x̂(p)� p kmin1�i�m �gi(x̂(p)) < infx̂2intS k x̂� p kmin1�i�m �gi(x̂) + (
̂ � 
): (12)Combining (11) and (12) gives (10).To establish the converse we have from (10) that8p 2 @S : infx̂2intS k x̂� p kmin1�i�m�gi(x̂) � 
̂ <1Taking the supremum over p 2 @S gives (9) with 
 = 
̂.We are prepared now to derive our principal global error bound.Theorem 3.4 Global Error Bound Let g : Rn �! Rm be convex on Rn, let the strong SlaterCQ (9) hold and let 
̂ > 
. Then for each x in Rn, the distance to its projection p(x) on S isbounded as follows: k x� p(x) k� 
̂ k g(x)+ k1; (13)where k � k is an arbitrary norm on Rn, p(x) is de�ned by (2), and hence both 
 and p(x) arenorm-dependent.Proof For x 2 S, p(x) = x and (13) holds for arbitrary 
̂. Suppose now x is not in S and letp(x) be its projection on S. By Lemma 3.3 there exists x̂(p(x)) 2 int S such that the inequality of(10) holds with p = p(x), that is k x̂(p(x))� p(x) kmin1�i�m �gi(x̂(p(x))) � 
̂ <1: (14)With x̂ = x̂(p(x)) in (8), we conclude by Theorem 2.2 that,k x� p(x) k � kx� x̂(p(x))k� kx� p(x)kmin1�i�m �gi(x̂(p(x))) k g(x)+ k1� kx� p(x)k+ kp(x)� x̂(p(x))k� kx� p(x)kmin1�i�m�gi(x̂(p(x))) k g(x)+ k1(By triangle inequality)� 
̂kg(x)+k1 (By (14)):4



We give now a su�cient condition for satisfying the strong Slater CQ. This condition, whichsheds some intuitive light on the constraint quali�cation, requires that each boundary point pof S, with some active constraint g`(p) = 0, be approachable by a sequence of interior pointsfx̂jg such that the directions fx̂j � pg make a uniformly acute angle with �rg`(p) and such thatg`(x̂j) � gi(x̂j); i = 1; : : : ; m:Proposition 3.5 Su�cient Condition for Strong Slater CQ Let g : Rn �! Rm be di�er-entiable and convex on Rn. The strong Slater CQ (9) is satis�ed with 
 = 
̂ if for each p on theboundary @S of S, there exists an active constraint index ` 2 f1; : : : ; mg and a sequence of interiorpoints fx̂jg � intS, converging to p, such that for some 
̂ > 0 and some � > 0:g`(p) = 0; ` 2 arg min1�i�m�gi(x̂j); �rg`(p) x̂j � pkx̂j � pk � 1 + �
̂ ; j = 1; 2; : : : : (15)Proof By the di�erentiability of g` at p 2 @S, we have thatg`(p)� g`(x̂j) = �rg`(p)(x̂j � p)� �(p; x̂j � p)kx̂j � pk;where limx̂j�p!0 �(p; x̂j � p) = 0. Hence�g`(x̂j) = g`(p)� g`(x̂j) = kx̂j � pk(�rg`(p) (x̂j � p)kx̂j � pk � �(p; x̂j � p)); j = 1; 2; : : :� kx̂j � pk(1 + �
̂ � �(p; x̂j � p)); j = 1; 2; : : :(By (15))� kx̂j � pk
̂ ; for j � �j for some �j:Hence (10) is satis�ed by (p; x̂�j), and by Lemma 3.3, the strong Slater CQ (9) holds with 
 = 
̂.We conclude this section by giving a simple example demonstrating the use of the su�cientcondition (15) and showing how the constant 
̂ bounds supx62S kx�p(x)kkg(x)+k from above, as it must by(13).Example 3.6 S := fx jjjx 2 R2; e�x1 � x2 � 0gFor this example g(x) = e�x1 � x2; rg(x) = ��e�x1 � 1�If we take a point p on the boundary @S of S, that is e�p1 � p2 = 0, and fx̂jg 2 int S on thenormal to @S at p, and such that:x̂j = " p1 + �je�p1e�p1 + �j # ; 0 < f�jg �! 0;then condition (15) is satis�ed as follows�rg`(p) x̂j � pkx̂j � pk1 = �e�p1 1� " �je�p1�j #�jk [e�p1 1] k1 = e�2p1 + 1maxf1; e�p1g > 1;5



where the in�mum 1 is approached as p1 �! 1. It follows by (15) that 
̂ = 1 + �. To see that 
̂bounds supx62S kx�p(x)kkg(x)+k , we compute supx62S kx�p(x)k1kg(x)+k1 , where p(x) is the projection of x on S usingthe in�nity norm. For any x 62 S, the projection p(x) is the intersection with S of the smallestsquare centered at x with sides parallel to the coordinate axes. Denoting the components of p(x)by (p1; p2) and making the sides of the square equal gives for x1 < p1:e�p1 � x2 = p1 � x1 or equivalently x2 = x1 � p1 + e�p1Hence kx� p(x)k1kg(x)+k1 = p1 � x1e�x1 � x2 = p1 � x1e�x1 � x1 + p1 � e�p1 � 1;where the supremum of 1 is approached as (p1�x1) �! 0 and x1 �! 1. Thus supx62S kx�p(x)k1kg(x)+k1 =1 < 1 + � = 
̂.Any example violating the Slater CQ also violates the Strong Slater CQ. However it is noteasy to construct an example violating the Strong Slater CQ but not the Slater CQ. In fact this isessentially one of the open challenges also posed by Klatte and Li [5].4 ConclusionBy bounding Lagrange multipliers of the problem of projecting an arbitrary point on a given convexset by means of a Slater or strong Slater constraint quali�cation, global error bounds on the relativeand absolute distances to the convex set were obtained in terms of a natural residual multiplied bya condition constant depending on the point satisfying the constraint quali�cation.Acknowledgments I am indebted to my colleague Jong-Shi Pang for making an earlier versionof [6] available to me after �nishing this paper. Pang [11, 6] has also shown that the strong SlaterCQ (9) implies a more general strong Slater CQ [6] based on convex analysis and which also impliesan error bound. The condition constant 
 appearing explicitly in our strong Slater CQ (9) can alsobe obtained from the strong Slater CQ of [6], by an inf-sup operation as suggested there. The authoris also indebted to a referee for pointing out that after the completion of this paper, Klatte and Li[5] showed that under the Slater CQ, the Strong Slater CQ 3.2 is equivalent to the Asymptotic CQof Auslender and Crouzeix [2]. In addition, Klatte and Li [5] showed the necessity of the Su�cientCondition (15), appropriately extended using subgradients to nondi�erentiable convex g(x), for theStrong Slater CQ (9) [5, Theorem 6, ACQ4 () ACQ10].References[1] J. Abadie. On the Kuhn-Tucker theorem. In J. Abadie, editor, Nonlinear Programming, pages19{36. North{Holland, Amsterdam, 1967.[2] A. A. Auslender and J.-P. Crouzeix. Global regularity theorems. Mathematics of OperationsResearch, 13:243{253, 1988.[3] S. Deng. Computable error bounds for convex inequality systems in re
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