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Abstract

A global error bound is given on the distance between an arbitrary point in the n-dimensional
real space R™ and its projection on a nonempty convex set determined by m convex, possibly
nondifferentiable, inequalities. The bound is in terms of a natural residual that measures the
violations of the inequalities multiplied by a new simple condition constant that embodies a
single strong Slater constraint qualification (CQ) which implies the ordinary Slater CQ. A very
simple bound on the distance to the projection relative to the distance to a point satisfying the
ordinary Slater CQ is given first and then used to derive the principal global error bound.
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1 Introduction

We consider the nonempty feasible region

S = {z]g(x) < 0} (1)

where ¢ : R” — R™ is a convex function on the n-dimensional real space R". We are interested
in bounding the distance between an arbitrary point z in R™ and its projection p(z) on the set S
in terms of a natural residual || g(z)+ ||, where (¢g(2)4); :==max{0,¢;(z)}, ¢ =1,...,m, and || - ||
denotes an arbitrary norm on R™. In [10] the author imposed differentiability on g, the Slater CQ
as well as an asymptotic CQ in order to obtain such an error bound. Auslender and Crouzeix [2]
removed the differentiability assumption on g and extended the asymptotic CQ to nondifferentiable
convex g. Luo and Luo [8] established an error bound for convex quadratic g under the Slater CQ
alone. Wang and Pang [12] showed the necessity of the Slater CQ for an error bound to hold for
quadratic g. Li [7] showed that for convex quadratic g, a global error bound holds if and only
if Abadie’s CQ [1], which implies the Slater CQ, holds. Klatte [4] gave an error bound under
the Slater CQ and a “bounded excess” condition. Deng [3] established error bounds for convex
inequalities under a Slater condition on recession functions associated with (1). Very recently Lewis
and Pang [6] have made a comprehensive study of error bounds for convex inequalities and have
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given a number of equivalent conditions for an error bound to hold. Thus so far it appears that
for a general convex g, an asymptotic or some other CQ which is complex to state and difficult to
verify, is needed in addition to the simple Slater CQ (3% : ¢(#) < 0), in order to obtain a global
error bound.

In this work, first a very simple global error bound (Theorem 2.2) is obtained on the distance
between an arbitrary point z in R" and its projection p(z) on the feasible region S relative to the
distance between x and a point Z in .S that satisfies a Slater CQ. This error bound depends, as was
the case in [10], on bounding Lagrange multipliers of the problem of projecting z on .S, and contains
no unknown condition constant but merely the natural residual and a measure of satisfaction of the
ordinary Slater CQ (min;<i<, —g¢i(2)). By using this bound on the relative error, we next derive
our principal result (Theorem 3.4) which gives an error bound on the distance between z and its
projection p(z) on S. This bound is in terms of the natural residual || g(z)4+ || and a condition
constant that depends on a strong Slater CQ (Definition 3.2) which implies the ordinary Slater
CQ, and is characterized by an sup-inf operation (Definition 3.2). An intuitive interpretation of
the strong Slater CQ is given by Proposition 3.5 where it is shown that each boundary point of
S must be approachable by a sequence of interior points such that directions between the interior
points and the boundary point make a uniformly acute angle with the negative gradient of an active
constraint at the boundary point.

A word about our notation now. The symbol “:=” denotes definition. Vectors are column
vectors unless transposed by a ’. For a vector x in the n-dimensional real space R™, x4 will denote
the vector in R™ with components (z4); := max {z;,0},¢=1,...,n, while ||z||, ||z||; and ||2||c, Will
denote respectively an arbitrary norm, the 1-norm and the co-norm of z. The notation arg ?é% f(z)

will denote the set of minimizers of f(z) on the set X. For f: R” — R which is differentiable at
z, the notation V f(z) will represent the 1 x n gradient vector.

2 A Relative Error Bound under the Ordinary Slater CQ

In this section we use the ordinary Slater CQ to bound a relative error. The result depends on
bounding Lagrange multipliers associated with the projection problem as follows.

Lemma 2.1 Let g: R" — R™ be convex on R™ and let (&) < 0 for some & € R™. For each x in
R™ and for an arbitrary norm || - || on R", there exist a projection p(z) of x on S, that is

p(z) € argmin{l| p —a || |9(p) < 0}, (2)

and an optimal Lagrange multiplier w(z) > 0 in R™, such that (p(z),w(z)) satisfy the Karush-
Kuhn-Tucker saddle-point conditions:

Lp(e), w,2) < L(p(e), w(e), 2) < L(p, w(e), 2), ¥p € R*, Yoo € R™, w > 0, 3)
where L(p,w, ) is the Lagrangian associated with the projection problem (2) for a fized x, that is
L(p,w,z) :=[ p— = [| +w'g(p). (4)

Furthermore,
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Proof The satisfaction of the KKT saddle-point conditions (3), as well as

w(z)'g(p(x)) =0, (6)

follow from the convexity of || p— z || in p for a fixed @ and the Slater CQ [9, Theorem 5.4.7]. We
now establish (5). From (3) and (6) we have, for a fixed z, that

Ip(z) =@ [[=ll p(2) — @ || +w(@)g(p(2) <[ & =@ || +w(@)g(2). (7)
Hence

P [l min —gi(d) < —w(@)'g(#) || & = || = [ p(x) =2 I
from which (5) follows. 0

With the bound (5) on the optimal multiplier w(z), we can derive our relative error bound.

Theorem 2.2 Relative Error Bound Let g : R* — R™ be convex on R" and let g(&) < 0
for some & € R". For each x in R", x # &, the distance to its projection p(x) on S is relatively
bounded as follows:

| 2 — p() | 1 9(2)+ lloo
Te—all = To@s +minicicm —gi(#) i

Proof From the saddle-point conditions (3) we have
Ip(z) = 1<l e — 2 || +w(z)g(e) <[ wl@) - 1 g(2)+ oo -
By using the bound (5) from Lemma 2.1 we obtain

[z—2] |z —px)
ming <i<m —9:(2)

| ple) — z 1< Ly o) 1

which gives the desired bound (8). 0
With the help of the relative error bound (8) and an appropriately strengthened Slater CQ, we
can derive our global error bound.

3 A Global Error Bound under a Strong Slater CQ

We begin this section by defining the strong Slater CQ. For that purpose we define the interior and
boundary of the feasible region S in terms of our convex and hence continuous function g on R".

Definition 3.1
intS = {x]g(x) <0}

25 = {a|g(z) <0, g¢(x) =0forsome (, 1 << m}

These definitions of interior and boundary points coincide with the corresponding conventional
definitions of convex analysis if a Slater CQ is assumed.

Definition 3.2 Strong Slater CQ There exists a positive number v such that

sup inf I —pl
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An immediate consequence of the strong Slater CQ is the following.

Lemma 3.3 Equivalent Strong Slater CQ For ¥ > v, the strong Slater CQ (9) implies that

e =pll o

Vp e 85 Iz €wmtS: — 3 -
D $(p) m mlnlgiﬁm _gz(x(p))

Conversely, (10) implies the strong Slater CQ (9) with v = 4.

Proof From (9) we have that

Vpe dS : inf Hx—pH =~ <7 < oo
E€int S MINT<i<m —0i(%)

From the definition of infimum we have from (11) that for 4 > 4:

Wpeds B eints: — @ =Pl g le=pll 5y,

miny<i<m —¢i (£(p)) ~ #€intS minj<icm —gi(2)
Combining (11) and (12) gives (10).

To establish the converse we have from (10) that

Vp€as : inf Iz =pl

d€intS Minj<i<m —gi (&)

<4 < oo

Taking the supremum over p € 95 gives (9) with v = 4.
We are prepared now to derive our principal global error bound.

(10)

(11)

(12)

Theorem 3.4 Global Error Bound lLet g : R® — R™ be convex on R", let the strong Slater
CQ (9) hold and let ¥ > ~. Then for each x in R", the distance to its projection p(z) on S is

bounded as follows:
|z =p() <511 9(2)+ [leo,

(13)

where || - || is an arbitrary norm on R™, p(x) is defined by (2), and hence both ~ and p(z) are

norm-dependent.

Proof For z € S, p(z) = & and (13) holds for arbitrary 4. Suppose now z is not in .S and let
p(z) be its projection on S. By Lemma 3.3 there exists Z(p(z)) € int .S such that the inequality of

(10) holds with p = p(z), that is

| #(p(z) = p() |

minlgigm —9i (i (p(w)))

<A < ool

With & = Z(p(z)) in (8), we conclude by Theorem 2.2 that,

Iz = 2@)I = fle = p@IH sy

femrl = o)
|z — p(@)l| + llp(x) — &(p(x))[| — [l — p(2)]]
< minlgigm —gi f(p($))) H g($)_|_ HOO
(By triangle inequality)
< Allge)4llee By (14)).

(14)
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We give now a sufficient condition for satisfying the strong Slater CQ. This condition, which
sheds some intuitive light on the constraint qualification, requires that each boundary point p
of S, with some active constraint g,(p) = 0, be approachable by a sequence of interior points
{#7} such that the directions {#/ — p} make a uniformly acute angle with —Vg,(p) and such that

9e(#7) < gi#7), i=1,...,m.

Proposition 3.5 Sufficient Condition for Strong Slater CQ lLet g : R* — R™ be differ-
entiable and convexr on R™. The strong Slater CQ (9) is satisfied with v = % if for each p on the
boundary 05 of S, there exists an active constraint index { € {1,...,m} and a sequence of interior
points {27} C intS, converging to p, such that for some ¥ > 0 and some ¢ > 0:

Pop S lte g (15)
@-pll T A

9:(p) = 0, L € arg min —g;(i’), ~Vge(p)

Proof By the differentiability of g, at p € 35S, we have that
9e(p) = 9¢(27) = =V ge(p) (¥ — p) — a(p, & = p)[|2/ — pll,

where limg;_,_,o a(p, @7 — p) = 0. Hence

) = i) = @) = 8 = -V = el )T = L2
> 8 = Bl = alp @~ ) = 1,2 By (15)
. & —p|

T, for j > jfor some j.

Hence (10) is satisfied by (p, i;)7 and by Lemma 3.3, the strong Slater CQ (9) holds with v = 4.0
We conclude this section by giving a simple example demonstrating the use of the sufficient
condition (15) and showing how the constant 4 bounds supwsnx_p(x)” from above, as it must by

Ta(e)+]
(13).

Example 3.6
S:={x|z € R* e — 2, <0}
For this example
g(z) =e™™ —ay, Vg(z)=[-e™ —1]
If we take a point p on the boundary 95 of S, that is e — py = 0, and {i7} € int S on the
normal to 5 at p, and such that:

. .o P1
@f:lﬁipfjjf;j ] 0 < {§;} — 0,

then condition (15) is satisfied as follows

[ 5],6—]?1 ]
nJ S —2p1 1
i N EY J S S
6jllfe=Pr 1]flc  max{l,e"?1}




where the infimum 1 is approached as p; — oo. It follows by (15) that ¥ = 1 + €. To see that ¥
lz—p(=)|] lz—p(=)leo
lla(e)+11 () + e
the infinity norm. For any ¢ S, the projection p(z) is the intersection with S of the smallest

square centered at  with sides parallel to the coordinate axes. Denoting the components of p(z)
by (p1,p2) and making the sides of the square equal gives for z; < p:

bounds sup,¢g we compute sup,gg , where p(z) is the projection of z on S using

e Pl —a9g=p; — a1 or equivalently a9 =27 —p; +e P!

Hence

e p@lee _ pmmm __ mem
19 (@) 4o e~ —xy e —gy4p—e Pt T
where the supremum of 1 is approached as (p; —21) — 0 and 7 — oo. Thus supxgsu—m—@_(g)f”ozo =

l<1l4+e=4.

Any example violating the Slater CQ also violates the Strong Slater CQ. However it is not
easy to construct an example violating the Strong Slater CQ but not the Slater CQ. In fact this is
essentially one of the open challenges also posed by Klatte and Li [5].

4 Conclusion

By bounding Lagrange multipliers of the problem of projecting an arbitrary point on a given convex
set by means of a Slater or strong Slater constraint qualification, global error bounds on the relative
and absolute distances to the convex set were obtained in terms of a natural residual multiplied by
a condition constant depending on the point satisfying the constraint qualification.
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