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Abstract 

The nucleon is introduced as a new allocation concept for non-negative cooperative n-per- 
son transferable utility games. The nucleon may be viewed as the multiplicative analogue of 
Schmeidler's nucleolus. It is shown that the nucleon of (not necessarily bipartite) matching 
games can be computed in polynomial time. �9 1998 The Mathematical Programming 
Society, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

One of the central problems in cooperative game theory is to provide fair alloca- 
tions to the players in the game. The games that we consider here are cooperative 
n-person transferable utility games in characteristic function form. Formally, the 
general setup can be described as follows. 

There is a finite set N = { 1 , . . . ,  n} o f  players. These players may form coalitions 

S C_ N in an arbitrary way. Each coalition S can achieve a value v(S) E R (assuming 
that the players in S "cooperate").  The value v(N) of the grand coalition N can thus 
be understood as the total "profi t"  arising f rom the cooperation of all players. The 
pair (N, v) therefore represents our game in characteristic form.  An allocation is a 
vector x E ~ with component sum equal to v(N).  The allocations we seek should 
be fa ir  in the sense that they assess the strength of individual players relative to 
(N, v) in an acceptable way. 
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Many interesting examples of such games have been investigated where the value 
v(S) of a coalition S _c N is determined as the optimal value of a combinatorial op- 
timization problem the set S of players faces (see, e.g., [1]). 

In the matching game, for instance, we are given the complete graph 1s with N as 
the set of nodes. A matching is a set M of edges such that no two edges in M" have a 
node in common. Each edge e in Kn is assigned a weight w(e) and the value v (S) of a 
coalition is equal to the weight of a maximal matching in the subgraph induced by S. 
Here each individual player i E N has value v(i) = 0 while value v(N) > 0 may  well 
be possible. How should the strength of i E N be assessed? 

There are many notions of "fairness" for allocations (see, e.g., [2]). In the follow- 
ing we will only present a few of them. 

The idea of the core of a game, which essentially goes back to [3], approaches fair- 
ness from the point of view of coalitions. The allocation x = (xl , . . . ,  x,) is said to be 
in the core of (N, v) if there is no coalition S C_ N such that 

~--~xi < v(S). 
iES 

Note that the vectors x in the core of (N, v) form a polyhedron in RN as they are 
determined by the linear restrictions: 

~--~xi=v(N), ~-~x~>~v(S) for al lSC_N. 
iEN i6S 

A game may have an empty core (e.g., the matching game on/s with unit edge 
weights). Therefore, relaxations of the concept of a core have received attention. 
For a given e E R, Shapley and Shubik [4] consider the modified game (N, v'), where 

v(S) if S E {0, N}, 

v'(S) = v ( S ) - e  otherwise. 

The additive e-core of the game (N, v) is defined to be the core of the game (N, v'). 
Faigle and Kern [5] propose an e-correction relative to the value of a proper coa- 

lition and arrive at the modified game (N, v,), where 

S v(S) i f s  ~ {0,N), 
/3~ (S) 

(t - e)v(S) otherwise. 

The muhiplicative e-core of (N, v) is then the core of the game (N, v,). The multi- 
plicative e-core is not the only meaningful way to relax the notion of the core. In- 
deed, several alternative "taxation models" have been introduced in the literature. 
For example, Shapley and Shubik [4] define a modified game by setting 

S v(S) i f s  E {~,N}, 
vie(S) 

v(S) - eIS I otherwise, 

and Tijs and Driessen [6] propose the modification 

{v(S) I ~s l i fS  E {I~'N}' otherwise. vtl(S) 
v ( s )  - e v (S )  - S v(i) 
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The multiplicative e-core appears to be a natural concept in all situations where 
taxation is imposed proportionally to the value (e.g., sales tax). Note also that the 
multiplicative e-core is equivalent with the taxation model of  Tijs and Driessen [6] 
in the case of zero-normalized games, where v(i) = 0 holds for every individual player 
i. (The matching game studied in more detail below is of this kind.) 

There is always some e yielding a non-empty additive e-core. The same is true for 
the multiplicative e-core whenever v(N) >>. 0 (take, e.g., e = 1). For  both models, this 
observation suggests to seek an e that is as small as possible while still guaranteeing a 
non-empty e-core (see, e.g., [5]) for the multiplicative e-core of some combinatorial 
games. 

Trying to rank the different allocation models according to some abstract quali- 
tative merit is of little value. In the following example, the real world context 
and not a theoretical property determines the appropriateness of the allocation 
model. 

Example. Consider a 2-person game with v (1 )=  1, v ( 2 ) =  2, and v ( 1 , 2 ) =  1000. 
Computing the smallest e with a non-empty multiplicative e-core yields the unique 
allocation vector x = (xl,x2) = (1000/3, 2000/3), while the additive version suggests 
the unique allocation y = (YL,y2) = (999/2, 1001/2). 

At first sight, one might consider allocation y to be more "reasonable" than x be- 
cause their joint effort increases the return for both players by about the same 
amount. Suppose, on the other hand, that the two players' capital is 1 and 2 dollars, 
respectively and that they intend to buy a lottery ticket for 3 dollars to win the prize 
of  I000 dollars. The players must somehow agree in advance on how the I000 dollars 
should be divided among the two investors. In this context now, allocation rule x, 
which rewards the players relative to their investments, seems quite appropriate. 
In fact, this way of allocating the total gain reflects economical behavior in many real 
life situations: think of two musicians producing a compact disc or the group of 
shareholders of  a company. Here the relative sizes of the shares will determine the 
distribution of  a potential gain among the partners. 

The concept of the additive e-core is refined by the notion of the nucleolus due to 
Schmeidler [8]. We want an allocation x that maximizes the satisfaction, i.e., the 
negative excess 

e(x, S) = ~_x i  - v(S) 
iES 

uniformly over all proper coalitions S, i.e., we solve the linear program 

(LPI) max s 

Z xi = v(N), 
iEN 

Zx'  v(s) +e 
iES 

for all S ~ {0, N}. 
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Denoting by el the optimal objective function value of (LP l), it follows that e = - E  l 

is the minimal value admitting a non-empty additive e-core. 
The set of optimal solutions of (LPl) is usually called the prenucleolus of the game. 

If (LPl) has a unique solution (el,x*), then x* is the nucleolus of the game (N, v). 
Otherwise, there is a unique collection ,~a 1 C 2 N of coalitions S (r 0,N) for which 
the inequalities in (LP1) become tight at e = q. 

Now, in a second step, we maximize the satisfaction over all remaining coalitions: 

(LP2) max e 

xi = v(N), 
iEN 

x, = v(S) + 
iES 

x i v (S)  + 
iES 

for all S E 5Pl, 

otherwise. 

Continuing in this way, we obtain a sequence 

Et < e2 <~ ' ' '  < 6k 

until, finally, the optimal solution of (LPk) is unique with an allocation x*, the nucle- 
olus of the game. 

A more concise (and less algorithmic) description can be given as follows. 
With the allocation x we associate the satisfaction vector s(x) E Ez--2 as the vector 

of negative excesses arranged in non-decreasing order. The nucleolus is then the 
unique vector x* that lexicographically maximizes the satisfaction vectors s(x) rela- 
tive to the game (N, v). 

General algorithms for the computation of the nucleolus have been investigated 
by several researchers (see, e.g., [7]). Relative to special classes of games, these algo- 
rithms do generally not guarantee a polynomially bounded running time. On the oth- 
er hand, Solymosi and Raghavan [9] could show that the nucleolus of a matching 
game can be computed in polynomial time in the bipartite case, i.e., in the case where 
the edges of positive weight in the underlying graph do not contain a circuit of odd 
length. 

We suggest another approach to the allocation problem for general matching 
games. In Section 2, we introduce the nucleon as the multiplicative analogue of the 
nucleolus for cooperative games in a straightforward way. From a purely mathe- 
matical point of view, the nucleon is a meaningful concept for general cooperative 
n-person games. From a conceptual point of view, however, there might be difficul- 
ties in accepting the multiplicative analogue of the excess of a coalition with negative 
value as an appropriate measure of its satisfaction. Therefore, we will restrict our- 
selves to games with non-negative characteristic functions. 

Section 3 deals with complexity aspects of the nucleon in general terms. In Sec- 
tion 4, we focus on general matching games and, as an application of our new allo- 
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cation concept, demonstrate that the nucleon of  general matching games can be 
found in polynomial time. 

We do not claim that the concept of the nucleon is always superior to the tradi- 
tional nucleolus. There is probably something to be said in favor of any of the afore- 
mentioned e-core taxation models and the same will be true for the corresponding 
variants of  the idea of nucleolus. In view of  the fact that the multiplicative e-core 
has already attracted some interest (see, e.g., [10-12]), we expect that our multiplica- 
tive analogue of the nucleolus will prove to be useful in appropriate modeling con- 
texts, too. There are many interesting questions to ask about the nucleon as a general 
solution concept. How does the nucleon behave with respect to scaling? When is the 
nucleon individually rational? How does the nucleon relate to other existing solution 
concepts? Since this paper is primarily concerned with computational issues, we 
leave an in-depth study of most of these questions open for future research. How- 
ever, we would like to address here the following question: Given that the nucleon 
(cf. Section 2) is generally a set rather than a single vector, are there "natural can- 
didates" allocations to choose? (Note that the same question, of course, applies to 
the core). 

As a possible answer we propose to select the appropriate nucleon vector as to 
maximize a utility function that might be given on the set of players in particular in- 
stances. In the case where the nucleon allows a nice characterization (as it does with 
matching games), this approach is computationally feasible for linear utility func- 
tions. In the special case of matching games, this problem does not really occur since 
the nucleolus there is practically "always" a singleton (cf. Section 4). 

Coming back to the motivating idea behind the present work, we want to empha- 
size the question of computational complexity in this context. There is no doubt that 
the usefulness of a concept depends both on its modeling adequacy and on its com- 
putational complexity. In the case of  the general matching problem studied here, 
computation of the nucleon turns out to be polynomial while the computational 
complexity status of the nucleolus and any of its other variants is open. 

2. The nucleon of a game 

Let (N, v) be a cooperative n-person game. We will throughout assume that 
v(0) = 0 holds, i.e., that (N, v) is normalized. We will, furthermore, restrict our atten- 
tion to non-negative games and thus assume that v(S) >. 0 holds for any coalition 
S _C N. To simplify the presentation, recall the (standard) notation relative to the 
vector x E R n and the coalition S c_ N 

x(S) := Zx~" 
/ES 

Let 5% := {0, N} and ~/> 0. Consider the polyhedron Pl (~) of all vectors x that 
satisfy the following linear restrictions: 
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P I ( @ : :  x(N) = v ( N ) ,  

x(S) >1  v(s) (s r :o).  

Letting a0 := O, we conclude from the non-negativity of v 

PI(~O) ----- PI (O)  # 0. 

Moreover, Pl (1) is precisely the (usual) core of  the game (N, v). 
Let 

al := max{a E R l&(a)  # 0}. 

If  al = oo, we have v(S) = 0 for all S ~ 5%. The nucleon P* = P*(N, v) of t h eg am e  
(N, v) is then defined to be the polyhedron 

P* := Pl(C~0) = {x �9 •g [x(N ) = v(N),x > 0}. 

Otherwise, i.e., if al < cx~, let Szl denote the set of coalitions S c N that corres- 
pond to "forced equalities" at level a = al, i.e., 

5:1 := {S r 500 Ix(S) = a~v(S) for all x �9 Pl(al)}. 

Now assume that ~(a) ,  aj, and ~ j  have been defined for j = 1 , . . . , i .  Then let the 
polyhedron P~+l (a) be defined by the linear constraints: 

Pi+l (a ) : :  x(N) = v(N), 

x(S) =  lv(s) (s �9 a:,), 

x(S) ~- O~iu(S ) (S �9 ~ i ) ,  

x(S) ~ o~u(S) (S r ~ 0  U ' ' "  ~.J ~ i )  

and set 

0~i+ 1 : =  max{c~ �9 I # 0}. 
If  ei+l = oc, then the nucleon of (N, v) is defined to be 

p* : =  P i (~ i )  ~-- P/+l(0~i). 

Otherwise, i.e., if ~i+~ < ec, set 

5:i+l := {S ~ 5% tS-.. U 5:; Ix(S) = a~+lV(S) for all x �9 P~+l(~i+l)} 

and continue. 
Apparently, this inductive procedure will stop after a finite number of  steps with 

OCk+ 1 ~- (30 as soon as 

v(S) = 0 for all S r 5% U-.-  tA 5~ 

Summarizing, the nucleon is obtained by successively computing 

0 : ~0 < ~1 < ~2 < " ' "  < r < ~k+l : 00~ 

P0(0) D Pl(al) D P2(a2) D . . .  D P,(ak) = P*. 
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Example. Let N = {1,2}, v(N) = 1, and v(S) = 0 otherwise. (This is the simplest case 
of  a matching game on the complete graph K2 with unit edge weight.) Then 

P* = {(Xl,X2) E E2 ix 1 +x2 = 1, xl,x2 ~ 0). 

This example shows that the nucleon does not necessarily consist of a single vector 
x* E EN. However, if {i} C_ 5Qo U . . .  U 5ek holds for all i E N, then the nucleon P* is a 

singleton. Indeed, in the latter case, the value xi = x({i}) is then prescribed at a fixed 
value for every x E P*. In particular, P* will have cardinality one if v({i}) > 0 for 
every i E N. 

As is the case for the (additive) nucleolus, there is an alternative definition of the 
nucleon in terms of "relative satisfaction". Given a game (N, v) and a vector x E EN 
with x(N) = v(N), define for every coalition S ~ 5Po the satisfaction ratio via 

f x(S)/v(S) if v(S) > O, 
o~(x~ S) 

oe if v(S) = O. 

The relative satisfaction vector ~(x) is obtained by ordering the 2 n - 2  satisfaction 
values c~(x, S) in a non-decreasing sequence. 

Proposition 2.1. The nucleon of  the non-negative game (N, v) is the set o f  all allocation 
vectors x E EN+ that lexicographically maximize the satisfaction vector ~(x). 

We omit the straightforward proof  of  the proposition. A direct consequence is the 
following proposition. 

Proposition 2.2. (/) I f  the value v(N) of  the grand coalition is increased to b(N) = cv(N) 
for some c > 0 (and all other values remain the same), then the new nucleon equals c 
times the original one. 

(ii) I f  a game v is modified to ~ = cv for some c > O, then the new nucleon equals c 
times the original one. 

Proof. The map x ~ cx is a bijection between allocations for the game (N, v) and the 
modified game (N, ~). The mapping leaves the relative ordering of the satisfaction 
ratios invariant, which implies the proposition. [] 

The first part  of  Proposition 2.2 immediately implies that the nucleon is monoto-  
nic in the following sense: I f  v(N) increases to 9(N) (with all other values v(S) un- 
changed), then for each x in the nucleon of v there exists an ~ in the nucleon of 
such that ~/> x. Increasing the value of a proper subcoalition, however, need not re- 
sult in an increase of  all individual allocations: if v(1) is raised to 2 in the example of  
Section 1, player 2 will receive less than before. The nucleon relates to the multipli- 
cative e-core in the same way as the nucleolus to the additive e-core. In particular, the 
nucleon and the nucleolus both lie in the core if the latter is non-empty. Because the 
core of  an additive game is a singleton, we observe the following property. 



202 U. Faigle et aLI Mathematical Programming 83 (1998) 195-211 

Proposition 2.3. The nucleon of a non-negative additive game equals the nucleolus. 

As a final remark on the relation between nucleon and nucleolus, recall that the 
nucleolus is covariant with strategic equivalence of  games: 

Let v: 2 N -+ R be the characteristic function of  a game, fl: 2 N --+ R an additive 
game, and c E R a scalar. 

If  x is the nucleolus of the game (N, v) then the game (N, cv + fl) has nucleolus 
cx + fl', where fl' is the restriction of fl to the singletons. This property is certainly 
not shared by the nucleon unless fl = 0 (Proposition 2.2 (ii)). In fact, the general idea 
of  "strategic equivalence" contradicts in some sense the basic motivation behind the 
nucleon that the gain should be distributed according to the relative values of the 
subcoalitions. Part (i) of Proposition 2.2, which generally is false for the nucleoltls, 
marks the distinction. 

Note that our original "algorithmic" definition of  the nucleon P* does not provide 
an efficient way of  computing a vector in P*. Indeed, the sheer computation of  e~ in 
the way suggested by the definition means to solve a linear program with an expo- 
nential (in n) number of  constraints. The question, therefore, arises whether P* 
can be efficiently determined at all for interesting classes of  games. We give a positive 
answer to this question for the special class of  matching games in Section 4. 

3. Computational aspects 

Recall that the nucleon P* = Pk(ek) consists of  all vectors x that satisfy the linear 
restrictions: 

Pk(a,) :: x(U) = v(N), 

x(S) =  qv(s) (s 

x(s)  =  ,kv(s) (s  
x>~O. 

The number k in the preceding definition of  the nucleon P* may, in general, be 
exponential in n. Intuitively, this can happen when all "new" equations 

x(S) = (s s<) 

are already implied by the previous equations for S E 5% t_J �9 �9 �9 L0 5:i-i. Then ai > ~i_1 
while dimP,(=i) = dimP~_l (~i-t). We want to derive an iterative computational pro- 
cedure for P* that avoids steps that are redundant in that sense. We will show that P* 
can be found in at most n iterations. 

For  any 5: C_ 2 u, denote by {5 p) the span of  5*', i.e., 

(5:) := {T C N l~r ~ lin(~s IS ~ 5:)}, 
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where ls denotes the (0, 1)-incidence vector of S c_ N and lin(.) denotes the linear 
hull operator, i.e., for X C_ ~", 

l in (X)={s  

With this terminology, we may describe P* equivalently via 

P*::  x(N) = v(N), 
x(S) = ~v(s) (s ~ ~t  \ (~o)), 

4 s )  = ~ : ( s )  (s e ~ ,  \ ( : o  u . . .  u :~_,)) ,  
x~>O. 

This representation of P* suggests the following iterative computational procedure: 
Let 3--0 := {0, N} and define for fl/> 0 the polyhedron Q1 (fl) via 

Q,(fl) :: x(N)=v(N),  
x(V) >i fly(T) (T f[ 5-o). 

Note that for fl = 1 - e, Ql(fl) equals the multiplicative e-core. Now set 

fll := max{fl E ~lQl(f l )  r 0}. 
If fit = oo, then 

P* = {x ~ ~ Ix(N) -- v(N)}. 

If fl~ < oc, let 3--t denote the set of coalitions that correspond to forced equalities at 
level fl = fit (thus g/-'t = ~ l ) .  

Now, assume inductively, that Q:(fl), flj, and J ' j  have been defined f o r j  = 1 , . . . ,  i. 
Let then the polyhedron Qi+l (fl) be presented by the constraints: 

Qi+,(fl) :: x(N) = v(N), 
x ( T )  = fllv(r) (T e J - l ) ,  

x(r) =/3:(r) (r ~ : , ) ,  

x(T) >~ fly(T) (r  r (J-o U . . .  U 5",)), 
and set 

fl,+l := max{fl E ~lQi+l (fl) ~ 0}. 

If  fli+l = oo, then P* = Q~(fli) and we stop. Otherwise, define J i+ l  to be the set of 
coalitions T that become tight at level fl = fl~+t- 

3"i+1 := {T ~ (3-0 U. . .  U 5"i) Ix(T) = fl,+tv(T) for all x E Qi+l(fli+t)}. 

From the alternative description of P* above, it is apparent that the sequence (Q~(fl~)) 
is a subsequence of (P/(ai)) and that (fli) is a subsequence of (~). 
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There is another interpretation of the collections (Y-0 U �9 -. U Y-i) occurring in the 
description of Q~(/~) via linear inequalities. This interpretation will be particularly 
useful in the algorithmic analysis of the nucleon in Section 4. 

Let Q c_ EN be a set of vectors. We say that Qfixes the set S c_ N if x(S) =y(S)  
holds for all x,y  �9 Q. For i = 1 , . . . ,  l, let us define 

~ i  := {S C_ N IS is fixed by O~(flg)}. 

Lemma 3.1. For i = 1 , . . . ,  l, c~  i -~ (~ -0  U " " U ~ - i ) .  

Proof. By definition, we have 

Oz(/~,.) : : x(N) = v(N), 

x(r) =/~,~,(T) (T �9 Y,),  

x ( T )  = j~iu(T) ( T  �9 ~'-z), 

x(r) >//~,~(T) ( r  r (9-o u . . .  u ~,)). 

Moreover, each of the inequalities for x(T), T f[ (J-o U . . .  U J-i}, can be made strict. 
Hence, by taking convex combinations, we see that all these inequalities can be made 
strict simultaneously. Thus the relative interior QT~ (fl~) is described by the constraints 

~?i(fli) : : x(N) = v(N), 

x(T) = filv(T) (T �9 ~-1), 

x(T) =/~,~(7) (7 �9 Xz), 
z(T) > ~z,(r) (7 r (Yo U... U Xz}). 

It is now clear that the set of coalitions fixed by the relative interior Q~Z (fli) is precisely 
{3"0 U. . .  U 9--z). Hence Y~ c_ (Y0 U . . .  U.Y-i). The converse containment is 
straightforward. [] 

Returning to the complexity of computing the nucleon, note that in each iterative 
step in the computation of the sequence (Qi(flz)) equality constraints are added that 
are independent from the previous equality constraints. Hence we conclude for the 
dimension 

dimQi+l(fli+l) < dimQ,-(fli), 

which implies that P* is determined after at most n iterations. 
In each iteration, the parameter fli+l is the optimal solution value of a linear pro- 

gram with the n + 1 variables fl, x l , . . . , x , .  Hence the nucleon P* can be determined 
by solving n linear programs successively. This direct procedure, however, will gene- 
rally be not efficient because of the exponential (in n) size of the linear programs in- 
volved. Because we are interested in efficient algorithms for the computation of the 
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nucleon P*, we first want to demonstrate that the parameters fli do not grow "too 
big" in the course of the iterative procedure. 

Recall that the size ((r)) of a rational number r is defined to be the number of bits 
in a binary representation of r. Then we observe the following proposition. 

Proposition 3.1. Let fll < "'" < fll and g - l , . . . ,  J ' l  be given as above (l <~ n), and let 
9-" := Y0 U . . .  U ~--l. Then the size ( (fli) ) o f  each fli is bounded by a polynomial in 
n, I:1, and m a x r ~ : ( ( v ( T ) ) ) .  

Proof. It follows directly from the definition that ( i l l , ' ' "  ,ill) is the unique 
lexicographically maximal vector (b l , . . . ,  b/) such that the linear system 

x(N)  = v(N), 
x(r) = b v(r) ( r  

x(T) = b:(T) (r  
x>~O 

has a solution x E N N. Hence we can obtain ( i l l , - - . ,  fit) from the unique lexico- 
graphically maximal solution (b~,. . . ,  b~,x~,...,x~) of the above system. 

The latter, however, represents a vertex of the feasibility region. Standard results 
from linear programming, therefore, imply that each component is polynomially 
bounded in the size of the system (see, e.g., [13]). 

The size of  the linear system is bounded by 

+ ma:((v(r)))). I :1) ,  

which proves the proposition. [] 

4. The nucleon of a matching game 

A matching game is defined on the graph N = (N, E) with an edge weighting 
w : E ~ R. The characteristic function v is given for each coalition S C_ N via 

v(S) = value of  a maximal weighted matching in ~]s ,  

where Nls is the subgraph of N induced by S. 
Since a matching of maximal weight will never contain a negative edge we may 

assume w.l.o.g, that the weighting w is non-negative. Adding edges with weight zero, 
if necessary, we can similarly assume that ~ is the complete graph 32,. 

Recall from Section 3 the inductively defined polyhedra Qi(fl) and the interpreta- 
tion offered by Lemma 3.1: 
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Oi( f l )  : : x ( N )  = v ( N ) ,  

x(T) = fllv(V) (T E Y' ,) ,  

x(T) = ~,_iv(T) (T E J i - i ) ,  

>1 (7" r u . . ,  u 

Our aim is to show that the defining equations and inequalities for Q~(fl) can be re- 
placed by a polynomial number of equations and inequalities if we want to compute 
the nucleon of a matching game. Essentially, it will turn out that we may restrict our 
attention to the value an allocation x takes on one- and two-element coalitions. Un- 
fortunately, however, this does not mean that the defining inequalities for Q~(fl) are 
obtained by simply retaining the constraints corresponding to the one- and two-ele- 
ment coalitions. In order to obtain a polynomial algorithm, we have to proceed in a 
more subtle way. 

While Lemma 3.1 is valid for arbitrary games, we will from now on assume that v 
arises from the matching game on f# relative to the edge weighting w. We denote by 
sV~ resp. 8i the one-resp, two-element coalitions in ~-~. We will usually think of  JV; 
as a subset of  N and of g~ as a subset of E. 

Proposition 4.1. For i = 1 , . . . ,  I, ~"i ~ (J-O U o~i U "/[/'i). 

Proofl Consider any S E ~'-i- Let M be a matching of maximal weight in aJ[s, i.e., 
v(S) = w(M). Because a3 is a complete graph and w is non-negative, we can also 
assume that M is a maximum cardinality matching, i.e., S = N(M) if IS I is even and 
S = {t} U N(M)  for some t E N if 1SI is odd. (For  any set A of  edges, we denote by 
N(A) the nodes of  f# covered by A.) We will distinguish two cases. 

Case 1: M C_ gi. If  IS[ is even, then S E (8i) C_ (~"0 U ~i U J~/'i)- If IS[ is odd, then 
S E ~ ' ;  and M C _ f f ;  imply { t } = S \ N ( M )  E~'~. So t E J V ,  and, therefore, 
S = t U N(M) E (~--o U ~ U JV'~). 

Case 2: There exists some e 6 M \ g~. Consider S' := S \ N(e). If S' E ~g, then 
S E Y~ C_ .,~,. implies that also N(e) E ~ -  must hold, contrary to our assumption 
on e. So S' ~ ~ and, in particular, S' ~ (Y-0 U . - .  U ~~-l).  

By the definition of  Qi(fll), we know for all x E Q~(/~i), 

x(S') >1 

On the other hand, we have e ~ (N0 U. - .  U ~ - 1 )  and, therefore, for all x E Q~(/3i), 

x(e) >1 fliw(e). 

Since S E J-i, we furthermore know for all x E Qi(fli), x(S) = fliv(S). 

Summarizing, we conclude for all x E Qi(fli), x(e) = fliw(e), i.e., e E o~, contrary to 
the choice of e. []  
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Proposition 4.1 calls our attention to the sequences 

O = W 0  c_ ~/'i c . . .  c_ ./V~. 

In each iterative step (i ~ i +  1) some edges e E gi+l \g~ become fixed by 
Qi+l(fli+l) to some non-negat ive  value c(e), say, until eventual ly  all edges with 
non-zero  weight are fixed. 

Similarly, some  nodes  t �9 ./V'i+l \ JV'~ are fixed at some value c(t) >10. The nucleon 
P* is determined by 

P*::  x(N) = v(N), 

x(e) = c(e) (e �9 d'l), 

x(t) --= c(t) (t �9 JV't), 

x>~O. 

Furthermore, as a consequence of Proposition 4.1, we can describe Qi(fi) via 

Q,(fl) : : x(U) = v(S), 

x(e) = c(e) (e �9 gi-l), 

x(t) = c(t) (t �9 Jff,_,), 

x(V) >1 [Sv(T) (T r (Jo U e,_, 0 X,_,)). 
Our next goal is to replace the exponentially many inequalities in the preceding 

description of Qi(fl) by polynomially many inequalities (cf. the description of 
Q~[(fl) below). 

For i >~ 1 and fl t> O, let ffi-i = (N,g~_l) be the subgraph containing only those 
edges that are fixed after the iterative step i - 1. For e �9 E, let cSi_l \ e denote the 
graph obtained from (qi-1 by removing the two endpoints of e and all incident edges. 
Similarly, for t �9 N, let aJ~_i \ t be the subgraph obtained from ff~_~ by removing t 
and all incident edges. 

Relative to the original weighting w: E ~ [R and the (known) weighting 
c: g~-i ~ ~+, we define a new weighting w~: g~-i ~ ~ on Ng-1 by 

we(f) : = / ~ w ( f )  - ~ ( f ) .  

For e �9 E, let M~ denote some fixed (possibly empty) matching in ff~_l \ e of max- 
imal weight with respect to the weighting w~. Let S~ := N(e) U N(M~) be the asso- 
ciated coalition. Similarly for t �9 N, denote by M} some fixed matching of 
maximal weight with respect to w~ in the graph ffi-i \ t and let S~ := {t} U N(Mt~) 
be the associated coalition. 

Define the polyhedron Q~(fl) by 

Q*(fl) :: x(N) = v(N), 
~(e) = c(e) (e e <_~), 
x(t) = c(t) (t e W~_,), 

x(S~) > ~v(s~) (e r e,_,), 

x(S'~) > ~v(s'~) (t ~ w,_,). 
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Proposition 4.2. Oi(fl) = QT(fl) for  all fl >10. 

Proof. By the choice of M~, we have N(M~) E (8i-1). So e ~ gi-x, i.e, e ~ . f i -1,  
implies S} r J~i-l. In particular, e r e~i_l yields S} ~ (J-0 U gi-1 tO Jgi-1). Therefore,  
all the inequalities occurring in the definition of  Q* (fl) also occur in the description of 
Qi(fl). A similar argument holds for t ~ -#'i-1. Thus 

Q~(fl) c_ a~(fl) for allfl~>0. 

Conversely, let x E Q;(fl) be arbitrary and let S ~ (Y-0 U g~_~ u ~Vi-1). We show that 
x(S) >~ fly(S) holds, which implies x E Oi(fl). 

Let M be a matching of maximum weight relative to w in ff[s. So v(S) = w(M).  
Assume again that M is of maximal cardinality, i.e., S = N ( M )  or S = t tO N(M) ,  
depending on whether ISI is even or odd. 

Case 1: M C_ g~-l. Then S = t t o N ( M )  for some t ~ ~ i - l  (otherwise, we would 
have S E (J~ tO ~ i - l ) ,  a contradiction to our assumption on S). Since x E Q~'(fi), 
we know that 

x(S~) >. ~v(s~). 

Hence 

x(t) >i ~(s'~) - x(M'~) 
>~ flw(Mt~) - x(Mt~) 

= w~(Mt~) 

> w~(M) 

= flw(M) - x (M)  

= flv(S ) - x(M).  

Thus 

x(S) = x(t) + x (M)  >1 fly(S). 

Case 2: There exists some e E M \ gi-~. First observe that x ~> 0 holds for all 
x E Q~ (fl). Thus it suffices to show that x(M)  >>. f lw(M) holds. 

Let U := M n 8i-1 and V := M \ U. For  each e E V, we have x(Se~) >>. flv(S~). So 

x(e) >. &(se~) -- x(M~) 

>1 flw(e) + flw(Me~) - x(M~) 

= flw(e) + w~(M;). 

Summing up the above inequalities for all e E V and using w~(M~)>~ 0 and 
wa(M~) >~ wp(U),  we see 

x(V) >1 ~w(V) + w~(U) = ~w(V) + [~w(U) - x ( u ) .  

Thus 

x(M) >. ~(w(V) + w(V)) = ~o(M). [] 
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We have achieved our goal. Given fl >/0, we are able to represent Qi(/3) = Q~(f) 
with polynomially (in n) many equations and inequalities. Note that computing the 
coalitions S~ and S} amounts to solving maximum weight matching problems with 
respect to the weighting w e, which can be done in polynomial time (see, e.g., [14]), 
provided the weights w e have polynomial size. One difficulty, however, remains. 
The coalitions of type S~ and S~ in the description of QT(f) very much depend on 
the value of  f .  The idea, therefore, is to compute 

/~ = max{f  I Q;(/3 ) # 0} 

by binary search. 

Lemma 4.1. For i = 1 , . . . , l ,  

1/n ~ fli <~ v(N) /wmin =:M, 

where Wmin is the smallest non-zero weight w(e), e E E. 

Proof. By definition, 

Q~( f ) : : x (N)  = v(N), 

x(e) >~ flw(e)(e e E). 

The vector x =  (v(N)/n , . . . ,v (N) /n)  shows that Q*l(1/n) is non-empty. Hence 
1In ~< f l  < " "  < fit- (In fact, one can show that 2/3 ~ fll holds (see [5])). 

On the other hand, each 3"g contains at least some coalition Tg, say, with v(Ti) > 0 

(otherwise fli = oc). But then x(T~) = fliv(Ti) >~ fliWmin implies 

fli ~x(Ti ) /Wmin  ~ x ( N ) / w m i n  = M .  [] 

Now we are in the position to state our main result. 

Theorem 4.1. The nucleon P* of  a matching game on the graph ~ = (N,E) with edge 
weighting w can be computed in time polynomial in n = [N[ and the size ( (w) ) of  w. 

Proof. Let s := max{((w(e))) [ e e E}. We know from Proposition 3.1 that each 
((fli)) is polynomially bounded, say ((fli)) <<- p(n, s), for some suitable polynomial p. 

It remains to deal with the size of c : (St O Wl)  ---* ~. 

If  e E 8~ \ gi-1, then x(e) = c(e) is determined by the equations 

x( S~j) = fliv( S~,) 

and the (known) values that x takes on g0 0 .. �9 t2 ~'i-t and JV0 U -.. U ~AZ~_l. There- 
fore, the nucleon P* may alternatively be described via 



210 U Faigle et al. I Mathematical Programming 83 (1998) 195-211 

P*: :  x(N) = v(N) 

x(Se.81 ) = fll u(S~l ) (e E gl),  

x(S;I ) = fllV(S~l ) (e E J~/*l), 

x(Se~,) = fl, v(S~,) (e E e,), 

x(S},) = fl,v(S},) (e E .A/,), 

x>~O. 

This system has size polynomial in n and s. Consequently, any basic solution x of 
that system has size polynomial in n and s. But each basic solution x fixes 
c(e) = x(e) and c(t) = x(t) for every e E & and t E Y l .  Therefore, the size ((c)) of 
c is polynomial. 

The latter fact ensures that we can successively compute f l~, . . . , /~ in time polyno- 
mial in n and s by applying binary search to determine/3; in each iterative step. []  

How large can the nucleon of a matching game be? Obviously, if ~# consists of 
exactly one edge e = (1,2) with weight w(e) > 0, the nucleon is the line segment 

P* ---- {xE U+ Ixl +x2 = w(e)}. 

However, this is about the only case where the nucleon is not a singleton. 

Theorem 4.2. I f  ff = (N, E) contains at least two edges with positive weight, then the 
nucleon P* of  the associated matching game is a singleton. 

Proof. Observe that the nucleon P* fixes each coalition S with v(S)> 0. If  
e = (s, t) E E has positive weight w(e) > 0 and u E N is not an endpoint of  e, then 
P* fixes both {s, t} and {s, t, u}. Hence P* fixes each u r {s, t}. Thus, if ff has two 
distinct edges el and e2 of positive weight, it follows that P* fixes every node 
u EN.  [] 

Calculating the nucleon is quite a lengthy (though polynomial) affair even for 
non-trivial matching games with a relatively small number n of  players as the algo- 
rithm requires the solution of at least n linear programs. Therefore, we refrain from 
presenting an explicit numerical example here. Finding a practically efficient algo- 
rithm for calculating the nucleon is still an open problem. Note, however, tha t  Faigle 
and Kern [5] exhibit ageneral bound ~l /> 1 - 1/k, where k is the length of  the small- 
est odd cycle with positive edge weights. This implies that the nucleon will allocate to 
every coalition at least 66% of its value (and, if the graph is triangle-free, even at least 
80%). 
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