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Abstract 

In this paper we address a generalization of the Weber problem, in which we seek for the 
center and the shape of a rectangle (the facility) minimizing the average distance to a given set 
(the demand-set) which is not assumed to be finite. Some theoretical properties of the average 
distance are studied, and an expression for its gradient, involving solely expected distances to 
rectangles, is obtained. This enables the resolution of the problem by standard optimization 
techniques. �9 1998 The Mathematical Programming Society, Inc. Published by Elsevier 
Science B.V. 
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1. The model 

In the classical Weber Problem there exists a finite set of  demand points that  re- 

quest some kind of  service, and the problem is to locate a new point, called facility, 

minimizing the weighted sum of  distances to the demand points, see [1]. 

I f  the demand set is not  discrete or  the facility has non-void  area, then the prob-  

lem is the Regional  Weber  Prob lem [2,3]. The problem with regional demand has 

been addressed in [4,5], while the regional server case is studied in [6]; other  papers 

such as [7,8] are devoted to the evaluat ion o f  the expected distances to some regions. 

The problem of  locating regional facilities has been previously addressed, but  a new 

insight can be added to it if the shape o f  the facility is considered to be a decision 
variable. This case appears, for example, when one wants to locate an industrial park  

in a city or  a chip in an integrated circuit. These examples show that, as a conse- 

quence o f  technological or infrastructure constraints,  modelling the facility to be lo- 

cated as a region may be more  accurate than modelling it as a single point. 
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The classical approach to solve the location of  regional facilities consists of repla- 
cing each region by its centroid. Nevertheless, Aly [9] and Vaughan [8] have shown 
that this methodology is not satisfactory, since it strongly depends on the norm in 
use, (for example, usually good for the Euclidean norm and not so good for  the ll 
norm), and the shape of the demand region. In addition what is even worse is that 
through this methodology there is no way to incorporate the shape of the region 
as a decision variable into the problem. 

In this paper we address the problem of determining the location and shape of  an 
oriented rectangle, that is, a rectangle parallel to the axes of  the coordinate system. 
The goal is to minimize the expected distance to the demand, distributed over a region 
A C ~" according to a probability measure p, when a lower bound k/> 0 is given for 
the volume of  the rectangle. If the location of  the server is uniformly distributed over 
a set S, then the expected distance between the demand and the server is given by 

where ~ is a gauge, see [10], that measures the distance between two points and p is 
the Lebesgue measure in ~". The use of  gauges instead of  norms as a distance mea- 
sure is discussed in detail in [1 I]. 

To formulate the problem we need to introduce some notation. Given c E ~" and 
n E ~+ consider the rectangle 

RIc,  = 1-I[c ,  - c, + 
i = 1  

Under the above assumptions, the problem can be formulated as 

min RA (c, ~) 
(c.~) 

n 

s.t. 2nH~i>/k  , (1) 
i=l 

where RA(c, ~) is the average distance between A and the rectangle R(c, ~), i.e., 

1 
-RA(c,c~) -- 2" ~i=i c~i fa f(c,~) 7(x- 

2. Properties of  the average distance to a rectangle 

2.1. General properties 

First of all, we must note that Problem 1 is well defined if and only if E(A) exists 
and is finite, see [12], E(A) being the mathematical expectation of the random vector 
A. Thus, hereafter, we impose this condition. 
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For a given set S consider 

S(C, 00 = {(Cl .at_ 0{ISI,.. " ,C a ._~ O~nSn) ~ ~n: ( S I , . . .  ,Sn) ~ S}.  

In particular, if S is a sphere centered at the origin, then the family obtained, defines 
all the ellipsoids with symmetrical edges parallel to the coordinate axis, while taking 
S as the unit cube centered at the origin, gives all the rectangles with sides parallel to 
the coordinate axis. 

The following result holds. 

Theorem 1. Given a compact set S contain&g the origin in its interior, the function 

l fa / , ( x -a)dxdp(a)  (c, ~) E R" x ~+ ~ ~(S(c, ~)) (~,~) 

is convex. 

Proofi The function 7 : x E R ~ ~ y(x) is a gauge, thus convex. For a, u fixed denote 
u. ~ = (ulal,...,u,a~). The function ( c , a ) ~  c+ u. ~ - a  is linear. Thus (c,a) 
y(c + u- a - a) is convex. 

Integrating, one concludes that 

(c,~) ~--~ -~(-(-~ / 7(c + u. ~ - a) du (2) 

is convex. Now 

1 /  _ 1 / 7(x_a)dx  
#(S) 7(c + u. a - a) du Iz(S) I-Ii~l c~, (c,~) 

_ 1 / y(x - a) dx 
~(S(c, a))(c,~) 

and integrating again, one concludes that the function 

l / / 7(x-a)dxdp(a)  (c, ~) ~ ~(S(c, ~)) (~,~) 

is convex. 

n 1 Taking S as H i = l [ -  , 1] in Theorem 1, one has the following 

Theorem 2. The function -RA is convex. 

Corollary 3. Problem 1 is a convex program. 

Proof. An equivalent formulation of  Problem 1 is 

min RA(c, a) 
(c,~) 

k 
1~<0, a~>0, cE0~"; 

s.t. 2n I-[/=l 0~i 
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in this formulation both the objective function and the constraints are convex. Thus 
the problem is a convex program. 

Theorem 2 shows that Problem 1 is a convex program, thus solvable by a variety 
of  algorithms available for convex programs in the literature, see [13], as soon as one 
can evaluate the average distance to a rectangle, see [12,7]. 

Remark 4. The convexity properties of the objective function enable the resolution of  
the problem also under convex constraints. An interesting special case of this 
problem is the following: the location o f  a rectangle with area at least o f  k units fully 
inside a convex set. This can be easily written as convex constraints. Since we have 
already shown that the objective function is convex this is also a convex program. 

2.2. As a function o f  the shape 

The functional expression of the expected distance to a rectangle is only known 
for some particular gauges, see [14,7,8]. For  this reason, the use of an explicit form 
of the objective function is a technique unavailable in a general approach to this 
problem. This fact makes the study of the problem a hard task. This section is devot- 
ed to develop further properties of the average distance function to a rectangle in or- 
der to ease the practical resolution of  the problem. 

Observe that Rx(c, ~) equals R0(c - x, e), Where 0 is the null vector in N". If the 
demand A is a degenerate random vector (in short A is degenerated) at the point 
x, this means A is equal to x with probability 1, the expected distance reduces to 

1 f 7(r - x) dr -Rx(c, ~) - 2" I-[in=l ~ii (c,~) 

-- 2 n l-I" 7(c + r - x) dr 
1 .I.i= 1 (0,~) 

~1 $tn 

/ . . . .  drl  
2.1- I /= l  c~i 

where r = (rl,..., r,). 

If A is not degenerate then the expected distance between R and A is given by 

-RA(c, ~) = .L" "Ra(c, a) dp(a). 

For  simplicity in the expressions the following notation is introduced. Let 

V(c,a) = c +  [ - a ~ , ~ l ]  x . . .  • { - a , }  x . . .  x [ -  ~ , , ~ , ] ,  

L ; ( c ,  a )  = c -4- [ - a l ,  a l ]  •  • {0~,} x . . .  • [ - -  an ,  an] 

be the facets of  R(c, c~), for i = 1 , . . . ,  n. Or equivalently, 

t ; ( c , ~ )  = R ( c , a )  n { x  E An: x i = c i -  a i}  , 

L+(c, a) = R(c, c~) N {x E ~": xi = c~ + a,}. 
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First of all, we study some properties of the objective function with respect to the 
variable e. 

Theorem 5. The function -R~ & non-decreasing and differentiable with respect to each cq, 
the partial derivatives being given by 

ai 2 ' 

Proof. The proof will be made for cq, for the remaining indices it runs analogously. 
First of all, the partial derivatives are calculated. By definition one has 

1 f y(u - x) du -Rx(c, a) - 2" 1--[i~=, ai (c.=) 

_ 1 f 
--:t I 

Taking partial derivatives 

~n 

f y(c + u - x ) d u  . . . .  dul. 

0 Rx(c,~)= 0 1 
0cq ~ 2"l-r" . . .  y (c+  u - x )  du , . . . du l  

11i=1 0~i 

and taking into account that 7 is continuous, one has 

O I ( i ~ .  y ( c + u - x ) d u  . . . .  du2 
1Rx(c, c~) - 2" uin=l o[ i (c,~) 

/ ) 1 
+ 7(c + u - x) du . . . ,  du 2 n " 7(u - x) du 

= --0~ ( ~x(L~( (c' c@ + -dx(L{ (c' c@ - -~x(c' ~) 

Showing that Rx is non-decreasing with respect to c~ reduces to show that the partial 
derivatives, with respect to each cq, are non-negative. 

Indeed, for i = 2 . . . .  , n, let ui be in [-c~, c~i], 2 be in [0, 1] and take 2' = 1 - 2. Con- 
sider the convex combination 

/~"(C + (--0~1, U 2 , . . .  , Un) -- X) -~- ~.(C + (0~1, U 2 , . . .  , b/n) - -  X) .  

Since 7 is convex then one has 

?(,~'(c At-(-0~1, u2,... ,Un)-  X) -~- 2(C -~-(~1, U2,... ,Un) -- X)) 

< 2'7(c + ( - ~ ,  u : , . . . ,  u,) - x) + 27(r + (a~, u2 , . . . ,  uo) - x) 

and integrating with respect to 2 
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1 

f ~(~'(C'~-(--O~,,U2,...,Un)--X)-IV /*(C"t- (O~I,U2,...,Un) --x))d). 
0 

I 

~ f (~.'7(C-t-(-Oq;u2,...,un)-x)-t-A,(C-t-(Oq,u2,...,un)-x))d).; 
0 

then making the change of variable u~ = - :q  + 22el and integrating 

1/ 
2~t 7(c+ u-x) dul <~ �89 + (-cq,u2,.. . ,u,) -x )  

+7(c  + (~,,, u ~ , . . . ,  u,)  - x)}. 

Now integrating with respect to the remaining ui and dividing by 2" 1-[i~__l ~i 

�9 1 ~tn 

/ . . . . . .  an, 
2~12" 1-I~i _~, -~. 

i = I  

~< 2 2" r-I" . . .  " / ( c  .q!_ (--~l, U 2 ,  �9 �9 �9 , Un) -- X) du . . . .  du2 
1 l i = l  ~ i  

- : ~ 2  - - : tn  

~2 :ln 

' / . . . .  
+ e 2. 1-I;~l :~; 

or equivalently, 

1 -Rx(c,~) <<. 4@l(-d.~(L[(c,~)) +3~(L~'(c, 7))), 
2~1 

that is to say 

b-~ RZ(c, ~) >/O. 

Thus R~ is non-decreasing with respect to el. 

The above theorem can be generalized to the case in which the demand is regional. 

Corollary 6. The function -RA & non-decreasing and differentiable with respect to each 
~i, the partial derivatives being given by 

- ~, - ' + ~A (L;  (c, ~)) _ -d~ (c, ~ ) )  ~-~iRA(c,~) = I  ( dA(L[(c'~)) 2 

Proofi The function Ra is non-decreasing, since the integral operator is monotone 
and Rx is non-decreasing with respect to ~. 
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Theorem 1, Section 2, of [15] allows to exchange the integral and differential ope- 
rators, since Rx is convex, so that 

O~i-RA(c,c~)= fAO@i-R~(c,c~)dp(a) 

= 1 fA { d~(L~-(c, c~))+2 -da(LT(c' c~))_ da(c, c~)) dp(a) 

and the equality is proved. 

As a consequence, one has the following 

Corollary 7. The optimal solution for Problem 1 for k = 0 & some rectangle degenerate 
to a point. 

Thus Problem 1 with k = 0 becomes the standard Regional Weber Problem [2,12]. 
This result has been previously shown in [12,16] by a different procedure. Hereafter, 
we suppose that k is strictly positive. 

2.3. As a function of the location 

Now let us study the differentiability with respect to the location variable c. 

Theorem 8. The function Rx is differentiable with respect to each ci, the partial 
derivatives being given by 

~) 
2~g 

Proof. By definition 

Rx(c, c~) - 2, 1-j, ... 7 ( c + u - x ) d u  . . . .  dul 
1 I i = l  (~i 

--51 --~n 

Cl "b~tl - -X  l Cn 4-Otn --Xn 1 / / 
- -  . . . . .  7 ( u )  d u  . . . .  d u l .  

2 1-Ii=~ ~ 
c I --~t 1 - -X  I r  - - x  n 

The proof is analogous for each index. Then we take i = 1; differentiation in the pre- 
vious expression yields 
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O-~lR--~(c,~) 

( + v  ) 0 1 / .. 7(u) dun dul 
- -  n . . . .  

OCl 2n I-L=l ~i 
Cl -~1 -xI Cn -r -Xn 

1 2  n 1-'[7=10~i ( f T ( u ) d u , . . . d u z - / 7 ( u ) d u , . . . d u 2 )  
\ L? (c,~t)-x L l ( c , r t ) - x  

= -dx(L+(c, ~)) - ~ ( L ; ( c ,  ~)) 
2~ 

Again, in the case of regional demand a similar result is obtained. 

Corollary 9. The function -RA is differentiable with respect to each ci, the partial 
derivatives being given by 

~  rc,~,A, ~) = G(L?(c, ~)) - G(L;(c,  ~)) 
OC i 2ai 

Proof. Using the equality 

RA (c, c~) = f Ra(c, ~) dp(a) 

and taking derivatives, one has 

0 -RA(c,~)= 0 fNa(C,~)dp(a), 
o%5i 

since Rx is convex, the above-mentioned theorem of [15], enables us to exchange the 
integral and differential operators 

= f o~-Ra(C,~)dp(a) 
A 

f -d~(L+(c, ~) ) - -d~(LT (c, a) ) 
= ~i- dp(a) 

A 

_ ~ ( U ( c ,  ~)) - ~ ( L ; ( r  ~)) 
2~i 

which proves the corollary. 

Remark 10. The condition of optimality with respect to c is, from the above theorem, 

RA(c,o 0=0  i = l , . . . , n .  

This expression admits a remarkable interpretation: in the optimal rectangle the ex- 
pected distance to every pair of opposite facets must be equal. 

The convexity property enables us to extend the previous theorems. 
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Theorem 11. The functions Rx and-RA are differentiable. 

285 

Proof. By Theorem 25.2 of  [17] a convex function is differentiable if its partial 
derivatives exist and are finite. The partial derivatives of RA are given by Corollaries 
6 and 9, and are finite as soon as E(A) exists and is finite. Since this condition was 
taken as assumption, the result holds. 

2.4. Uniqueness properties 

Some conditions must be imposed in order to guarantee the uniqueness of the 
solution. 

Following [18], we recall that 7 is said to be a strict gauge or round gauge if its unit 
ball does not contain segments not reduced to a point. Recall that a segment is called 
degenerate if it reduces to a point. 

Theorem 12. I f  7 & a strict gauge, then the function -RA is increasing in ~. 

Proof. The proof is analogous to Theorem 5 and Corollary 6. One only needs to 
prove that Rx(c, e) is increasing in e and then take integral. Given e there exist non- 
collinear x, ( - e l ,  u2, . . . ,  u,) and (el, u2,..-., Un). Then V2 C (0, 1), 4 ' =  1 - 4 :  

- x )  + 2 ( ( e , , . 2  . . . .  , . n )  - x ) )  

< 2t~((--el,b/2,... ,un) --X) "~- 2'~((el,U2,... ,un) --X). 

Thus the first inequality of the proof  of Theorem 5 is strict. Since 7 is continuous the 
inequality holds strictly in a neighbourhood of such point. This enables us to assure 
that the strict inequality is kept after integration. Consequently ~Rx(c,  e) > 0. Thus 
Rx(c, e) and RA(c, e) are increasing with respect to e. 

Theorem 13. If3' is a strict gauge, then the function RA is strictly convex in the interior 
o f  its domain. 

Proof. Given x and e, there exists u such that x and ( u l e l , . . . ,  u,e,)  are not coUinear 
with 0, then (x, u) H 7((ulex, . . . ,  u,e,)  - x) is strictly convex. By continuity, there is 
also a neighbourhood of u where the non-collinearity holds. This guarantees the 
strict inequality of 7 regarding any strictly convex combination in a set of non-zero 
Lebesgue measure and this implies the strict convexity of the expected distance 
function. 

Theorems 12 and 13, together with the property of inf-compactness, enable us to 
obtain sufficient conditions for the uniqueness of  the solutions. 
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Theorem 14. I f 7  is a strict gauge, then Problem 1 has a unique optimal solution, 

3. Determining an optimal solution 

Using the monotonicity property of the objective function, in order to search for 
solutions of Problem 1 only the boundary of the feasible set has to be considered. 

Theorem 15. There exists an optimal solution to Problem 1 such that 
n 

2n I - [  ~i = k.  
i = l  

According to this theorem an optimal solution of Problem 1 can be obtained by 
solving the following problem: 

min RA(c, ~) 
(c,~) 

" (3) 
s.t. 2nI ' [cq=k,  c E R  n, c~>0. 

i = l  

This problem has a non-linear equality constraint. This converts it into a non-convex 
problem, increasing the resolution difficulty from a practical point of view. Hence, it 

n would be convenient to eliminate the constraint 2 ~ ]-Ii=l ei = k, as will be made below 
through its accommodation into the objective function. For this purpose consider 
the function R'A defined by 

R A : (c, o~') E x ~ -RA C, 0~1,... , O~n_l, lo ~ 

It is straightforward to show the following. 

Lemma 16. Let  f :  •m• ~ ~ R be a convex function, such that f ( x , . )  is non- 

decreasing and let g: Rk ~ ~ be convex. Then the function h: ( x , y ) ~ f ( x , g ( y ) )  is 

convex. 

Furthermore, i f  f (x, .) is increasing and f and g are strictly convex, then h is strictly 

convex. 

Theorem 17. The function R A is convex and differentiable. 

Proof. The function 

(( k)) c,  , n i 
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is convex and differentiable. Furthermore, the function (c, ,)  E ~" x ~_ H RA (c, a) 
is convex and increasing in ~. The composition of  both is, by Lemma 16, convex 
and differentiable, as we wish to prove. 

Using these results, Problem 1 turns out to be equivalent to 

rain R-' A (c, ~') (~,~') 

s.t. c E ~ " ,  ~ ' > 0 .  
(4) 

! Corollary 18. The part&l derivatives of  R-' A with respect to each ~i, are given by 

0 - ,  1 (--dA(L+(c,u)) +3~(L~-(c,a)) --dA(L+(c,~)) '~i RA(c'~') = 2~--'~i 

-d~ (L; (c, ~))). 

Proof. The function R' is differentiable. Thus 

O-- t  ~R~(c,~ t) ~-~(c ,~)  0~. 0 = ,  . = + ~ ~ K~ ~, ~) 

= ~____~ _ 1 k 0 -RA(c,~).  
~n r'rn-I OqO~n RA (C' (X) O ~ i Z  H j = l O ~ j  

By Theorem 6, one has 

~ R  - ,  .(c, or = ~l ( d-A(Li+ (c' ~) ) +-dA(Lf (c' ~) ) -- -da(c, =) 

~ n "rTr n --  I 
1 

~i2nYXnj-~c~j k 2 

= 1_  (--dA(L+(c, ~)) + -dA(L;-(c, ~)) - dA(L+(c, ~)) - -dA(L;(c, a))). 
2a~ 

Remark 19. Observe that the partial derivatives of R' can be evaluated, with respect 
all its variables, evaluating only the expected distances to the sides of  the rectangle. 
This means that we can solve the problem in a n-dimensional space evaluating only 
the expected distances to (n - 1)-dimensional rectangles. From a practical point of  
view, this reduces drastically the total amount of computation required to solve the 
problem. 

To solve Problem 4 one only needs to solve the equations 

O-- t  
~cRA(c, oO=O, i = l , . . . , n ,  

~,.R'a (c, ~ ' ) =  0, i =  1 , . . . , n -  l. 
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Or equivalently 

"dA(L +)--dA(LT, )=O,  i =  1 , . . . , n ,  

- d~ ( L , )  - -d~ ( L 2 )  = O, 

Furthermore, 

2~ (Li+ ( r ~)) - ~ ( V ( ~ ,  ~)) = 0, 

-d~(L+, (c, ~)) - -d~(L+~ (~, ~)) = o, 

F_. Carrizosa et al. / Mathematical Programming 83 (1998) 277-290 

i =  1 , . . , n - 1 .  

i :  1 , . . . , n ,  

i = - l , . . . , n - 1 .  

Theorem 20. I f  ? is a strict gauge, then the fimction -R'a is strictly convex. 

Proof. The proof is analogous to that of Theorem 17, taking into account the 
increasing monotonicity and the strict convexity of RA. 

Theorem 21. I f  7 is a strict gauge, Problem 4 has only one optimal solution. 

4. An example 

In the previous sections we have developed some properties of the considered lo- 
cation problem. The purpose of this section is to show, from a practical point of 
view, that these properties really ease the resolution of the problem. 

Given a finite set of point A = {a~ . . . .  , a.,} C R 2, we look for the position of a 
rectangle, with sides parallel to the axes of the coordinate system, and an area at least 
of k, minimizing the average distance to A. This problem can be formulated as: 

l m 
min(c,~/ dA(R(e, ~)) = m~,d~i(R(c '  ~)) 

S.t. 4~1~2 >/k,  ~ > 0 ,  c E N2. 

Making the transformation suggested before Lemma 16 and taking ~t = (l, 4k/l) ,  by 
Theorems 17 and 18 an optimal solution can be found solving the equations 

0 -  
bTc, d~(R(c, ~,)) = O, 

dA(R(c, ~,)) = o, 

O -  
bTd~(R(c,  ~t)) = O. 

These equations reduce to 

~ ( L 7 ( c ,  ~,)) - ~A(L~(c, ~,)) = O, 

-d~(L~; (c, ~,) ) - -d~(L;(c, ~,) ) = o, 

-d~(L~((c, ~,)) - 3~(L~i(~, ~,)) = o. 
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Table 1 
Optimal rectangle 

Norm Center Semi-edges Expected distance 

l~ (0.4367,0) (0.8165,1.2247) 4.2532 
12 (0.2172,0) (1.0389,0.9625) 3.7765 
l~ (0,0) (1,1) 3.6944 

Notice that  these expressions only involve the expected distance to segments. The ex- 

pected distances f rom a point to a segment can be evaluated by explicit formula,  
when known,  or  by numerical integration. 

Given A = {(1,0), ( - 1 , 0 ) ,  (0, 5), ( 0 , - 5 ) }  and k = 4. The center o f  the optimal 

rectangle is the point  (0,0) for all lp norms. The optimal lengths of  the semiedges 

are (1,1), (1.1326, 0.8829) and (1,1), respectively for  ll, 12 and l~ norms, and the res- 

pective expected distances are 3.5, 3.1060, and 3.0417. 
Finally, for A = {(1,0), ( - 1 , 0 ) ,  (0, 5), (0, - 5 ) ,  (1,5), ( 1 , - 5 )  }, the optimal rectan- 

gle for  several tp norms are shown in Table 1. 

5. Conclusions 

In this paper  we consider an extension o f  the Regional  Weber  Problem, in which 

both  the location and the shape of  the facility are sought.  It is shown that this prob-  
lem is convex, and solvable as soon as one can evaluate the objective function, name- 

ly, the expected distance. 

We have shown that  the objective function is differentiable and we have obtained 

easily valuable expressions for the gradient o f  the objective function, easing the 
resolution process. 
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