Skip to main content
Log in

Stability of the Gauss-Huard algorithm with partial pivoting

Stabilität des Gauss-Huard Algorithmus mit partieller Pivotstrategie

  • Published:
Computing Aims and scope Submit manuscript

Abstract

This paper considers elimination methods to solve dense linear systems, in particular a variant of Gaussian elimination due to Huard [13]. This variant reduces the system to an equivalent diagonal system just like Gauss-Jordan elimination, but does not require more floating-point operations than Gaussian elimination. To preserve stability, a pivoting strategy using column interchanges, proposed by Hoffmann [10], is incorporated in the original algorithm. An error analysis is given showing that Huard’s elimination method is as stable as Gauss-Jordan elimination with the appropriate pivoting strategy. This result is proven in a similar way as the proof of stability for Gauss-Jordan elimination given in [4]. Numerical experiments are reported which verify the theoretical error analysis of the Gauss-Huard algorithm.

Zusammenfassung

Wir betrachten Eliminationsverfahren zur Lösung linearer Gleichungssysteme mit voll besetzter Koeffizientenmatriz und zwar besonders eine von Huard eingeführte Variante des Gauss’schen Algorithmus [13]. Dabei wird das Gleichungssystem auf Diagonalform reduziert wie in der Gauss-Jordan Variante des Eliminationsverfahrens, aber es werden nicht mehr Operationen benötigt als im klassischen Algorithmus von Gauss. Um die Stabilität zu garantieren, wird eine von Hoffmann entwickelte Pivotstrategie verwendet [10]. Eine Fehleranalyse zeigt, daß der Gauss-Huard Algorithmus kombiniert mit dieser Pivotstrategie genau so stabil ist wie der Gauss-Jordan Algorithmus. Der Beweis ist analog zum Beweis für die Stabilität des Gauss-Jordan Algorithmus in [4]. Numerische Resultate bestätigen die theoretisch gefundene Fehleranalyse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Businger, P. A.: Monitoring the numerical stability of Gaussian elimination. Numer. Math.16, 360–361 (1971).

    Article  MATH  Google Scholar 

  2. Cosnard, M., Robert, Y., Trystram, D.: Résolution parallèle de systèmes linéaires denses par diagonalisation E.D.F.-Bull. D.E.R. Sér. C no. 2, 67–88 (1986).

  3. Dekker, T. J., Hoffmann, W.: Numerical improvement of the Gauss-Jordan algorithm. In: van der Burgh, A. H. P., Mattheij, R. M. M. (eds.), pp. 143–150. Paris (1987).

  4. Dekker, T. J., Hoffmann, W.: Rehabilitation of the Gauss-Jordan algorithm. Numer. Math.54, 591–599 (1989).

    Article  MATH  Google Scholar 

  5. Dekker, T. J., Hoffmann, W., Potma, K.: Parallel algorithms for solving large linear systems. J. Comp. Appl. Math.50, 221–231 (1994).

    Article  MATH  Google Scholar 

  6. Dongarra, J. J., Duff, I. S., Sorensen, D. C., van der Vorst, H. A.: Solving linear systems on vector and shared memory computers. Philadelphia: SIAM 1991.

    Google Scholar 

  7. Duff, I. S., Erisman, A. M., Reid, J. K.: Direct methods for sparse matrices. Oxford: Clarendon Press 1986.

    MATH  Google Scholar 

  8. Golub, G. H., Van Loan, C. F.: Matrix computations, 2nd. ed. Baltimore: The John Hopkins University Press 1989.

    MATH  Google Scholar 

  9. Hoffmann, W.: Solving linear systems on a vector computer. J. Comp. Appl. Math.18, 353–367 (1987).

    Article  MATH  Google Scholar 

  10. Hoffmann, W.: A fast variant of the Gauss-Jordan algorithm with partial pivoting. Basic transformations in linear algebra for vector computing. Doct. Diss. (1989).

  11. Hoffman, W., Potma, K.: Threshold pivoting in Gaussian elimination to reduce inter-processor communication. Dept. of Computer Systems CS-91-05, University of Amsterdam, (1991).

  12. Hoffmann, W., Potma, K., Pronk, G. G.: Solving dense linear systems by Gauss-Huard’s method on a distributed memory system. Future Gen. Comp. Syst.10, 321–325 (1994).

    Article  Google Scholar 

  13. Huard, P.: La méthode du simplexe sans inverse explicite. Bull. E.D.F. Série C no. 2 (1979).

  14. Laurent-Gengoux, P., Trystram, D.: A new presentation of the conjugate direction algorithm. J. Comput. Appl. Math.32, 417–422 (1990).

    Article  MATH  Google Scholar 

  15. Peters, G., Wilkinson, J. H.: On the stability of Gauss-Jordan elimination with pivoting. Comm. ACM18, 20–24 (1975).

    Article  MATH  Google Scholar 

  16. Potma, K.: Huard’s method for solving linear systems on vector and parallel vector computers. Dept. of Computer Systems CS-89-12, University of Amsterdam (1989).

  17. Potma, K.: Numerical experiments to support the error analysis of the Gauss-Huard algorithm with partial pivoting. Dept. of Computer Systems CS-93-09, University of Amsterdam (1993).

  18. Potma, K., Hoffmann, W.: Performance evaluation of Gauss-Huard’s method for hierarchical memory systems. Dept. of Computer Systems CS-94-07, University of Amsterdam (1994).

  19. Robert, Y.: The impact of vector and parallel architectures on the Gaussian elimination algorithm. Manchester University Press, Manchester 1990.

    Google Scholar 

  20. Stewart, G. W.: Introduction to matrix computations. New York and London: Academic Press 1973.

    MATH  Google Scholar 

  21. Trefethen, L. N., Schreiber, R. S.: Average-case stability of Gaussian elimination. SIAM J. Matrix Anal. Appl.11 335–360 (1990).

    Article  MATH  Google Scholar 

  22. Wilkinson, J. H.: Error analysis of direct methods of matrix inversion. J. Assoc. Comp. Mach.8, 281–330 (1961).

    MATH  Google Scholar 

  23. Wilkinson, J. H.: Rounding erros in algebraic processes. London: HMSO 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, T.J., Hoffmann, W. & Potma, K. Stability of the Gauss-Huard algorithm with partial pivoting. Computing 58, 225–244 (1997). https://doi.org/10.1007/BF02684391

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684391

AMS Subject Classifications

Key words

Navigation