Skip to main content
Log in

Hierarchical and adaptive visualization on nested grids

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Modern numerical methods are capable to resolve fine structures in solutions of partial differential equations. Thereby they produce large amounts of data. The user wants to explore them interactively by applying visualization tools in order to understand the simulated physical process. Here we present a multiresolution approach for a large class of hierarchical and nested grids. It is based on a hierarchical traversal of mesh elements combined with an adaptive selection of the hierarchical depth. The adaptation depends on an error indicator which is closely related to the visual impression of the smoothness of isosurfaces or isolines, which are typically used to visualize data. Significant examples illustrate the applicability and efficiency on different types of meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng.3, 181–191 (1991).

    Article  MATH  Google Scholar 

  2. Bank, R. E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp.44, 283–301 (1985).

    Article  MATH  Google Scholar 

  3. Bank, R. E., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math.52, 427–458 (1988).

    Article  MATH  Google Scholar 

  4. Bergman, L., Fuchs, H., Grant, E.: Image rendering by adaptive refinement. ACM Comput. Graphics20, 29–35 (1986).

    Article  Google Scholar 

  5. Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Eng.1, 3–35 (1989).

    Article  MATH  Google Scholar 

  6. Bornemann, F. A., Erdmann, B., Kornhuber, R.: Adaptive multilevel-methods in three space dimensions. Preprint SC 92-14, Konrad-Zuse-Institut, Berlin, 1992.

    Google Scholar 

  7. Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners. Math. Comp.55, 1–22 (1990).

    Article  MATH  Google Scholar 

  8. Cignoni, P., De Floriani, L., Montani, C., Puppo, E., Scopigno, R.: Multiresolution modeling and visualization of volume data based on simplicial complexes. Proceedings of the Visualization ’95, 19–26, 1995.

  9. Gargantini, I.: Linear octrees for fast processing of three-dimensional objects. Comput. Graph. Image Process.20, 365–374 (1982).

    Article  Google Scholar 

  10. Ghavamnia, M. H., Yang, X. D.: Direct rendering of Laplacian compressed volume data. Proceedings of the Visualization ’95, 192–199, 1995.

  11. Giles, M., Haimes, R.: Advanced interactive visualization for CFD. Comput. Systems Eng.1, 51–62 (1990).

    Article  Google Scholar 

  12. SFB 256, University of Bonn: GRAPE manual, http://www.iam.uni-bonn.de/main.html, Bonn, 1995.

  13. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Leipzig: Teubner, 1994.

    MATH  Google Scholar 

  14. Gross, M. H., Staadt, R. G.: Fast multiresolution surface meshing. Proceedings of the Visualization ’95, 135–142, 1995.

  15. Grüne, L.: An adaptive grid scheme for the Hamilton-Jacobi-Bellman equation. Numer. Math.75, 319–337 (1997).

    Article  MATH  Google Scholar 

  16. Hackbusch, W.: Multi-grid methods and applications. Berlin, Heidelberg, New York, Tokyo: Springer, 1985.

    MATH  Google Scholar 

  17. Hamann, B.: A data reduction scheme for triangulated surfaces. Comput. Aided Geom. Des.11, 197–214 (1994).

    Article  MATH  Google Scholar 

  18. Itoh, T., Koyamada, K.: Isosurface generation by using extrema graphs, 77–83, 1994.

  19. Laur, D., Hanrahan, P.: Hierarchical splatting: A progressive refinement algorithm for volume rendering. ACM Comput. Graphics25, 285–288 (1991).

    Article  Google Scholar 

  20. Levoy, M.: Efficient ray tracing of volume data, ACM Trans. Graph9, 245–261 (1990).

    Article  MATH  Google Scholar 

  21. Livnat, Y., Shen, H. W., Johnson, C. R.: A near optimal isosurface extraction algorithm using the span space. Trans. Visualization Comput. Graphics2, 73–83 (1996).

    Article  Google Scholar 

  22. Lorensen, W. E., Cline, H. E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Comput. Graphics21, 163–169 (1987).

    Article  Google Scholar 

  23. Mitchell, W. F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Software15, 326–347 (1989).

    Article  MATH  Google Scholar 

  24. Ning, P., Bloomenthal, J.: An evaluation of implicit surface tilers. IEEE Comput. Graphics Appl. 33–41, 1993.

  25. Nochetto, R. H.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp.64, 1–22 (1995).

    Article  MATH  Google Scholar 

  26. Rivara, M. C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Methods Eng.20, 745–756 (1984).

    Article  MATH  Google Scholar 

  27. Rumpf, M., Schmidt, A., Siebert, K. G.: Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines. Comput. Graphics Forum15, 129–141 (1997).

    Article  Google Scholar 

  28. Schröder, W. J., Zarge, J. A., Lorensen, W. E.: Decimation of triangle meshes. ACM Comput. Graphics25, 65–70 (1992).

    Article  Google Scholar 

  29. Schmidt, A., Siebert, K. G.: ALBERT: An adaptive hierarchical finite element toolbox, in preparation.

  30. Shen, H.-W., Johnson, C. R.: Sweeping simplices: A fast iso-surface extraction algorithm for unstructured grids. Proc. Visualization ’95, 143–150, 1995.

    Google Scholar 

  31. Siebert, K. G.: An a posteriori error estimator for anisotropic refinement, Numer. Math.73, 373–398 (1996).

    Article  MATH  Google Scholar 

  32. Siebert, K. G.: Local refinement of 3-D-meshes consisting of prisms and conforming closure. IMPACT Comput. Sci. Eng.5, 271–284 (1993).

    Article  MATH  Google Scholar 

  33. Tamminen, M., Samet, H.: Efficient octree conversion by connectivity labeling. ACM Comput. Graphics18, 43–51 (1984).

    Article  Google Scholar 

  34. Turk, G.: Re-tiling polygonal surfaces. Comput. Graphics26, 55–64 (1992).

    Article  Google Scholar 

  35. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math.50, 67–83 (1994).

    Article  MATH  Google Scholar 

  36. Wilhelms, J., van Gelder, A.: Octrees for faster isosurface generation. ACM Trans. Graph.11, 201–227 (1992).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlberger, M., Rumpf, M. Hierarchical and adaptive visualization on nested grids. Computing 59, 365–385 (1997). https://doi.org/10.1007/BF02684418

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684418

AMS Subject Classifications

Key words

Navigation