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The M–Machine is an experimental multicomputer being devel-
oped to test architectural concepts motivated by the constraints
of modern semiconductor technology and the demands of pro-
gramming systems. The M–Machine computing nodes are con-
nected with a 3–D mesh network; each node is a multithreaded
processor incorporating 12 function units, on-chip cache, and
local memory. The multiple function units are used to exploit
both instruction-level and thread-level parallelism. A user ac-
cessible message passing system yields fast communication and
synchronization between nodes. Rapid access to remote mem-
ory is provided transparently to the user with a combination of
hardware and software mechanisms. This paper presents the ar-
chitecture of the M–Machine and describes how its mechanisms
attempt to maximize both single thread performance and overall
system throughput. The architecture is complete and the MAP chip,
which will serve as the M–Machine processing node, is currently
being implemented.
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Becauseof the increasing density of VLSI integrated circuits, most
of the chip area of modern computers is now occupied by memory
and not by processing resources. The M–Machineis an experimen-
tal multicomputer being developed to test architectural concepts
motivated by these constraints of modern semiconductor technol-
ogy and the demands of programming systems, such as faster
execution of fixed sized problems and easier programmability of
parallel computers.

Advances in VLSI technology have resulted in computers
with chip area dominated by memory and not by processing re-
sources. The normalized area (in � 2) of a VLSI chip1 is increasing
by 50% per year, while gate speed and communication bandwidth
are increasing by 20% per year [14]. As a result, a 64-bit proces-�
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1The parameter � is a normalized, process independentunit of distance equivalent
to one half of the gate length [23]. For a 0 � 5  "! process, � is 0 � 25  "! .

sor with a pipelined FPU (400M � 2)2 is only 8% of a 5G � 2 1996
0.35 # m chip. In a system with 256 MBytes of DRAM, the pro-
cessor accounts for 0.13% of the silicon area in the system. The
memory system, cache, TLB, controllers, and DRAM account for
most of the remaining area. Technology scaling has made the
memory, rather than the processor, the most area–consuming re-
source in a computer system.

To address this imbalance, the M–Machine increases the
fraction of chip area devoted to processor, making better use of the
critical memory resources. An M–Machine multi-ALU processor
(MAP) chip contains four 64-bit three-issue clusters that comprise
32% of the 5G � 2 chip and 11% of an 8 MByte (six-chip) node.
The multiple execution clusters will provide better peak perfor-
mance than using a single cluster and a large on-chip cache in the
same chip area. The high ratio of arithmetic bandwidth to mem-
ory bandwidth (12 operations/word) allows the MAP to saturate
the costly DRAM bandwidth even on code with high cache-hit ra-
tios. A 32-node M–Machine system with 256 MBytes of memory
has 128 times the peak performance of a 1996 uniprocessor with
the same memory capacity at 1.5 times the area, a 85:1 improve-
ment in peak performance/area. Even at a small fraction of this
peak performance, such a machine allows the costly, fixed-sized
memory to handle more problems per unit time resulting in more
cost-effective computing.

The M–Machine is intended to extract more parallelism from
problems of a fixed size, rather than requiring enormous problems
to achieve peak performance. To do this, nodes are designed to
manage parallelism at a variety of granularities, from the instruc-
tion level to the process level. The 12 function units in a single
M–Machine node are controlled using a form of Processor Cou-
pling [18] to exploit instruction level parallelism by executing 12
operations from the same thread, or to exploit thread-level paral-
lelism by executing operations from up to six different threads.
The fast internode communication allows collaborating threads to
reside on different nodes.

The M–Machine also addresses the demand for easier pro-
grammability by providing an incremental path for increasing par-
allelism and performance. An unmodified sequential program can

2Area was determined by measuring the processing components of various chips,
in particular the R4600 described in [12].
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run on a single M–Machine node, accessing both local and remote
memory. This code can be incrementally parallelized by identi-
fying tasks, such as loop iterations, that can be distributed both
across nodes and within each node to run in parallel. A flat, shared
address space simplifies naming and communication. The caching
of remote data in local DRAM automatically migrates a task’s data
to exploit locality.

Previous publications have introduced some of the mecha-
nisms used in the M–Machine. The first description of Processor
Coupling, a method for exploiting instruction level parallelism,
appeared in [18]. The novel capability-based memory protection
system of the M–Machine was described in [5]. This paper de-
scribes the M–Machine’s other features which include an improved
form of Processor Coupling as well as communication and global
addressing mechanisms. The M–Machine architectural design is
complete and the MAP chip, which will serve as the M–Machine
processing node, is currently being implemented.

Section 2 gives an overview of the machine architecture,
including the physical resources of the M–Machine. Section 3 de-
scribes the updated version of Processor Coupling that simplifies
hardware implementation and is expectedto improve performance.
Instead of lock-step execution of the wide instruction words across
all of the function units, an instruction stream is partitioned by the
compiler into horizontal threads (H–Threads), which run concur-
rently on different execution clusters to exploit instruction level
parallelism. Synchronization between them is performed explic-
itly using instructions that write to one another’s register files. In
addition, the function units are time-shared among vertical threads
(V–Threads) which exploit runtime parallelism and mask pipeline,
memory, and communication latencies. Events are handled asyn-
chronously in a dedicated V–Thread so that event handling may
proceed in parallel with user program execution and the issued
instructions of the thread that caused the event need not be can-
celled. Section 4 discusses inter-node communication including
the user-level communication primitives, the global mapping of
virtual addresses to physical memory and to remote processors,
and how they are used to provide global coherent memory ac-
cess. Finally, Section 5 describes the M–Machine software effort,
including a brief overview of the compiler and runtime system.
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The M–Machine consists of a collection of computing nodes in-
terconnected by a bidirectional 3-D mesh network. Each six-chip
node consists of a multi–ALU (MAP) chip and 1 MW (8 MBytes)
of synchronousDRAM (SDRAM). The MAP chip includes the net-
work interface and router, and it provides an equal bandwidth of
800 MBytes/s to the local SDRAM and to each network channel.
Each node contains a dedicated I/O bus; I/O devices may be con-
nected to either every node or a subset of nodes, for example, all
nodes on a face of the mesh. The target clock rate for the MAP is
100MHz.

As shown in Figure 1,a MAP contains four execution clusters,
a memory subsystem comprised of four cache banks and an exter-
nal memory interface, and a communication subsystem consisting
of the network interfaces and the router. Two crossbar switches in-
terconnect these components. Clusters make memory requests to
the appropriate bank of the interleaved cache over the 150-bit wide
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Figure 1: The MAP architecture.

(address+data) 4 8 4 M–Switch. The 90-bit wide 10 8 4 C–Switch
is used for inter-cluster communication and to return data from the
memory system. Both switches support up to four transfers per
cycle, one transfer per output port.
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Each of the four MAP clusters is a

64-bit, three-issue, pipelined processor consisting of two integer
ALUs, a floating-point ALU, associated register files, and a 1KW
(8KB) instruction cache, as shown in Figure 2. One of the integer
ALUs in each cluster, termed the memory unit, is the interface
to the memory system. Each MAP instruction contains 1, 2, or 3
operations, zero or one for each ALU. All operations in a single
instruction issue together but may complete out of order. Every
operation may be conditionally executed depending on the one-bit
value of one of the condition code registers.

%*0�FG@74
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As illustrated in Figure 1, the 128KB on–chip

cache is organized as four word-interleaved 4KW (32KB) banks
to permit accesses to consecutive addresses to proceed in parallel.
The cache is virtually addressed and tagged. The cache banks
are pipelined with a three-cycle read latency, including switch
traversal.

The external memory interface consists of the SDRAM con-
troller and a local translation lookaside buffer (LTLB) used to
cache local page table (LPT) entries. Pages are 512 words (64 8-
word cache blocks). The SDRAM controller exploits the pipeline
and page modes of the external memory and performs single error
correction and double error detection on the data transferred from
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Figure 2: A MAP cluster consists of 3 execution units, 2 register
files, an instruction cache and ports onto the memory and cluster
switches.

external memory.
A synchronization bit is associated with each word of mem-

ory. A pair of load and store operations specify a precondition and
a postcondition on the synchronization bit and are used as atomic
read-modify-write memory operations.

The M–Machine supports a single global virtual address
space. A light-weight capability system implements protection
through guarded pointers [5], while paging is used to manage the
relocation of data in physical memory within the virtual address
space. The segmentation and paging mechanisms are independent
so that protection may be preserved on variable-size segments of
memory. The memory subsystem is integrated with the communi-
cation system and can be used to access memory on remote nodes,
as described in Section 4.2.

KML�NONQP?R�S�T�U�V�S�L�RXWYP7Z1[�\"[�V�]�N_^
Messages are composed in the

general registers of a cluster and launched atomically using a user-
level SEND instruction. To provide protection, messages must be
sent to virtual addresses which are automatically translated into
physical node identifiers via a global translation lookaside buffer
(GTLB). The GTLB cachesentries of a software global destination
table (GDT), much like a TLB caches page table entries. Arriving
messagesare queuedin a register-mapped hardware FIFO readable
by a system-level message handler. Two network priorities are
provided, one each for requests and replies. Messages are routed
in dimension order using up to four virtual channels.
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Figure 3: Multiple V-Threads are interleaved dynamically over the
cluster resources. Each V–Thread consists of 4 H–Threads which
execute on different clusters.
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The amount and granularity of parallelism varies enormously
across application programs and even during different phases of
the same program. Some phases have an abundance of instruc-
tion level parallelism that can be extracted at compile time. Others
have data dependentparallelism that can be only be exploited using
multiple threads; the task size to achieve maximum concurrency
may vary widely.

The M–Machine is designed to efficiently execute programs
with either compiler or runtime scheduled parallelism, and with
a range of granularities. The M–Machine architecture contains
two mechanisms for intra-node concurrency: Vertical Threads
(V–Threads) and Horizontal Threads (H–Threads). A V–Thread
is similar to a standard process and is composed of up to four
H–Threads. An H–Thread is a 3-wide instruction stream which
is statically scheduled and executes on a single MAP cluster. The
H–Threads of the same V–Thread can be either independently
scheduled or scheduled together by the compiler to achieve 12-
wide instruction level parallelism (ILP).

The MAP has sufficient hardware resources to support up to
six resident V–Threads; on each cluster, constituent H–Threads are
interleaved on a cycle-by-cycle basis over the shared execution re-
sources. Consecutive instructions executed by a given cluster may
be from distinct H–Threads and instructions executed at the same
time on different clusters may be from distinct V–Threads. This
flexible interleaving allows the MAP to exploit thread-level paral-
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(a) Single H–Thread

MEM Unit FP Unit
1. load ru
2. load rd
3. load rn t2 = ru + rd
4. load rs t2 = t2 + rn
5. load re t2 = t2 + rs
6. load rw t2 = t2 + re
7. load r k t2 = t2 + rw
8. load u k t2 = b l t2
9. t1 = a l r k

10. t1 = t1 + t2
11. u k = u k + t1
12. store u k
(b) Two concurrent H–Threads

H–Thread 0
MEM Unit FP Unit

1. load ru
2. load rd
3. load r k t2 = ru + rd
4. load u k t2 = b l t2
5. t1 = a l r k
6. t1 = u k + t1
7. H1.t2 = t1 + t2

H–Thread 1
MEM Unit FP Unit

1. load rn
2. load rs empty t2
3. load re t1 = rn + rs
4. load rw t1 = t1 + m e
5. t1 = t1 + rw
6. t1 = b l t1
7. u k = t1 + t2
8. store u k

Figure 4: Example of H–Threads used to exploit instruction level parallelism: (a) single H–Thread, (b) two H–Threads. The computation
is a smoothing operator using a 7-point stencil on a 3–D grid: u k = u k + a n r k + b n (ru + rd + rn + rs + re + rw o .
lelism and to mask variable pipeline, memory, and communication
delays.

The arrangement of V–Threads, H–Threads, instructions,
and operations is summarized in Figure 3. The contexts of six
V–Threads are resident in the clusters’ register files. Each V–Thread
includes four H–Threads, one on each cluster. Each H–Thread
consists of a sequence of 3-wide instructions containing integer,
memory, and floating point operations. On subsequent cycles, a
cluster, as demonstrated by cluster 0, may issue instructions from
different V–Threads.

p�qsrutwv�xJy7z�{-|�}�~
A V–Thread consists of at least one and up to four H–Threads,
each running concurrently on a different cluster. The MAP has
sufficient hardware resources to hold the state of six V–Threads
(24 H–Threads), each one occupying a thread slot. Four of these
slots are user slots, one is the event slot, and one is the exception
slot. User threads run in the user slots, handlers for asynchronous
events run in the event slot, and handlers for synchronous excep-
tions detected and localized within a cluster, such as protection
violations, run in the exception slot. Message arrival is treated as
an asynchronous event.

The H–Threads within the same V–Thread may communi-
cate and synchronize via registers, while H–Threads of different
V–Threads must synchronize and communicate through memory
or messages.

On each cluster, six H–Threads (one from each V–Thread)
are interleaved dynamically over the cluster resources on a cycle-
by-cycle basis. A synchronization pipeline stage holds the next

instruction to be issued from each of the six V–Threads until all
of its operands are present and all of the required resources are
available, similar to the architecture described in [18]. At every
cycle this stage decides which instruction to issue from those which
are ready to run. An H–Thread that is stalled waiting for data or
resource availability consumes no resources other than the thread
slot that holds its state. Multiple V–Threads may be interleaved
with zero delay, allowing task switching to mask even very short
pipeline latencies as well as longer communication and synchro-
nization latencies. As long as its data and resource dependencies
are satisfied, a single thread may issue an instruction every cycle.
Therefore, single thread performance is not penalized as a result
of the M–Machine’s support for multithreading.

pdq � �Cv�xJy?z
{"|�}�~
An H–Thread runs on a single cluster and executes a sequence of
operation triplets (zero or one operation for each of the 3 ALUs in
the cluster) that are issued simultaneously. Within an H–Thread,
instructions are guaranteed to issue in order, but may complete out
of order. An H–Thread may communicate and synchronize via
registers with the 3 other H–Threads within the same V–Thread.
Each H–Thread may only read operands from its own register file,
but can write directly into the register files of the H–Threads that
are within the same V–Thread on other clusters.

The H–Thread mechanism can support multiple execution
models. H–Threads can execute as independent threads with pos-
sibly different control flows to exploit loop-level or thread-level
parallelism. Alternatively, the compiler can schedule the four
H–Threads in a V–Thread as a unit to exploit instruction level
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parallelism, as in a VLIW machine. In this case the compiler
must insert explicit register-based synchronization operations to
enforce instruction ordering between H–Threads. Unlike the lock-
step execution of traditional VLIW machines, H–Thread synchro-
nization occurs only as required by data or resource dependencies.
While explicit synchronization incurs some overhead, it allows
H–Threads to slip relative to one other in order to accommodate
variable–latency operations such as memory accesses.

Figure 4 shows a simple illustrative example of the instruc-
tion sequences of a program fragment on 1 and 2 H–Threads. The
program is the body of the inner loop of a “smoothing” operation
using a 7-point stencil on 3-D grid. On a particular grid point,
the smoothed value is given by u � = u � + a � r � + b � (ru + rd
+ rn + rs + re + rw � , where r � is the residual value at that point,
and ru, rd, rn, rs, re and rw are the residuals at the neighbor-
ing grid points in the six directions UP, DOWN, NORTH, SOUTH,
EAST and WEST respectively. In order to better illustrate the use of
H–Threads, advanced optimization (such as software pipelining)
is not performed.

Figure 4(a) shows the single H–Thread program, with a 12
long instruction stream which includes all of the memory and
floating point operations. The weighting constants a and b are
kept in registers. Figure 4(b) shows the instruction streams for
two H–Threads working cooperatively. Each H–Thread performs
four memory operations and some of the arithmetic calculations.
Instruction 7 in H–Thread 0 calculates a partial sum and transmits
it directly to register t2 in H–Thread 1. Theempty instruction on
H–Thread 1 is used to prepare t2 for H–Thread synchronization;
H–Thread 1 will not issue instruction 7 until the data arrives from
H–Thread 0 as explained below.

The use of multiple H–Threads reduces the static depth of the
instruction sequences from 12 to 8. On a larger 27-point stencil,
the depth is reduced from 36 to 17 when run on 4 H–Threads. The
actual execution time of the program fragments will depend on the
pipeline and memory latencies.

�C���J�?�
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As shown in the example above, H–Threads within the same
V–Thread synchronize with one another through registers. A
scoreboard bit associated with the destination register is cleared
(empty) when a multicycle operation, such as a load, issues and is
automatically set (full) by MAP hardware when the result is avail-
able. An operation that uses the result will not be selected for issue
until the corresponding scoreboard bit is set.

All inter-cluster data transfers require explicit register syn-
chronization. To prepare for inter-cluster data transfers, the receiv-
ing H–Thread executes an EMPTY operation to mark empty a set
of destination registers. As each datum arrives from the transmit-
ting H–Thread over the C-Switch, the corresponding destination
register is automatically set full by MAP hardware. An instruction
in the receiving H–Thread that uses the arriving data will not be
eligible for issue until its data is available. Therefore, explicit syn-
chronization operations required by VLIW style execution across
H–Threads may be overlapped with the inter-cluster data transfers
inherent in the executing program.

Each V–Thread has an independent set of global condition
code (CC) registers. Each set is composed of four pairs of single-bit

computeLOOP_1: 

H−Thread 1

empty gcc1

br gcc1 LOOP_1

write gcc3

branch
delay
slots

barcomputeLOOP_0: 

use

H−Thread 0

br gcc1 LOOP_0

1

2

3

4

5

6

7

gcc3

empty gcc3

eq bar end gcc1

branch
delay
slots

Figure 5: Loop synchronization between two H–Threads using
MAP global condition code (CC) registers.

global CC registers and is used to broadcast binary values between
H–Threads within a V–Thread. Similar to data registers, each
global CC register has an accompanying scoreboard bit. The MAP

global CC registers are physically replicated on each of the clus-
ters and are not centrally located. An H–Thread may broadcast to
other H–Threads of the same V–Thread using either of its writable
global CC registers (one unique writable pair per H–Thread), but
may read and mark empty its local copy of any global CC register
in the set. Using these registers, all four H–Threads can exe-
cute conditional branches and assignment operations based on a
comparison performed by a single H–Thread.

The scoreboard bits associated with the global CC registers
may be used to rapidly synchronize among the H–Threads within
a V–Thread. Figure 5 shows an example of two H–Threads syn-
chronizing at loop boundaries. Two registers are involved in the
synchronization, in order to provide an interlocking mechanism
ensuring that neither H–Thread rolls over into the next loop itera-
tion.

H–Thread 0 computes bar, compares it (using eq) to end,
and broadcasts the result by targetting gcc1. H–Thread 1 uses
gcc1 to determine whether to branch, marks gcc1 empty again,
and writes to gcc3 to notify H–Thread 0 that the current value
of gcc1 has been consumed. H–Thread 0 blocks until gcc3
is full, and then empties it for the next iteration. Neither thread
can proceed with the next iteration until both have completed
the current one. Due to the multicopy structure of MAP global
CC registers, this protocol can easily be extended to perform a
fast barrier among 4 H–Threads executing on different clusters,
without combining or distribution trees.

�d� ���C�������-�?�
���������3�?�-���g�1�����������7����� ���1�
Exceptions that occur outside the MAP cluster are termed events
and are handled asynchronously by generating an event record and
placing it in a hardware event queue. Local TLB misses, block
status faults, memory synchronizing faults, and message arrivals
are events that are handled asynchronously. These events are
precise in the sense that the faulting operation and its operands
are specifically identified in the event record, but they are handled
asynchronously, without stopping the thread. Each H–Thread in
the event V–Thread slot handles one class of events. Memory
synchronization and status faults are handled on cluster 0, local
TLB misses are handled on cluster 1, and arriving messages are
handled on clusters 2 and 3, depending on the priority of the
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message.
The dedicated handler located in each H–Thread of the event

V–Thread slot processes event records to complete the faulting
operations. The event handler loops, reading event records from
the register-mapped queue and processing them in turn. A read
from the queue will not issue if the queue is empty. For example,
on a local TLB miss, the hardware formats and enqueues an event
record containing the faulting address as well as the write data or
read destination. The sotware TLB miss handler reads the record,
places the requested page table entry in the TLB, and restarts the
memory reference. The thread that issued the reference does not
block until it needs the data from the reference that caused the
miss. Similarly, inter-node message arrival is also treated as an
event in which the contents of the message are written into the
appropriate event queue (which serves as the message queue).

Handling events asynchronously obviates the need to can-
cel all of the issued operations following the faulting operation,
a significant penalty in a 12-wide machine with deep pipelines.
Dedicating H–Threads to this purpose accelerates event handling
by eliminating the need to save and restore state, and allows con-
current (interleaved) execution of user threads and event handlers.
Asynchronous event handling does require sufficient queue space
to handle the case where every outstanding instruction generates
an exception. To reduce queue size requirements, those exceptions
that can be detected in the first execution cycle, such as protection
violations and some arithmetic exceptions, stall all user H–Threads
in the affected cluster, and are handled synchronously by the local
H–Thread of the exception V–Thread. User H–Threads executing
on neighboring clusters are unaffected.

 �¡ ¢ £�¤�¥�¦-§1¥�¥�¤�¨�©
There are two major methods of exploiting instruction level par-
allelism. Superscalar processors execute multiple instructions si-
multaneously by relying upon runtime scheduling mechanisms to
determine data dependencies [31, 17]. However, they do not scale
well with increasing number of function units because a greater
number of register file ports and connections to the function units
are required. In addition, superscalars attempt to schedule instruc-
tions at runtime (much of which could be done at compile time),
but they can only examine a small subsequence of the instruction
stream.

Alternatively, Very Long Instruction Word (VLIW) proces-
sors such as the Multiflow Trace series [6] use only compile time
scheduling to manage instruction-level parallelism, resource us-
age, and communication among a partitioned register file. How-
ever, the strict lock-step executionis unable to tolerate the dynamic
latencies found in multiprocessors.

Processor Coupling, originally introduced in [18], used im-
plicit synchronization between the clusters on every wide instruc-
tion. Relaxing the lock-step synchronization, as described in this
section, has several advantages. First, it is easier to implement
because control is localized completely within the clusters. Sec-
ond, it allows more slip to occur between the instruction streams
running on different clusters (H–Threads), which eliminates the
automatic blocking of one thread on long latency operations of an-
other, providing more opportunity for latency tolerance. Finally,
the H–Threads can be used flexibly to exploit both instruction and

loop level parallelism. When H–Threads must synchronize, they
do so explicitly through registers, at a higher cost than implicit
synchronization. However, fewer synchronization operations are
required, and many of them can be included in the data transfer
between clusters, inherent in the executing program.

Using multiple threads to hide memory latencies and pipeline
delays has been examined in several different studies and ma-
chines. Gupta and Weber explore the use of multiple hardware
contexts in multiprocessors [10], but the context switch overheads
they used are too large to mask pipeline latencies. MASA [13]
as well as HEP [29] and TERA [3] use fine grain multithread-
ing to issue an instruction from a different context on every cycle
in order to mask pipeline latencies. However, with the required
round-robin scheduling, single thread performance is degraded by
the number of pipeline stages. The zero cost switching among
V–Threads and the pipeline design of the MAP provide fast single
thread execution as well as latency tolerance for better local mem-
ory bandwidth utilization. Furthermore, none of the multithreaded
machines have multiple clusters for exploiting wide instruction
level parallelism.

Various machines optimized for dataflow languages [24, 16,
28] provide hardware support for fine grained synchronization be-
tween threads (usually via memory synchronization bits), but they
do not exploit instruction level parallelism, nor do they provide low
cost register-based synchronization between threads. The XIMD
architecture [33] uses multiple ALUs to exploit instruction level
parallelism as well as thread level parallelism. However, it uses a
single global register file and does not interleave multiple threads
over the same execution units. Two approaches that do exploit
instruction level parallelism using multiple threads and multiple
ALUs include [30] and [32].

¢ ª�©�«�¬�¯®d©�¨�°?¬²±³¨�©1¦-§7´
¬�©�¦�µ·¶*¬-¦-¸1¹7©�¤�¥jº3¥
The M–Machine provides a fast, protected, user-level message
passing substrate. A user program may communicate and syn-
chronize by directly sending messages or by reading and writing
remote memory using a coherent shared memory system layered
on the message-passing substrate. Direct messaging provides max-
imum performance data transfer and synchronization while shared
memory access simplifies programming. Remote memory access
is implemented using fast trap handlers that intercept load and
store operations which reference remote data. These handlers send
messages to other nodes to complete remote memory references
transparently to user programs. Additional hardware and software
mechanisms allow remote data to be cached locally in both the
cache and external memory.

¢»¡�¼ ¶*¬-¥�¥�¹�½?¬¿¾�¹�¥�¥�¤�©�½¿À»§7Á7Á?¨7�«
The M–Machine provides hardware support for injecting a mes-
sage into the network, determining the message destination, and
dispatching a handler on message arrival. For example, Figure 6
shows the M–Machine instruction sequences for both the sending
and receiving components of a remote memory store. The mes-
sage sending sequence (Figure 6(a)) loads the data to be stored
into general register MC1. The SEND instruction takes three argu-
ments, the target address (Taddr) contained in Raddr, the dispatch
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(a) Message Send
LOAD A[0], MC1 ; load A[0] into register 1
SEND Raddr, Rdip, #1 ; send a 1 word remote store

; message to the processor
; containing VA in Raddr

(b) Message Receive
loop:
JMP Rnet ; jump to DIP (remote write)
;start of remote write code
MOVE Rnet, R1 ; move virtual address into R1
STORE Rnet, R1 ; store word to memory
BRANCH loop ; branch to message dispatch code

Figure 6: Example of M–Machine code implementing a remote
store: (a) Sending a 3 word remote store message. (b) Receiving
and performing the store. On the receiving endRnet is the register
mapped to the head of the message queue.

instruction pointer (DIP) in Rdip, and the message body length
(#1). When the SEND issues, the Global Translation Lookaside
Buffer (GTLB) translates virtual address Raddr into a physical
node identifier and a 3 word message containing DIP, Taddr, and
the contents of MC1 is sent to that node. When the message arrives
at the destination (Figure 6(b)) hardware enqueues it in the priority
0 message queue. An H–Thread dedicated to message handling
jumps to the handler via the DIP contained in the first word of
the message, executes a store operation, and branches back to the
dispatch portion of the code.

Â*Ã-Ä�Ä�Å�Æ?ÃOÇÉÈ�Ê�Ã"Ë�Ì�Í�Î�ÈdÏ
A message is composed in a cluster’s gen-

eral registers and transmitted atomically with a single SEND in-
struction that takes as arguments a destination virtual address, a
dispatch instruction pointer (DIP), and the message body length.
Hardware composes the message by prepending the destination
and DIP to the message body and injects in into the network. Two
message priorities are provided: user messages are sent at priority
zero, while priority 1 is reserved for system level message reply,
thus avoiding deadlock.

Â*Ã-Ä�Ä�Å�Æ?Ã²ÐCÑ?Ñ�Ò�Ã-Ä�Ä3ÓMÒ
Å7È1ÄÕÔ Å�Ì�Í�Î�ÈdÏ
As described in [25], the ex-

plicit management of processor identifiers by application programs
is cumbersome and slow. To eliminate this overhead, the MAP im-
plements a Global Translation Lookaside Buffer (GTLB), backed
by a software Global Destination Table (GDT), to hold mappings
of virtual address regions to node numbers. These mappings may
be changed by system software. The user specifies the destination
of a messagewith a virtual address, which the network output inter-
face hardware uses to access the GTLB and calculate the physical
destination node.

With a single GTLB entry,a range of virtual addresses (called
a page-group) is mapped across a region of processors. In order to
simplify encoding, the page-group must be a power of 2 pages in
size, where each page is 1024 words. The mapped processors must
be in a contiguous 3–D rectangular region with a power of 2 number
of nodes on a side. This information is encoded in a single GTLB
entry as shown in Figure 7. The virtual page field is used as the
tag during the fully associative GTLB lookup. The starting node
enumerates the coordinates of the origin of the region of mapped

6 bits6 bits

Virtual Page 

16 bits

Y XZ

42 bits

Node 
Starting 

Node
Pages/

 Extent

3 bits each

Page−group
Length

Figure 7: Format of a Global Destination Table (and GTLB) entry,
used to determine a physical node identifier from a virtual address.

processors, while the extent specifies the base 2 logarithm of the
X, Y, and Z dimensions of the region. The page-group length field
specifies the number of local pages that are mapped into the page
group. The pages-per-node field indicates the number of pages
placed on each consecutive processor, and is used to implement a
spectrum of block and cyclic interleavings.

Â*Ã"Ä�Ä�Å�Æ7Ã_ÖYÃ"Ë�Ã�×�Ì�Í�Î�È�Ï
At the destination node, an arriving mes-

sage is automatically placed in a hardware message queue. The
head of the message queue is mapped to a register accessible by an
H–Thread (in either cluster 2 or 3, depending on message priority)
in the event V–Thread. The messagedispatch handler code running
in that H–Thread stalls on the empty register until a message ar-
rives, marking the register full; the handler then reads the dispatch
instruction pointer (DIP) from the register and jumps to it. This
starts execution of the specific handler code to perform the action
requested in the message. Some of the actions include remote
read, remote write, and remote procedure call. The message need
not be copied to or from memory, as it is accessible via a general
register. In order to avoid overflow of the fixed size messagequeue
and back up of the network, only short, well–bounded tasks are
executed by message handlers. Longer tasks are enqueued to be
run as a user process on a user V–Thread.

ØÙÒ
Î?Ì�Ã-Ë�Ì�Í�Î�È�Ï
The M–Machinecommunication substrate provides

fully protected user-level access to the network. TheSEND instruc-
tion atomically launches a message into the network, preventing
a user from occupying the network output indefinitely. The au-
tomatic translation provided by the GLTB ensures that a program
may only send messagesto virtual addresseswithin its own address
space. Finally, restricting the set of user accessible DIPs prevents
a user handler from monopolizing the network input. If an illegal
DIP is used, a fault will occur on the sending thread before the
message is sent.

ÓJÚ?Ò
Î?Ì�Ì�Ô Í�È�ÆYÏ
In order to prevent a processor from injecting mes-

sages at a rate higher than they can be consumed, the M–Machine
implements a return-to-sender throttling protocol. A portion of a
local node’s memory is used for returned message buffering. When
a message is sent, a counter is automatically decremented, which
reserves buffer space for that message, should it be returned. If
the counter is zero, no buffer space is available and no additional
messages may be sent; threads attempting to execute a SEND in-
struction will stall. When the message reaches the destination, a
reply is sent indicating whether the destination was able to handle
the message. If the message was consumed, the reply instructs the
source processor to increment its counter, deallocating the buffer
space. Otherwise, the reply contains the contents of the original
message which are copied into the buffer and sent again later.
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The M–Machineprovides direct register-to-register

communication, avoiding the overhead of memory copying at both
the sender and the receiver, and eliminating the dedicated memory
for message arrival, as is found on the J–Machine [8]. Register-
mapped network interfaces have been used previously in the Mars
Machine [2], J-Machine, and iWarp [4], and have been described
by *T [26] as well as Henry and Joerg [15]. However, none of
these systems provide protection for user-level messages.

Systems, like the J-Machine, that provide user access to the
network interface without atomicity must temporarily disable in-
terrupts to allow the sending process to complete the message. The
M–Machine’s atomicSEND instruction eliminates this requirement
at the cost of limiting message length to the number of cluster reg-
isters. Most messages fit easily in this size and larger messages
can be packetized and reassembled with very low overhead.

Automatic translation of virtual processor numbers to phys-
ical processor identifiers is used in the Cray T3D [7]. The use of
virtual addresses as message destinations in the M–Machine has
two advantages. When combined with translation hardware, it
provides protection for user initiated messages, without incurring
the overhead of operating system invocation, as messages may
not be sent to processors mapped outside of the user’s virtual ad-
dress space. It also facilitates the implementation of global shared
memory. The interleaving performed by the GTLB, although not
as versatile as the CRAY T3D address centrifuge or the interleav-
ing of the RP3 [27], provides a means of distributing ranges of the
address space across a region of nodes.

In contrast to both *T and FLASH [19] which use a separate
communication coprocessor for receiving incoming messages, the
M–Machine incorporates that function on its already existing exe-
cution resources, an H–Thread in the event V–Thread. This avoids
idling a dedicated processor when it is not in use. During periods
of few messages, user threads may make full use of the cluster’s
arithmetic and memory bandwidth.

ãYä�å æ�à�á"ç�èMé�Þ"ê�ë"ì¿íYê�é�î�ë-ìXï*ëgðGà7î�ñ
Fast access to remote memory is provided transparently to the
user with a combination of hardware and software mechanisms.
When a load or store operation to a global virtual address causes
a Local Translation Lookaside Buffer (LTLB) miss, a software
trap is signalled. Like the hardware dedicated to message arrival,
one H–Thread in the event V–Thread is reserved for handling
LTLB misses. The LTLB miss handler code probes the GTLB to
determine where the requested data is located, and if necessary,
sends a message to the destination node. If the data is in fact
local, the LTLB miss handler fetches the required page table entry
and places it in the LTLB. Using a small portion of the execution
resources for fast trap handling reduces the latency of both local
LTLB misses and remote data access.

The sequence of operations required to satisfy a remote mem-
ory load is shown below. The labels HW and SW indicate whether
the action is performed by hardware or software.

1. HW: Memory operation accesses the cache and misses (2
cycles).

2. HW: LTLB miss occurs, enqueueing an event (2 cycles).
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Figure 8: Remote read access.

3. SW: Software accesses the local page table (LPT), probes
the GTLB, and composes and sends a message containing
the referenced and return addresses (48 cycles).

4. HW: Message delivered to remote node (5 cycles).

5. SW: Message handler fetches requested data from memory,
formats a reply message, and sends it (29 cycles).

6. HW: Return message delivered (5 cycles).

7. SW: Message handler decodes the original load destination
register and writes the data directly there (41 cycles).

Timelines for both remote read and write accessesare shown
in Figures 8 and 9. These measurements are based on prototype
message and event handlers written in assembly code and running
on the M–Machine simulator. A user level program running on
node 0 makes read and write requests to memory on neighboring
node 1. Except for the message handler that runs on demand, node
1 is idle. All references to memory system data structures in the
software handlers are assumed to cache hit.

Table 1 shows a comparison of preliminary results of local
and remote access latencies (in cycles), for single word accesses. A
read is completed when the requested data has been written into the
destination register. A write is completed when the line containing
the data has been fully loaded into the cache. The remote read and
write accesses are larger than their local counterparts due to the
software intervention required to send the message to the remote
node. However, the time to perform a remote read that hits in the
cache is only a twice as large as a local read that requires software
intervention (LTLB miss). For the remote write, which does not
require return data, the difference is only 10%.

The primary contributors to remote access latency in the
M–Machine are searching for the faulting address in the local
page table and decoding the reply message (about 40 cycles each).
The page-table search is required only when accessing the first
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Access Times (cycles)
Access Type READ WRITE

Local Cache Hit 3 2
Local Cache Miss 13 19
Local LTLB Miss 61 67

Remote Cache Hit 138 74
Remote Cache Miss 154 90
Remote LTLB Miss 202 138

Table 1: Comparison of local and remote access times, assuming
no resource contention.

block of a page. Access to subsequent blocks cause block-status
faults (rather than page faults) which skip the page-table access.
The reply decode could be accelerated by prohibiting the faulting
V–Thread from swapping out during the memory operation.

òYó�ô�õMö�÷-ø1ù�ú�û_ö7ú1ü·õMý�ø1þgÿ�þ�ú�÷�þ
Even though remote accesses are fast, their latency is still large
compared to local memory references. This overhead reduces
the ability of the MAP to use the network and remote memory
bandwidth effectively. To reduce overall latency and improve
bandwidth utilization, each M–Machine node may use its local
memory to cache data from remote nodes.

In addition to the virtual to physical mapping, each LTLB
(and LPT) entry contains 2 status bits for each cache block in the
page. These block status bits are used to provide fine-grain control
over 8 word blocks, allowing different blocks within the same
mapped page to be in different states. This fine-grain control over
data is similar to that provided in hardware based cache coherent
multiprocessors, and alleviates the false sharing that exists in other
software data coherence systems [21]. The two block status bits
are used to encode the following four states:

� INVALID: The block may not be read, written, or placed in
the hardware cache.

� READ-ONLY: The block may be read, but not written.

� READ/WRITE: The block may be read or written.

� DIRTY: The block may be read or written, and it has been
written since being copied to the local node.

One software policy that uses the block status bits fetches re-
mote cache blocks on demand. When a memory reference occurs,
the block status bits corresponding to the global virtual address
are checked in hardware. If the attempted operation is not allowed
by the state of the block, a software trap called a block status
fault occurs. The trap code runs in the event V–Thread, in the
H–Thread that is reserved for handling block status and synchro-
nization events. The block status handler sends a message to the
home node, which can be determined using the GTLB, requesting
the cache block containing the data. The home node logs the re-
questing node in a software managed directory and sends the block
back. When the block is received, the data is written to memory
and the block status bits are marked valid. If the virtual page con-
taining the block is not mapped to a local physical page, a new page
table entry is created and only the newly arrived block is marked
valid. The remote data may be loaded into the on-chip cache, and
modifications to the data will automatically mark the block state
dirty. More complex coherence schemes can map blocks from
different virtual pages into the same physical page, reducing the
amount of unmapped physical memory.

The software handlers used to transmit data from node to
node may implement a variety of coherence policies and proto-
cols. This code is easily incorporated within the remote read and
write handlers described in Section 4.2. Using local memory as a
repository will allow more remote data to be cached locally than
could fit in the on-chip cache alone.

��ù���÷�������ù�ý�ú	�
Directory-based, cache coherent multiprocessors

such as Alewife [1] and DASH [20] implement coherence policies
in hardware. This improves performance at the cost of flexibility.
Like the M–Machine, FLASH [19] implements remote memory
access and cache coherence in software, but uses a coprocessor.
However, this system does not provide block status bits in the TLB
to support caching remote data in DRAM. The subpage status bits
of the KSR-1 [9] perform a function similar to that of the block
status bits of the M–Machine.

Implementing remote memory access and coherence com-
pletely in software on a conventional processor would involve
delays much greater than those shown in Table 1, as evidenced by
experiencewith the Ivy system [21]. The M–Machine’s fast excep-
tion handling in a dedicated H–Thread avoids the delay associated
with context switching and allows the user thread to execute in par-
allel with the exception handler. The GTLB avoids the overhead
of manual translation and the cost of a system call to access the
network. Finally, the M–Machine provides memory-mapped ad-
dressing of thread registers to allow the operation to be completed
in software.


 ����*ö�÷-ø1ù�ú�þ���ý������ ö�ÿ�þ
The M–Machine addresses the problem of parallel software by
supporting an incremental approach to parallelization. Unlike
conventional parallel machines, the M–Machine is designed to
efficiently run a sequential program that uses all the machine’s
memory, including that on remote nodes. A shared address space,
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high-performance messaging, and caching remote data in local
DRAM provide fast access to remote data. The programmer can
then incrementally improve program performance by adding paral-
lelism. The cache coherence mechanisms enable efficient sharing
of data across processors. The high-speed messaging network and
runtime system support allow for low-overhead task parallelism.
The ability to support fine-grain parallelism increases the number
of suitable tasks and allows extraction of more parallelism from
small problems. Support for synchronizing memory operations
and global addressing simplifies user-level communication and
synchronization between tasks and reduces overhead. Caching in
DRAM automates much of the data placement and migration. For
the cases where a programmer wants to extract the maximum per-
formance, fast, protected, user-level messages may be employed.

The M–Machine software is being designed and imple-
mented jointly with the Scalable Concurrent Programming Lab-
oratory at Caltech. The Multiflow compiler [22] is being ported
to the M–Machine to generate long instructions spanning mul-
tiple clusters. The Multiflow compiler is designed to generate
VLIW instructions from a sequential source program using Trace
Scheduling. The modifications required to generate multicluster
code for the M–Machineconsist of partitioning the graph (DAG) of
the trace into sub-DAGs that may be executed on different clusters
with minimal communication. The sub-DAGs are then scheduled
for each cluster using the greedy instruction scheduler of the Mul-
tiflow compiler. Explicit synchronization is required to take the
place of the implicit synchronization of a true VLIW. Communi-
cation is implemented by writing to remote registers, while the
global condition registers are used to implement explicit barrier
synchronization. An algorithm that might be used to discover
the synchronization points is described in [34]. The compiler
currently generates code for a single cluster, but adding the par-
titioning and synchronization as well as integrating the standard
optimizations is underway.

A prototype runtime system consisting of primitive message
and event handlers has also been implemented. Approximately
90 percent of the runtime system code is implemented in C, com-
piled using the Multiflow compiler, and runs on the M–Machine
simulator; the remaining 10 percent are assembly code routines
which access hardware features not exposed to the compiler. The
runtime system consists of independent modules which manage
virtual memory allocation, physical memory allocation, memory
coherence between nodes, and multiple threads on a single node
and across nodes. The implementation of the runtime system is
described more fully in [11].

�����	�������� "!��#�

In this paper we have described the architecture of the M–Machine
with an emphasis on its novel features. The M–Machine, currently
under development, is a 3–D mesh, each node of which contains a
multi-ALU processor (MAP) and 8 MBytes of synchronous DRAM.
Each MAP chip consists of four 64-bit 3-issue clusters connected
by a cluster switch, a 4-way interleaved on-chip cache, an external
memory interface, and on-chip network interfaces and routers.

Instruction level parallelism is exploited both within a clus-
ter and across clusters using H–Threads. An H–Thread may com-
municate and synchronize through registers with H–Threads on

different clusters but within the same V–Thread. A 27 point sten-
cil computation on 4 H–Threads (12-wide issue) has half the static
instruction count of 1 H–Thread (3-wide issue).

To increase use of the local memory and execution band-
width, multiple tasks, called V–Threads, are interleaved on a cycle-
by-cycle basis independently on each of the clusters. Each cycle,
a different thread may be selected for execution, or if only one
V–Thread is resident, it may issue an instruction every cycle on
each cluster.

The M–Machine has a user–level, protected, fast message
passing substrate to reduce communication and remote memory
latencies. Messages are composed in general registers and sent via
a user level SEND instruction. Arriving messages are extracted by
a system-level software message dispatch handler, which is always
resident in the event V–Thread. The messagecontents are accessed
via a register mapped queue. The message need not be copied to
or from memory on either the sending or receiving side. Two level
translation is used to independently relocate objects in the physical
address space on a node, and in the processor namespace.

The fast message system is used to provide the user with
transparent access to remote memory. When a user’s load or store
instruction traps to software on a LTLB miss, a message is sent
to a remote node to perform the access. While slower than local
accesses, a remote load can be satisfied in 138 cycles, while a
remote store can be satisfied in 74 cycles. In order to facilitate
local caching of remote data, 2 status bits for each block (8 words)
in a page are added to the LTLB and page table entries. When
an invalid block is accessed, a trap to software occurs which can
retrieve the missing block from a remote node, copy it into local
memory, and mark the status bits valid.

A cycle-accurate simulator of the M–Machine has been com-
pleted and is being used for software development. The hardware
design of the MAP is currently underway; 80% of the modules
have been designed and 60% of the execution unit schematics as
well as layout of several modules is complete. The MAP will be
implemented on a single integrated circuit with a projected area of
17 $%$'& 18 $%$ in 0 ( 5 )*$ CMOS with 5 metal layers. The target
clockrate is 100MHz and tapeout is expected in 1996.

The M–Machine addresses the issues of non-uniform tech-
nology scaling and of programmability. By changing the ratio of
processor to memory area, the M–Machine better balances cost
and improves the utilization of the increasingly critical memory
bandwidth. The M–Machine increases the ratio of processor to
memory silicon area to 11% from 0.13% for a typical 1996 system.
A 32–node (128 clusters) M–Machine with a total of 256 MBytes
of memory requires 50% more area than a uniprocessor with the
same amount of memory but provides 128 times as much peak
performance, a 85:1 improvement in peak-performance/area. This
increase in processing resources allows the M–Machine to saturate
the costly DRAM bandwidth even for problems with good locality
and thus is expected to run programs faster, allowing a fixed-size
memory system to run more programs per unit time. The 85:1
improvement in peak-performance/area makes the increased par-
allelism of the M–Machine cost effective even in cases where only
a small fraction of its peak performance is realized.

We expect that the architecture concepts demonstrated in the
M–Machine will be useful in machines ranging from single-node
personal computers, through workstations with tens of nodes, to
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servers with hundreds to thousands of nodes. Memory bandwidth
and capacity are becoming the dominant factor in the cost and
performance of systems of all scales. By changing the proces-
sor/memory ratio, providing methods for extracting parallelism at
all levels, and supporting an incremental approach to parallelism,
the M–Machine’s mechanisms will lead to more cost effective and
programmable machines across the price-performance spectrum.
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