Skip to main content
Log in

F[x]-lattice basis reduction algorithm and multisequence synthesis

  • Scientific Papers
  • Published:
Science in China Series : Information Sciences Aims and scope Submit manuscript

Abstract

By means ofF[x]-lattice basis reduction algorithm, a new algorithm is presented for synthesizing minimum length linear feedback shift registers (or minimal polynomials) for the given multiple sequences over a fieldF. Its computational complexity isO(N 2) operations inF whereN is the length of each sequence. A necessary and sufficient condition for the uniqueness of minimal polynomials is given. The set and exact number of all minimal polynomials are also described whenF is a finite field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp, E. R., Algebraic Coding Theory, New York: McGraw Hill, 1969.

    Google Scholar 

  2. Massey, J. L., Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 1969, IT-15(1): 122–127.

    Article  MathSciNet  Google Scholar 

  3. Mills, W. H., Continued fractions and linear recurrence, Math. Computation, 1975, 29(129): 173–180.

    Article  MATH  MathSciNet  Google Scholar 

  4. Sugiyama, Y., Kasahara, M., Hirasawa, S. et al., A method for solving key equation for decoding Goppa codes, Inform. Contr., 1975, 27: 87–99.

    Article  MATH  MathSciNet  Google Scholar 

  5. Feng, G. L., Tzeng, K. K., A generalized Euclidean algorithm for multisequence shift-register synthesis, IEEE Trans. Inform. Theory, 1989, 35(3): 584–594.

    Article  MATH  MathSciNet  Google Scholar 

  6. Feng, G. L., Tzeng, K. K., A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes, IEEE Trans. Inform. Theory, 1991, 37(5): 1274–1287.

    Article  MATH  MathSciNet  Google Scholar 

  7. Sakata, S., Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array, J. Symbolic Computation, 1988, 5: 321–337.

    Article  MATH  MathSciNet  Google Scholar 

  8. Lenstra, A. K., Lenstra, H. W., Lovosz, L., Factoring polynomials with rational coefficients, Math. Ann., 1982, 261: 515–534.

    Article  MATH  MathSciNet  Google Scholar 

  9. Shamir, A., A polynomial time algorithm for breaking the basic Merkle-Helllman cryptosystem, IEEE Trans. Inform. Theory, 1984, 30(5): 699–704.

    Article  MATH  MathSciNet  Google Scholar 

  10. Lagarias, J. C., Odlyzko, A. M., Soluting low density subset problems, J. Assoc. Comp. Mach., 1985, 32: 229–246.

    MATH  MathSciNet  Google Scholar 

  11. Coppersmith, D., Small solutions to polynomial equations and low exponent RSA vulnerabilities, Journal of Cryptology, 1997, 10: 233–260.

    Article  MATH  MathSciNet  Google Scholar 

  12. Schmidt, W. M., Construction and estimation of bases in function fields, J. Number Theory, 1991, 39(2): 181–224.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Liping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhu, Y. F[x]-lattice basis reduction algorithm and multisequence synthesis. Sci China Ser F 44, 321–328 (2001). https://doi.org/10.1007/BF02714735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714735

Keywords

Navigation