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Abstract

This paper presents some new criteria for uniform and non uniform asymptotic sta-
bility of equilibria for time-variant differential equations and this within a Liapunov
approach. The stability criteria are formulated in terms of certain observability condi-
tions with the output derived from the Liapunov function. For some classes of systems,
this system theoretic interpretation proves to be fruitful since—after establishing the
invariance of observability under output injection—this enables us to check the sta-
bility criteria on a simpler system. This procedure is illustrated for some classical
examples.

Key Words: control systems, differential equations, time-variance, observability, asymp-
totic stability, circle criterion

*This paper presents research results of the Belgian Programme on Interuniversity Poles of Attraction,
initiated by the Belgian State , Prime Minister’s Office for Science, Technology and Culture. The scientific
responsibilty rests with its authors.



1 Introduction

Stability of an equilibrium 2 = 0 of a differential equation & = f(xz,t) is typically estab-
lished by means of a Lyapunov function, that is, a positive definite function with negative
semidefinite time-derivative. For asymptotic stability, extra conditions are needed. Neg-
ative definiteness of the time-derivative would suffice, but this property is not always
possessed by the natural candidate for the Lyapunov function — a typical example being
the energy for the damped oscillator.

Pursuing results initiated in [1, 2, 17], this paper presents new criteria for attractivity
in such situations. Negative definiteness of V is not assumed but particular integral
conditions on V are imposed to guarantee that V(z,) decreases “from time to time” and
eventually converge to zero. Defining an output y = h(z,t) such that ||y[|> = =V, our
integral conditions are of the form

to+T
[ Intattozo ta)ae = o (1)
0

(with subtle variants in the choice of tg, T, and €) which is a (zero)-observability condition
for the system & = f(z,t), y = h(z,1).

The link between attractivity and observability is not new in the literature. In [10, 5] a
link was established between exponential stability of linear time-varying differential equa-
tions and some form of observability. Also Miller and Michel [12] proved a relationship
between observability and asymptotic stability for linear time-invariant differential equa-
tions and for time-invariant hamiltonian systems with added damping. Narendra and
Annaswamy [15] established that uniform observability of the pair (f, k) implies uniform
attractivity and therefore also uniform asymptotic stability. The main novelty of the cri-
teria presented in this paper is that they provide sufficient conditions not only for uniform
attractivity but also for nonuniform attractivity, which is known to be a considerably more
difficult question.

The weakness of integral conditions like (1) is that, in principle, they require the
knowledge of the solutions, at least on some time interval. For autonomous systems, and
particular classes of nonautonomous systems, LaSalle Invariance Principle drastically re-
duces this difficulty because the invariance of the set where the output identically vanishes
is usually considerably simpler to check. When LaSalle Invariance Principle is not appli-
cable, an alternative is to develop techniques which allow to check the integral conditions
not along the solutions of the original system but along the solutions of a “simpler” sys-
tem. In the context of uniform asymptotic stability, Artstein [7] reduced the problem of
checking uniform noticeability — a notion slightly stronger than uniform observability — to
checking mere observability for the family of all time-invariant limiting equations of the
original equation. The approach proposed in the present paper, which is called output
injection and was originally used in [5], is totally different. Output injection defines a class
of output feedback transformations which leave the observability properties unchanged,
but, in some classical problems, transforms the original system into a system whose flow
can be easily calculated. In contrast to the approach of limiting equation, the output
injection approach is applicable to nonuniform results as well.

The paper is organised as follows. After formulating the problem in Section 2, we
discuss several observability notions in Section 3, which differ by the uniformity require-
ments of the conditions. The stability criteria are presented in Section 4 and reformulated



in Section 5 with the help of the output injection tool. Some classical applications are
considered in Section 6.

2 General assumptions and problem statement

General assumptions. Let U be an open subset of IR" containing the origin. Consider
the differential equation

T = f(xv t) (S)
where f: U x IR — IR" is continuous in z, measurable in ¢, and f(0,¢) = 0 for all . For

each initial state g € U and for each initial time #5 > 0, we assume existence and unicity
of the solutions (t; zg, 1) of (9) over [tg, +00).

Uniform stability assumption. Assume there exists a Liapunov function V €
CYU x R; IR) with the following standard properties:

(i) V is positive definite: there exists a function vy of class K such that

V(z,t) e U xR :V(z,t) > (|| 2 ])and V(0,1)=0 Vi€ R

(ii) V is decrescent: there exists a function v, of class K such that

V(z,t) e U x IR :V(z,t) <] z|)
(iii) V is negative semi-definite:

V(z, 1) € U X R :V(x,1):= (88—‘; + VV.f)(2,t) <0

Uniform stability of the null solution follows from (i), (ii), and (iii) (see e.g. [18]). We will
assume that V satisfies the following additional assumption:

(iv) V is continuous in z, uniformly with respect to time:
Va € U, Ve > 0, 3 an open ball B(z,6) C U such that

Va' € B(xz,8),Vt € R | V(x,t)—V(a' t)|<e¢

Notice that (ii) implies that the continuity of V' in 2 = 0 is uniform (with respect to t)
but that (iv) requires uniform continuity for each z € U.

Problem statement. Under the above assumptions (i)-(iv) to find sufficient con-
ditions for asymptotic stability of the null solution of (.5).

3 Observability

We introduce in this section several notions of observability, different from standard notions
of observability in that they each involve a particular type of uniformity (with respect
to time). The uniformity requirements are weaker than those considered in the classical
definition of uniform observability ([5]). Simple examples are included in order to illustrate
several aspects of the definitions.



Definition 1 An output for the system (.9) is a mapping h : U x IR — IR™, continuous
in # and measurable in ¢, such that h(0,7) = 0 for all £. By the system (f,h) or the pair
(f,h) is meant a differential equation (\5) with output A i.e.

with h(0,t) = 0Vt

3.1 Observability

Let to be an initial time for (.9). Observability of the pair (f, k) is related to the problem
of reconstructing z(¢; zg, o) from the output y(t) = h(z(t; zo,%0),t) defined on [tg, 1o+ T].
Here we require this property only for the output y(¢) = 0, i.e. the null solution z(¢) =0
of (9) is the unique solution leading to the output y(¢) = 0:

Definition 2 The pair (f,h) is observable if ¥V tg > 0, Yzg # 0 in the neighborhood of
the origin, 3 T'(1o, 20) > 0, €(fp, x9) > 0 such that

to+T
Wi(tg,to +T)(20) := / | h(z(t; 20, t0), 1) ||> dt > € (2)
to
where || . || is the Euclidean norm. T' may be interpreted as the observation period and ¢

as an energy level of the output. The system is observable if one can guarantee a nonzero
level of output energy € by observing the system over a finite period of time T.

Remark 1 (linear case) Let f(z,t) = A(t)xz and h(z,t) = C(t)x Let ®(t,ty) the transition
matrix associated with @ = A(¢)z. Then
W(to, to 4 T)($0) = $(1;G(t0, to 4 T)$0
where G(to, 1o + T') is the “observability Gramian” defined by
to+T
Gloto+T)i= [ T (110)CT(CWD(1,10) di (3)
to

The pair (A, (') is observable if Vtg > 0,3T(tg) > 0 such that G(tg,to + T') is a positive
definite matrix.

3.2 Uniformity requirements

Three additional types of observability will be introduced, corresponding to three different
uniformity requirements (with respect to #g) for the constants 7' and ¢ introduced above.

Definition 3 The pair (f,h) is called uniformly observable if the constants 7" and € in
(2) can be chosen independent of o !, i.e. Vag # 0 in the neighborhood of the origin
AT (z) > 0,3 €(xg) > 0 such that W(tg, 1o+ T')(20) > €Vig

!For linear systems, a particular type of uniform observability was introduced by Kalman [10] in the
study of the optimal regulator problem. The uniformity requirements of Definition 3 are part of the uni-
formity conditions of the Kalman definition. The Kalman conditon implies || ®(¢, o) ||< v(|t — to])V(¢, t0).
This property is too strong for our purposes but will play a role later.
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The following definition considers a similar uniformity condition with uniformity imposed
only for a particular sequence of initial times tending to infinity.

Definition 4 The pair (f,h) is called recurrently uniformly observable if 3(t;);>1 — oo
such that for each nonzero xg in a neighborhood of the origin, there exist two constants
T =T(zo) > 0and € = ¢(xo) > 0, and an integer I(zg) > 1 such that

Vi>T: Wt t;+T)(xg) > € (4)

The next definition only imposes a uniformity condition for the minimal level of output
energy. The observation interval T" may increase with #g.

Definition 5 The pair (f, h) is called weakly uniformly observable if € in (2) is independent
of 1y : for each zg in a neighborhood of the origin, for each i, there exist two constants
T =T(zg,%9) > 0 and € = ¢(zg) > 0 such that

W(to,to —|— T)($0) Z € (5)

For convenience, by ‘recurrent observability’ and ‘weak observability’ we mean ‘recurrent
uniform observability’ and ‘weak uniform observability’ respectively.

Proposition 1 Uniform observability implies recurrent observability which in turn im-
plies weak observability.

Proof:

(i) Definition 4 is obviously weaker than Definition 3 since the uniformity is not required
for all ty but only for a particular sequence (4;);>1 — 00

(ii) Definition 5 is weaker than Definition 4: let 2y be in a neighborhood of the origin
and consider fg. Recurrent observability implies the existence of an (increasing) sequence
(ti)iZI such that for some constants T > 0 and ¢ > 0, and for some integer I > 1,
W(t;,t; + T)(xg) > € for ¢ > I. Let k > I be sufficiently large such that ¢, > .
Then W(to,tx + T)(z0) > W(tk,tx + T)(20) > € which proves weak observability since
ity +T = tg + T’ for some particular 7". m|

The following example illustrates the different definitions of observability:
Example 1 Let 2 be scalar and f(z,t) = =%, 5 > 1.

(i) let h(z,t) = z; then G(tg,t0+T) = tzo-|-TT' Observability is uniform: choosing 7' =1,

the observabililty Gramian G(tg,t0+ 1) > % for each tg > 1.

(i) let h(x,t) = h(t)x with h(t) = max(0,sin(In ¢)); then h(z,t) vanishes on increasing
intervals of time as time increases. As a consequence, for each T" > 0, there exists a g
sufficiently large such that G(tg,to+7) = 0. Hence observability is not uniform. Next
define an increasing sequence (;);>1 such that sin(In #;) = 1 for each ¢ > 1. Then
G(t;,t; +T) > 0 for any choice of T' > 0. This establishes recurrent observability.

(iii) let h(z,t) = %; then G(to,to+T) = $(1 - %) For every constant choice of
T, G(to,to+T) tends to 0 as ?p tends to infinity. Hence observability is not uniform
nor recurrent. On the contrary, choosing for instance T' = to, W(to,t0 + T) = 3/8
for all t5. This establishes weak observability.



(iv) let h(z,t) = F; then G(to,to+T) = %(% — %) This quantity tends to 0 as ¢y
tends to infinity whatever be the choice of T'(#g) > 0. The system is just observable,

without any type of uniformity.

Remark 2 ‘Recurrent observability’ is obviously equivalent to the following: there exists
a sequence (ti)iZI — oo such that for each zg in a neighborhood of the origin, there exists
a constant 7' = T'(zg) > 0 such that
litm inf W(t;, t;+ T)(x0) >0 (6)
;00
We stress that the choice of the sequence (ti)iZI in this definition is independent of zq. If
dependence on g is allowed, the definition becomes equivalent to the following: for each
zg in a neighborhood of the origin, there exists a constant 7' = T'(zg) > 0 and a sequence
t; such that
lim sup W(t;,t; + T)(2z0) > 0 (7)

t;—00
In general, (7) does not imply any kind of observability as is illustrated by the following
example.

Example 2 Consider the following perturbed oscillator:

il = T2
ig = —21 — a(t,$2)$2
y = a(t,xg)xy
with
a(t,zy) = cost, xycost >0
= 0, xocost <0

Let to an initial time such that costy > 0. Then the initial condition z¢ = (0, — costp)
leads to the solution z(t; 20, 1p) = (— costgsin t, — costgcost)” and to the output y(t) = 0.
As a consequence, the system is not observable. However it can be shown that condition

(7) is satisfied with 7" > 0 arbitrary small ( for instance by using the results of Section 3.3).
* O

4 Attractivity criteria

4.1 Observability-like conditions

We start by recalling a classical integral condition, proposed by Narendra and Annaswamy
[15], which guarantees that the Liapunov function V' decreases along non-trivial solutions,
not at each time instant, but in the average:

Theorem 1 Suppose that (5) admits a Liapunov function with properties (i)-(iii). Then
uniform asymptotic stability of the null solution of (.9) follows from the following condition:
given g nonzero and sufficiently close to the origin, there exists a finite T'(2¢) > 0 and a
function £ of class K such that for tg sufficiently large

4T
Vi >tg: /t ' =V (z(1;20,t0), 7)dT > £(]] 2(t; 20,70) |])- (8)

a



Condition (8) can be interpreted as an observability condition on the time derivative of
V. More precisely, with i : U x IR — IR™ any output function satisfying

| h(z,t) ||?= =V (2, ) Y(z,t) € U x R (0OUT)

then condition (8) implies in particular that the pair (f,h) is eventually uniformly ob-
servable. Indeed both T and € featuring in the definition of uniform observability may be
taken independent of tg; this is obvious for T' and for € one takes &(|| 2o ||).

Theorem 1, which is established by Narendra and Annaswamy [15], is related to the
result proved by Artstein [7] where uniform asymptotic stability is obtained when the
system is uniformly noticeable using a nonincreasing Liapunov function. This uniform
noticeability used by Artstein can be seen as a stronger version of the uniform observability
which we use. The integral length of condition (8) i.e. T(z¢) may depend on zy whereas
the uniform noticeability condition of Artstein requires an interval length T independent
of z9. The next sections of the present paper provide alternative convergence criteria,
which are not formulated by Narandra and Annasamy [15] neither by Artstein [7]. Our
conditions are formulated as observability conditions for the pair (f, h). They are weaker
than (8); in turn they only guarantee attractivity rather than uniform attractivity. This
will be discussed in more detail later on.

4.2 Recurrent observability and attractivity

We introduce an additional assumption on the solutions of (.5'). We assume that (for o
sufficiently large) the solutions satisfy the following continuity assumption with respect to
the initial condition zg:

Continuity Assumption on Solutions: Let zg be sufficiently close to the origin. Then
there exists a 6 > 0 and a function v,,(t) independent of ¢y such that

Yt >0 || 2(to + 90, to) — 2(to + 1520, 0) [|< Yarg (1) || 90 — o || (9)
Yyo € B(zg, ) and Vg is sufficiently large.

The following lemma is a sufficient condition for (9) to be true:

Lemma 1 Suppose that for each g € U and for large ¢, f is locally Lipschitz in & with
bounded local Lipschitz function [, (¢). Suppose that the null solution of (.5) is uniformly
stable. Then the solutions of (.9) satisfy the Continuity Assumption.

Proof: Let ¢ > 0 such that B.(0) C U. Uniform stability of the origin implies that for
some 6 > 0, all solutions of (5) with initial condition 29 € Bs(0) remain in the compact
set B.(0). Since the stability is uniform ¢ is independent of ¢g. Define the constant K as
the maximum of the bounded Lipschitz functions /,(¢) associated with a finite covering of
B.(0). By continuity of solutions of differential equations with respect to initial conditions,
we have for ¢y large enough:

Vi > 0] 2(to + t; yo, o) — 2(to + t; 20, to) || <|| yo — z0 || €~

provided that zg and yo belong to Bs(0). O

Proposition 2 Let f(x,t) = A(?)z and suppose uniform stability of the origin. Then the
Continuity Assumption is satisfied.



Proof: Let ®(t,1p) is transition matrix asociated to & = A(¢)z. Then the Continuity
Assumption can be reformulated as follows: there exists a function 4 such that for g
sufficiently large and for t > g

| ¢(t + 1o, o) [|< (1) (10)
This is implied by uniform stability since uniform stability of the origin is equivalent to
the existence of a constant 4 such that (10) holds. ]

We are now in a position to state one of the main theorems of the paper.

Theorem 2 Suppose that (.9) satisfies the Continuity Assumption and admits a Liapunov
function with properties (i)-(iv). Let h(z,t) be an output function satisfying (OUT'). Then
recurrent observability of the pair (f,h) is a sufficient condition for asymptotic stability
of the null solution of (.5).

Proof Assume that the pair (f, k) is recurrently observable. Then there exists a sequence
(t;)j>1 — 00 as j — oo such that for each z in a neighborhood N of the origin, there
exists a finite time T'= T'(x) > 0 such that

t+T .
lim inf —V(z(t;z,t;),t)dt > 0 (11)

t
700 t]

Choose ¢ > 0 small enough such that B.(0) C A. Uniform stability of the null
solution implies the existence of a positive ¢ such that if 2 € Bs(0), to arbitrary, the state
z(t; 20, 1o) belongs to B.(0) for t > ty. Consider this trajectory at times t; > #; defined by
the above sequence, i.e. x(t;;2q,%). By compactness of B.(0) there exists an increasing
subsequence of times t; > g, with #; — o0 as i — oo such that (denoting z(t;; zq,%0) by

lim z; =p
11— 00

with p € B.(0). We will show that p is necessarily the origin. Since the argument can
be repeated for each xg in a neighborhood of the origin, this establishes weak attractivity
of the origin. But weak attractivity implies attractivity under the assumption of uniform
stability (see for instance ex. 6.8. p. 28 in [16]). The proof is therefore complete if we can
show p = 0. The proof goes by contradiction. Assume that p # 0.

I. Since V(z(t; zo,10),t) is nonincreasing by Property (iii), and positive, its limit exists:

V= tlggo V(z(t;zo,t0),1) (12)
Since Zlggo x; = p, assumption (iv) on V implies
zli>rgo | V(2 t) = Vip,ti) |= 0 (13)
and by (12) )
Zlggo Vip,t;) = Z1i>1r(r>1o V(g t;) =V (14)

IT. Consider now the sequence z(t; + T p,t;),t; — oo (with T = T(p) chosen as stipulated
in the definition of recurrent observability). By the Continuity Assumption, there exists
K* > 0 and v > 0, such that for ¢; large enough and for ¢ € B, (p):

| 2(t; + Tsq,t:) — 2(t; + Tip, ta) |[<|| g —p || K~



Then

lim || 2(t; + T 2i,t) —2(t; + Tip, t;) [|= 0 (15)
since lim z; = p. Then by assumption (iv) on V, (15) implies that
lim |V(2(t; + Tywi,ti), t; + T) = V(a(ti + Tip,ti), t: + T)| = 0 (16)

Consider the sequence of elements V' (a(t; + T p,t;),t; + T) with t; — oo .These elements
belong to the interval [0,72(]| p ||)] by Property (i) and Property (ii). Then there exists
a subsequence t — oo of the sequence (t;) corresponding to a subsequence iz, — 00
such that

tsub

. hm V(x(tisub —I_ T7p7 tisub)’ tisub —I_ T) =a (17)

TLayub—>00

for some a > 0 Noting that for each ¢; , we have

tsub

V(x(tisub —I_ T7p7 tisub)’ tisub —I_ T) =
tisub-l—T .
=V(p.ti.,) + V(z(t;p,ti,,,), 1)dt (18)

tisub

we conclude from taking the limit in (18), taking into account (17), (11) and (14) that

a<V (19)

wisub = x(tisub; xo? tO)

|V($(tisub —I_ T7 xisub’ tisub)’ tisub —I_ T) - a| S

|V($(tisub —I_ T7 xisub’ tisub)’ tisub —I_ T) - V(x(tisub —I_ T7p7 tisub)’ tisub —I_ T)| —I_
+|V($(tlsub —I_ T7p7 tisub)’ tisub —I_ T) - a| (20)

and by (16) and (17) we obtain from (20)

. hm V(x(tisub —I_ T7 wicub7tisub)7tisub —I_ T) =a< V (21)

2 aub—r 00 h

ITI. By definition of V/, _
V(@ (t; 20, t0), 1) > V, Vit (22)

But (21) states that V(a(t;,,, + T;4,,,%i.,,)) < V for igs large enough. This is in

contradiction with (22) since all states
w(tisub —I_ T7 xisub’ tisub)

belong to the trajectory z(t;xo,t9). Therefore our original assumption that p # 0 is
impossible. a

Although both Theorem 1 and Theorem 2 require a decay of the Liapunov function over
a finite period of time T, there are important differences. Recall that Theorem 1 implies
uniform asymptotic stability, while Theorem 2 only guarantees asymptotic stability.

We illustrate these differences further by discussing a few examples. A first obvious
difference between the two theorems is that the decay of V over some time period featuring
in Theorem 2 is imposed for a sequence of times rather than for all #:



Example 3 Let f({,2) = —k*(t)z with x € IR™ and k*(¢) a scalar function. The Liapunov
function V(z) = 272 /2 has a semi-definite time derivative

V(t,z) = —k*(t)z 2

which implies uniform stability of the origin. Attractivity of the origin depends on the
“decaying” effect of k%(t). Let k*(t) = max(0,sin(In¢)). Then (8) cannot be satisfied for
reasons similar to those explained in Example 2.1. Defining the output h(z,t) = k(¢)VaTx,
one verifies (as in Example 1) that the pair (f, h) is recurrently observable as in Example
2. As a consequence, asymptotic stability follows from Theorem 2.

A second and more fundamental difference is that, for a particular initial condition
xg, our observability condition deals with the trajectory x(t;xzq,to) over the finite time
interval [to,%o + T] for different initial times ¢y. The Narendra condition deals with the
trajectory z(t; zo, 7o) over the infinite interval [tg, 4 00). In particular, our condition does
not guarantee that the decay of V' remains uniform or even recurrent along the whole
trajectory. This is illustrated in the following example:

Example 4 Let x be scalar, ¢t > 0 and

flz,t) = —2, ta2>1

= 0, tz? < 1 (23)

Contrary to the general assumptions, this time f is not continuous in z. The notions of
solutions of (23) and of asymptotic stability of the null solution are considered in the sense
of Filippov (see e.g. [9]). Theorem 2 still applies provided that the solutions of (23) satisfy
the Continuity Assumption.

The solutions of (23) can easily be described in the plane (z,?) (i.e. the phase plane of the
system @ = f(x,t), t = 1). The curve C' = {(z,t) | tz? = 1} is invariant in the following
sense: if (zg,%p) € C then the only Filippov solution is given by x(¢; zo, to) = 1/tox2/t and
hence (z(#; zo,t0),t) € C for all t > t5. On the other hand, this invariant curve is reached
in finite time with the solution z(t;20,%0) = 2o if to22 < 1 or z(t; 20, t0) = zoe~ 1) if
toz2 > 1. As a consequence, every solution in the sense of Filippov eventually reaches the
curve C' and then converges to = 0.

Clearly attractivity is not uniform (w.r.to time) and (8) does not apply. The Liapunov
function V() = 2%/2 has a negative semi-definite time derivative V(¢,2) = = f(¢,z). This
implies stability. Defining the output h(z,?) = — f(z,1), one easily calculates

2
fim inf W (to, to + T)(20) = -2(1 — e~27) (24)
to—00 2
Observability of the pair (f, k) is hence recurrent (in fact for every sequence (%;);>1 con-
verging to infinity). Asymptotic stability of the origin follows from Theorem 2. Notice
that along any particular trajectory of the system, V eventually decreases as 1/, i.e. does
not decay uniformly over a fixed period of time 7.

4.3 Weak observability and attractivity

Theorem 2 requires a decay of the Liapunov function over a finite period T. In this section
we provide a weaker criterion (i.e. the period T may increase with the initial time) at the
expense of a stronger Continuity Assumption:

10



Strong Continuity Assumption on Solutions: the solutions of (9) satisfy the Strong
Continuity Assumption if Continuity Assumption (9) is satisfied for each z¢ in a neigh-
borhood of the origin, with a function =,, bounded over [0, +0c0)

Theorem 3 Suppose that (9) satisfies the Strong Continuity Assumption and admits a
Liapunov function with properties (i)-(iv). Let h(x,t) be an output function satisfying
(OUT). Then weak observability of the pair (f,h) is a sufficient condition for asymptotic
stability of the null solution of (.5).

Proof: We omit the proof since it follows the same lines as in Theorem 2. By using the
Strong Continuity Assumption, the relation (15) can be replaced by

lim (limsup(|| «(t; + T 24, t:) — a(t; + Ty p, 1) []) = 0 (25)

12— 00 T—00

and every subsequent relation involving the period T is adapted accordingly. O

We end this section with a version of Theorem 3 in the linear case. For f(z,t) = A(t)z we
have noticed in the proof of Proposition 2 that uniform stability of the origin is equivalent
to the Strong Continuity Assumption.

Next suppose that a quadratic Liapunov function exists with a negative semidefi-
nite derivative. More precisely, assume that there exists a Liapunov function V(z,t) =
«T P(t)z, with P(t) symmetric and continuously differentiable, with the following proper-
ties:

(i’) there exists constant a and 3 such that al < P(t) < 5I;

(ii") V = —2TC(t)CT(t)x for some matrix C(1) : R — IR™ x IR™.

Notice that in this case condition (iv) is satisfied. Indeed, if 2 and y belong to B.(0), we
have

| 2" P(t)z = y" P(t)y |=| (z = )" P()(x + y) | < 4ep
which establishes condition (iv).

One immediately obtains the following theorem

Theorem 4 Consider the linear system & = A(t)x. Suppose that V(z,t) = 2T P(t)z is a
Liapunov function satisfying conditions (i’)-(ii’). Then & = A(#)x is asymptotically stable
if the pair (A4, C) is weakly observable, i.e.

fiminf [ 7 (1, t0)C()CT(1)(t, 10) dt > 6T (26)

t0—>OO tO

with § an arbitrary positive constant? .

2When a linear pair (A, C) is considered, it is easy to prove the equivalence between Definition 5 for
weak observability and (26) by taking e(zo) = exd zo.

11



5 Output injection

5.1 Invariance of observability under output injection

In the previous section we have reduced a particular problem of asymptotic stability to an
observability question. Checking the observability of a pair (f, h) may in general be quite
hard; it may require an explicit knowledge of the trajectories of the system. However,
the property that observability is invariant under a large class of transformations of the
system may be used to arrive at a solvable problem in particular situations.

Consider a feedback gain k(z,t) : UXIR — IR"*™ and define k(1) := sup s || k(z,1) ||.
Assume that k(t) has a finite L?(tg,t0 + T)-norm || k || uniform with respect to each
finite T" and each initial time 7y, under consideration (this will depend on the notion of
observability).

The transformations we will consider in this section are called output injections and
are a generalization of the notion of output injection defined for linear systems.(see e.g.

[5, 12])

Definition 6 The pair (f,h) can be transformed into the pair (g, h) by output injection
if there exists a mapping k(z,?) introduced above such that

V(z,t) e UxIR: g(z,t)= f(z,t)+ k(z,t)h(z,1) (27)
The mapping k is called the feedback gain of the output injection.

The goal of this section is to characterize both the class of systems and the class of output
injections leaving the different observability properties introduced in Section 3.1 invariant.

Theorem 5 Observability is invariant under output injection.

Proof. Suppose that (f,h) is observable at time #5. Then there exists a period T such
that h(z(t;zo,10),1) =0 over [to,to + T] if and only if 29 = 0. Next consider any
other system (g, h) related to (f,h) by (27). Assume that for some o # 0, the output
h(z*(t; Fo, 10), 1) =" 0 over [to, to+ T]. Here a*(1; T, 1o) is a solution of g(z,t) The relation
(27) implies that f(z,t) = g¢(z,t) when h(z,t) = 0; this means that & = f(¢,2) and
& = g(t,2) have the same solution over [tg, %o+ T for the initial condition Zq. Since (f,h)
is observable, this implies that zg = 0. This establishes a contradiction. a

The next theorem covers the situations in which the period of observation is constant,
i.e. independent of #g.

Theorem 6 Consider the pair (f,h) with

o f Lipschitz in U x IR

e h continuous in x, uniformly with respect to ¢

Then uniform observability and recurrent observability are invariant under output injec-
tion.

12



Proof. We offer a proof for recurrent observability. A similar argument can be used for
uniform observability. Let g = f + kh with a feedback gain || k ||. Let 2*(#; 20,t0) denote
the solution of & = g(2,t) and x(?; xo,?p) denote the solution of & = f(x,1).

If (f,h) is recurrently observable, then there exists a sequence (#;);>; such that for each
zg # 0 there is a finite T' > 0 such that

T
liminf [ || h(2(t; + t; 20, 1), t: + 1) ||> dt > 0 (28)

t;—00 0

Next assume that the pair (g, /) is not recurrently observable; this implies that for some

Zo # 0 the following holds:

T
liminf [ || h(z*(t; + t; %0, t:), 8, + 1) ||* dt = 0 (29)
0

t;—00

By definition of g, we have for ¢ € [0, T]
1 1
| [t gt — [ A+ 0,04 1) 1=
0
—H/ (b 4+ Tos 1), 11 + (2™ (1 + 1 B0, 1), 15 + 1)d1 || <

t
<[[ 1l (/O(H h(a™(t; + 15 30, 1), 4 + 1) [|)*dt) /2
which implies by (29), for some subsequence (;), also denoted by (t;)
| & (t; + 520, t:) — f(2*(t; + 1520, 8;), t: +1) |25 0 as t; — o0

for all ¢ € [0,7T]. Using a standard theorem on approximations of solutions (see [8], p.285)
we have for all ¢ € [0,T]:

lim || a(t; + t; %o, t;) — ™ (t; + t; To, ;) ||= 0

t;—00

First notice that since h is continuous it is also uniformly continuous on compact spaces.
This and the fact that by assumption A is also continuous in x uniformly continuous w.r.t.
to the time imply that for all ¢ € [0, T]

i | Bt + 150, 10), 1 + 1) = B (5 + 150,10, 4+ 1) ||= (30)

But (29) implies that
| h(2*(t; + t; 20, 1), t: + 1) |22 0 for t; — (31)
This and (30) allow to conclude that for all ¢ € [0, 7]

Jim [ A(a(t + £ 20, ). 1 +1) P20
For large i, the function || h(2(t; + t; %o, 1;),%; + 1) ||* is bounded above by an integrable
function over [0,7]. Then by Lebesgue’s Dominated Convergence Theorem one concludes
that

T
lim | h(2(t; + t; o, t:), 8+ 1) ||> dt = 0 (32)
;00 0
This contradicts (28) only if Zo = 0. Therefore (29) cannot be true which implies that
observability of (g, h) is recurrent. O
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Example 5 Consider the scalar equation
i = f(t,x) = —7*(x,t)x (33)

where v is a scalar continuous function of z, uniformly w.r.t. ¢, and with finite L2-norm
in the neighborhood of the origin . Motivated by the previous section we consider the
output h(z,t) = v(z,t)r, associated to the Liapunov function V(z,¢) = 22/2. Since
0= f(z,t)+~(z,t)h(x,t), the pair (f,h) can be transformed by output injection into the
pair (0,h). By Theorem 6, observability of the pair (f, /) is recurrent provided that there
exists a sequence (ti)iZI — oo such that for each zg # 0 in a neighborhood of the origin

ti+T
lim inf v (z0,1) > 0 (34)

t;—00 ti

for some finite 7" > 0.

The next theorem is essentially restricted to the linear case (although an immediate
nonlinear extension is given in Remark 3). Unlike Theorem 6, it allows variable periods
of integration T'(to).

Theorem 7 Consider the pair (A, C') and let ®(¢, s) be the transition matrix of & = A(t)z.
Suppose that ®(t,s) is bounded for all (¢,s) (i.e the system is uniformly stable). Then
weakly uniform observability of the pair (A, ') is invariant under linear output injection
provided that the feedback gain matrix K(¢) and the output matrix C(¢) have a finite
norm in L%(to,to + T(to)) for each t.

Proof. Define F(t) := A(t) + K(t)C(t). Let U(to + t,to) denote the transition matrix of
& = F(t)z. Assume that the pair (F, (') is not weakly observable i.e. for some 2o # 0 and
some sequence t; — 00

ti-I—T(ti)
lim | C(&)U(t,t;)z0 ||* dt =0 (35)

t;—00 ti

By the variation of constants formula we know that for each ¢ and each t € [t;,t; + T'(#;)]

U(t, t;)xo = ®(t, ;)20 + t O(t,5)K(s)C(s)¥(s,t;)x0ds (36)

t;
By assumption ®(¢,s) is bounded for all (¢,s) and therefore (36) implies for each ¢
ti-I—T(ti)

sup || U(t,t;)zo — (L, )z ||< Cl/ || K(s)C(s)¥(s,t;)zo || ds  (37)
t€tsti+T (1))

2

for some constant C'{. By the Cauchy-Schwartz inequality we have for each

ti-I—T(ti)
/ | K ($)C(s)U (s, 1:)20 || ds <
1

LT(k) 2 5.n1/2 AT () 2 7N1/2
<[ IEG P [ Cs)Rs o | ds)

7 7
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and since the feedback gain K(t) has a finite norm L2(¢;,t; + T(t;)) for each i

ti+T (1) tit+T(ts)
[ K@U o 1 ds < Co [ oWtz | ds)2 (39)
t t;

for some constant Cy. Taking the limit of (37) for ¢; tending to infinity we obtain by (35)
and (38)
lim ( sup || U(t,t;)eg — (L, ti)zo ||) =0 (39)
00 et i+ T (1))

Now consider for each ¢ the quantity

ti-I—T(ti)
/ | C()®(t, t:)ao || dt (40)
t

which is equal to

ti+T(t) ti+T(ti)
[ hewwtame P dr [T €@t ) - it )0 | di+
t;

t;

ti—I—T(ti)
+ 2/15‘ | CO@(, 1) = (1, 1:))ao [|[| CO)W(E, Li)o || dt (41)

By (35) the first term of (41) tends to zero as ¢ tends to infinity. Since the output matrix
C(t) has a finite norm L*(#;,t; + T(t;)) for each i, the second term of (41) satisfies for
some constant C's

ti+T ()
[T @) W [ < €y s (00— (8o P
t teft; ti+T(t;)]

and therefore also tends to zero as i tends to infinity by (39). Finally invoking the Cauchy-
Schwartz inequality, we obtain that the last term of (41) tends to zero as i — oo We
conclude that

ti-I—T(ti)
Jim | C()®(t,t;)x0 ||* dt = 0 (42)
;00 t;
which is in contradiction with weak uniform observability of the pair A(t), C(%). ]

Remark 3 With a minor adaptation of the above proof, it is possible to show that The-
orem 7 remains true if the output h(z,t) and the feedback gain k(x,t) are Lipschitz
mappings with a Lipschitz function that has finite norm L%(tq,%o 4+ T(to)) for each t.

Example 6 Consider the scalar equation

&= [(t,x) = —a*(1)b(x) (43)

with ‘a’ measurable and ‘b’ Lipschitz. Suppose that b(xz)z > 0 for 2 # 0. We consider
the output h(z,t) = a(t)\/b(z)z, according to the Liapunov function V(z,t) = 22/2.
Define k(x,t) := h(z,t)/x. A Lipschitz function for h(x,t) is given by Ka(t) where K is
a Lipschitz constant for \/b(z)z. We claim that a necessary and sufficient condition for
weakly uniform observability of the pair (f,h) is weakly uniform observability of the pair

(0,h), ie.

Vip > 0: a?(t)dt = o (44)

to
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Indeed it is necessary and sufficient that (44) holds in order that for each ¢y there exists
a T(tg) such that

to+T (to)
/ (1)t = 1 (45)
to
Therefore we have for all g
to+T (to)
/ Ka*(t)dt = K (46)
to

which shows that the output and the gain have finite energy over the period of integration.
Since [ is the transition matrix of & = 0 and since f(z,t) = 0 — k(z,t)h(z,t), Theorem
7 and Remark 3 apply and weakly uniform observability is unchanged via the considered
output injection.

Since weakly uniform observability is weaker than recurrent (or uniform) observability,
the assumptions of Theorem 7 provide an alternative set of assumptions for Theorem 6 to
be true; in particular, we obtain the following corollary.

Corollary 1 Consider the pair (A(¢),C(t)) and let ®(¢,s) the transition matrix of & =
A(t)z. Suppose that for some function v of class K

(a) || @, s) [[< ([t =s]) V(L)
(b) C(t) has a finite L%(tg, o + T)-norm for each #o and each finite 7.

Then uniform observability of the pair (A(t),C(?)) is invariant under linear output injec-
tion provided that the feedback gain matrix K(¢) has a finite norm L2(tq,1o+ T') for each
to and each finite T'. a

It is easily verified that under the additional assumptions (a) and (b), our definition of
uniform observability is equivalent to the Kalman definition. As a consequence, Corollary
1 can be considered as a restatement of the following result of Anderson and Moore
[5]: uniform observability (in the sense of Kalman) is invariant under output injection
provided that the gain K (t) has a finite norm L%(to,to 4+ T') for each ty and each finite T
In particular, Corollary 1 illustrates the role of the additional assumptions in the Kalman
definition of uniform observability.

5.2 Attractivity criteria revisited

A limitation of the stability criteria derived in Section 4 is in the verification of the
observability condition and of the (Strong) Continuity Assumption on the original system.
Using the ideas of the previous section, we will show that in particular situations, it is
sufficient to verify the criteria on an associated system rather than on the original system.
This will be helpful in the applications, in particular when the trajectories of the associated
system are explicitly known.

Theorem 8 Suppose that () admits a Liapunov function with properties (i)-(iv). Let
h(z,t) be an output function defined by (OUT). Suppose that g(z,t) = f(z,t)+k(z,t)h(z,1)
for some mapping k(x,t) where ¢, k and h satisfy the assumptions of Theorem 6. Then
recurrent observability of (g, ) is a sufficient condition for asymptotic stability of the null
solution of (.5).
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Proof. Tet z(t;zo,t0) denote the solution of & = f(¢,z) and 2*(#;x0,%9) denote the
solution of & = ¢(¢t,z). The proof is an adaptation of the proof of Theorem 2. First
expressing recurrent observability z is replaced by z* in (11). Then only Part IT (which
uses the Continuity Assumption of f(z,t)) is replaced by the following:

IT’. Since

tlim V(a(t; xo,t0),1) = thm V(zi,t) (= V)
it follows immediately that

lim —V(w(t; zo,t0),t)dt =0

t;—00 ti
or equivalently
[ee]
lim / | h(a(t; 20, t0), 1) |12 dt = 0
t;—00 t
In particular, we have

ti+T
lim | h(z(t; 25,15),1) || dt = 0

t;—00 ti
which implies for a.e. ¢ € [0, 7]

i (| B(e(t + g, 1), 4+ ) || dE =0

Using a similar argument as in the proof of Theorem 6 we conclude that for all ¢ € [0, 7]

lim || z(t; 4+ t;25,t) — 2™(8 + 424, 8) ||= 0 (47)

t;—00

On the other hand, by the Lipschitz assumption on g(z,1), the continuity of solutions with
respect to the inital conditions implies

| 2™t + Tiai ti) = a*(t + Tip,ti) [|[< T | 2 = p |

and therefore

Jim (| @7t + Ts g, 1) = 2™(t+ Tip, ) [|= 0 (48)

By the triangle inequality, we conclude from (47) and (48) that

Tim | (04 i d) — a1+ Tt = 0 (49)
This implies that
lim [V(2(t; + T2 0), i +T) = V(@™ (t; + T p, i), 1+ T)| = 0 (50)

t;—00

Consider the sequence of elements V(2*(¢; + T p,t;),t; +T) with ¢; — oo. These elements
each belong to the interval [0,v2(|| *(¢; + T p,ti) ||)] by Property (ii). By taking ¢; large
enough and because of (49) and of the boundedness of || z(t; + T'; 2;,t;) || these elements
belong to a finite interval. Then there exists a subsequence t; , — oo of the sequence (7;)
such that for some a > 0

tsub

hm V(x*(tisub —I_ T7p7 tisub)’ tisub —I_ T) =a (51)

tisub—wo
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Using (11) (with 2 replaced by z*)and (14) we conclude that this limit satisfies the in-
equality

a<V (52)

From the triangle inequality we obtain with z;_, := 2(t;_,,; %o, o)

|V($(tisub —I_ T7 xisub’ tisub)’ tisub —I_ T) - a| S
|V($(tisub —I_ T7 xisub’ tisub)’ tisub —I_ T) - V(x*(tisub —I_ T7p7 tisub)’ tisub —I_ T)| —I_
+|V($*(tlsub —I_ T7p7 tisub)’ tisub —I_ T) - a| (53)

and by (50) and (51) we obtain from (53)

. hm V(x(tisub —I_ T7 wisub7tisub)7tisub —I_ T) =a< V (54)
Laub——>00
This ends the proof of part IT’. a

As an illustration of the above theorem, consider the system discussed in Example 5:
it follows from Theorem 8 that (34) is a sufficient condition for asymptotic stability of the
null solution of (33).

Mutatis mutandis, we obtain a similar reformulation of Theorem 3 using the result of
Theorem 7 and Remark 3.

Theorem 9 Suppose that () admits a Liapunov function with properties (i)-(iv). Let
h(z,t) an output function defined by (OUT). Suppose that f(z,t) = A(t)z+ k(z,t)h(z,1)
for some mappings k(z,t) and h(z,t). Define k(1) := sup,¢ k(t,2) and similarly define
h(t) Denote by ®(t,s) the transition matrix of & = A(t)z.

Then the null solution of (.9) is asymptotically stable if the following conditions hold:
(i) h(x,t) and k(z,t) are Lipschitz in = with Lipschitz function k(¢) and I(¢)
(ii) ®(t,s) is bounded for all (,s).
(iii) (A, h) is weakly uniformly observable and the functions h(t) and k(t) have a finite

norm L%(to,to + T(to)) for each t.

Proof. The proof is an adaptation of the proof of Theorem 3, similar to the proof of
Theorem 8. a

As an illustration of the above theorem, consider the system discussed in Example 6: it
follows from Theorem 9 that (44) is a sufficient condition for asymptotic stability of the
null solution of (43).

6 Applications

6.1 Persistency of excitation

The concept of persistent excitation emerged in the context of linear identification. On
the basis of the input and the output signals, one tries to identify the parameters of a
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linear transfer function. It is a common observation that the spectrum of the input signal
must be rich enough in order to excite all the modes of the system and in turn to ensure
convergence of the parameters to their true values. The “paradigm” error equation has
the form

i = —m(tymT(t)x (PE)

where z : IR — IR™ and m : RT — IR". The state represents the error between the
true parameters and their estimates and m is a time-varying vector depending on the past
inputs and outputs.

Stability of the zero-error is readily established with the Liapunov function V(z) = 2Ta
which leads to the semi-definite negative time derivative

V(t,x) = —(mT(t)z(t)* <0 (55)
However, except for the particular case where the input signal (and in turn the vector
m) is periodic, the standard extensions of Liapunov theory cannot be applied to show
convergence of the parameters: the limit sets of (PE) have no invariance property and no
non-trivial negative function W(z) may serve as an upper bound for V(#,2). On the other
hand, (PE) and (55) have geometrically appealing features and suggest that convergence
of the parameters is ensured provided that m is sufficiently exciting, i.e. that within a
moving fixed time interval no subspace of IR™ stays orthogonal to m.

Theorem 10 Uniform asymptotic stability of the null solution of (PE) is equivalent to
the existence of positive constants «, 3, and T such that

Vi al < /tHT m(rym? (r)dr < BI (56)

The condition (56) is usually referred in the literature as the persistent excitation of the
vector m. Hereafter we sketch the proof proposed by Anderson [4].

Proof: The lower bound of (56) implies uniform observability of the pair (0, m). The pair
(0,m) is related by output injection to the pair (—mm?,m). The feedback gain is given

by K(t):= —m(t) and has finite Ly norm over the interval 7" due to the upper bound in
(56). By Corollary 1, the pair (—mm?,m) is uniformly observable, which implies uniform
asymptotic stability of (PE). O

By the results of the previous sections, we may along the same lines weaken condition (56)
and still guarantee asymptotic stability of the null solution of (PE).

Proposition 3 A sufficient condition for asymptotic stability of the null solution of (PE)
is the existence of a sequence (;);> tending to infinity and of positive constants a, /3,

and T such that
ti+T

al < lim m(r)m? (r)dr < I (57)

t;—00 t

Proof: The lower bound of (57) implies recurrent observability of the pair (0,m). The
upper bound (57) implies recurrent observability of the pair (—mm?”,m) by Theorem 6.
Finally, asymptotic stability of the null solution follows from Theorem 2. a
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Proposition 4 A sufficient condition for asymptotic stability of the null solution of (PE)
is the existence of positive constants a and 3 such that

Vi: 3T(t) : al < /tH—T(t) m(T)mT(T)dT < pI (58)

Proof: The lower bound of (58) implies weak observability of the pair (0,m). The upper
bound of (58) implies weak observability of the pair (—mm?,m) by Theorem 7. Finally
asymptotic stability of the null solution follows from Theorem 4. a

Notice that both conditions (56) and (57) impose in particular

Vo : sup(mT(t)p)2 >
t>to

Ival (59)

N2

which prevents situations where || m(t) || tends to zero as ¢ tends to infinity. On the
contrary, condition (58) is for instance satisfied for the scalar equation & = —% defined
for o > 1. Here m(t) = +/1/t tends asymptotically to zero. Nevertheless the pair
(0, m) is weakly uniformly observable (choose for instance T'(t) = t) and hence guarantees
asymptotic stability of (PE).

It is important to notice that in each of the three conditions (56), (57), and (58),
the upper bound G plays a similar role: it provides a sufficient condition which allows
to examine observability of the pair (—mm”,m) in terms of the observability of the pair
(0,m). A particular consequence of this upper bound is that condition (58) is only sufficient
for asymptotic stability of (PE) and imposes restrictions on the time-dependence of m(t):
the excitation of m(t) is allowed to decrease over finite periods of time, but the loss
of excitation must be uniform in the state space. The limitation of this requirement is
illustrated in the following example:

Example 7 Consider

. (1 0) for 26 <t < 2i+1
m(t)" = ( . .
0 1/Vi) for2i+1<1<2i+2

with ¢+ € IN. By reordering the time-axis we obtain two asymptotically stable decoupled
equations ©1 = —xq and @y = —x5/t. It is quickly verified that condition (58) can not be
satisfied, basically since there is no T'(¢) that works for both these equations. O

Morgan and Narendra [13] studied the stability properties of (PE) using ad hoc tech-
niques. They obtained necessary and sufficient conditions for uniform asymptotic stability
of (PE) which are equivalent with the result of Theorem 10. They also obtain a sufficient
condition for nonuniform asymptotic stability of (PE). The relationship between the con-
dition of Morgan and Narendra [13] and the conditions of Proposition 3 and Proposition
4 is not obvious but the result of [13] allows to prove asymptotic stability of the system
of Example 7.

On the other hand, Condition (58) without the upper bound, i.e. weakly uniform ob-
servability of the pair (0, m) is not sufficient for asymptotic stability of (PE) as illustrated
by the following example:
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Example 8 Define

Qg = ﬂ-/27 Qi1 = ai/Qv i >0,
to=0, {1 =1; + 1/ sin? a;,
T

m; = (sin oy, cos ;).

Let m(.): RY — IR* : m(t) = my, t; <t < tig.

Weakly uniform observability of (0,m) is obviously satisfied: indeed, let ¢; > 0. If ¢; :=
(1,0) then for each integer n, ﬁi"“(mT(T)el)QdT = 1 which implies that [°(mT(7)e;)2dr
is unbounded. The condition is thus fulfilled for p = €y, € # 0. Now if p is not

parallel to ey, then for n sufficiently large, (mgp)2 > (mgel)2 and as a consequence,

ff:“(mT(T)p)sz > 1. This implies that ft(:o(mT(T)p)QdT is unbounded for all p # 0.

Now it can easily be shown that the above m(t) does not force the convergence of solutions
of (PE) to the origin. Let mi = (cosay, —sina;) and consider the solution starting from
mi at time ¢ = 1y, i.e. 2(t;mi,ty). Then 2q(ty;mi,t3) = cosa; > 0 and by using an
obvious trigonometrical argument, it is clear that z1(¢;mi,t5) can only increase for all
t > ty which prevents the convergence of the solution to the origin. O

To summarize, the sufficient conditions above for parameter convergence give conclu-
sions only if the hypotheses of m(¢) are uniform with respect to each direction of the state
space. This suggests that further sufficient conditions are to be obtained directly from
observability of the pair (—mmT,m) and not from observability of the pair (0,m).

Nonlinear extensions. By the the results of the previous sections we obtain similar
results for the nonlinear equation

i = —m(t,z)m’ (t,z)z (NLPE)

where z : Rt — IR"™ and m : IRT x IR™ — IR". The equation (NLPE) describes an
error equation in closed-loop identification, i.e. when the past inputs depend on the past
outputs and on the estimated parameters. According to Theorem 8, a sufficient condition
for parameter convergence is the existence of a sequence (%;);>1 tending to infinity, a
positive constant T" and a function «a of class K such that -

ti+T
iim [ (e pym )i > ol p 1 (60)
i.e. recurrent observability of the pair (0,m), provided that m(t¢,z) is bounded and con-
tinuous in 2, uniformly in ¢. Similarly, (56), (57) and (58) provide sufficient conditions if
m(t) is a Lipschitz function for m(¢, z).

These nonlinear extensions are related to the result of Artstein [6]. The approach in
the present paper obtains sufficient conditions for asymptotic stability whereas Artstein
[6] only considers the uniform case.

Further generalizations. The generalization of the above results to the multidimen-
sional case (m : IRT — IR™ x IR?) is immediate. On the other hand, (PFE) has also
played a major role in the stability of adaptive systems (see for instance [15]). Other
equations appear in this context allowing a similar treatment. As an illustration, consider
the equation
T
i = F()a = l PR ]x (61)
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where m : IRT — IR™ x IRP, A is a real constant n x n matrix with A + AT = —T, and B
a real constant n x p matrix of full rank. It is shown in [4] that the null solution of (61)
is asymptotically stable if for some positive constants a, 5, T, and all ¢,

t+T s s
/ / m(T)dT/ mT(r)dr ds > ol (62)
t t t

and

t+T
[ Imey 1 ar <. (63)

The proof is similar to the proof given for (PE). Starting from the Liapunov function
V(z) = 2Tz, one has V(t,2) = —2TCCTa with ¢ = [0 I]T. Using the output injec-
tion K(t) = [-BmT AT]T, observability of the pair (F,C) can be studied by means of
observability of the pair (G, C') with

G(t) = F(t) - K(OCT(1) = l PR ] (64)

The transition matrix ®(¢,19) of & = G(¢)x is given by

(1:t0) = [ ftt Bm{r(r)dr g] (65)

and the condition || ®(¢,s) ||< (|t — s |) is satisfied according to (63). By Corollary 1 we
conclude that uniform observability of the pair (G, ') is equivalent to uniform observability
of the pair (F,C) and therefore provides a sufficient condition for exponential stability of
the null solution of (61). A final argument given in [4] shows that uniform observability of
the pair (G, ) is equivalent to (62). Similarly, it follows from Corollary 1 that recurrent
observability of the pair (G, ) is a equivalent to recurrent observability of the pair (F, ()
and therefore a sufficient condition for asymptotic stability of the null solution of (61); the
same argument shows that recurrent observability of the pair (G, () is equivalent to the
existence of a positive sequence (#;);>1 and of positive constants a, 3, T, such that

ti+T s s
lim / m(T)dT/ mT(r)drds > al (66)
ti—00 Jy, 8 t;
Notice that contrary to (PE), the results cannot be extended in the present case to a non
uniform period of observation. This may be made clear as follows: if (62) is satisfied only
with a non-uniform period of observation, the condition imposes a coupling between a
uniform dynamics (¢7 = 0) and a non uniform dynamics (&3 = BmT ;) which is hard to
handle as has been illustrated in Examples 7 and 8.

6.2 A relaxed circle criterion

Another well-known problem in system theory involving nonautonomous differential equa-
tions of the type studied above is concerned with the stability analysis of the feedback
system where the forward element of the closed-loop system is linear and time-invariant
while the feedback gain is (nonlinear and) time-variant. This type of system has received
much attention in the literature (see for instance [18, chapter 6]) and can be considered a
useful model for many engineering systems.
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Assume that the linear transfer function F := ¢(s)/p(s) is such that the polynomials
p(s) = 8" + pa1s" 44 po

and
q(s) = G154 o

have no common factors, and that the degree n of p(s) is higher than the degree of ¢(s).
The closed-loop system equation has the form

i = Az + bk(z, )Tz (F9)
where
0 1 0 0 0
0 1 0 0
A= s b=
0 0 0 1 0
—Po —P1 —P2 --- —Pn-1 -1
and

ch = [QO a o f]n—1]-

Different criteria have been obtained for the (exponential) asymptotic stability of the
null solution of (F'S). The proposed conditions typically allow to construct a quadratic
Liapunov function whose time-derivative is negative-definite or at least negative semi-
definite. The goal of this section is to show how these various criteria can be relaxed. For
clarity reasons, we consider the linear case in the developments (k(xz,t) replaced by k(t));
straightforward nonlinear extensions can be considered according to Theorem 6 and the
nonlinear extensions of Theorem 7 (Remark 3).

The next theorem, referred to in the literature as the circle criterion because of its
graphical interpretation in the Nyquist plane [18], provides a sufficient condition for asymp-
totic stability of the null solution of (FS).

Theorem 11 [Circle criterion] The null solution of (F'S) is asymptotically stable in the
large if there is a positive € such that

ki +e<k(z,t)<ky—ce (67)
holds for all x and ¢, and if
sz(s) 4 1
T 68
R T1 ) (68)

is a positive real function.

Proof (sketch): The theorem can be proved by means of Liapunov theory and essentially
follows from the following: if P(s) is a positive real function, then there exists a positive
definite quadratic form V(z) such that its time derivative satisfies

Vi, 1) < —(ky — k(z,t))(k(z,t) — k1) (cT2)? < (T2)2 <0 (69)

which implies asymptotic stability by standard techniques as explained in the introduction.
O
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If (67) is replaced by
by < b(o,) < by (70)

then the above Liapunov function only allows to conclude uniform stability of the null
solution.

We now propose an extra-condition to (70), substantially weaker than (67) but still
guaranteeing asymptotic stability of the origin. As announced we restrict the analysis to
the linear time-variant case. Assume k(%) is measurable.

Introduce the notation
h2(t) := (kz — k(1)) (k(t) — k1)
F(t) := A+ bk(t)c”
H(t) := h(t)c"

Notice that the pair (F,c) is uniformly observable in the sense of Kalman (and therefore
also in any sense defined in the previous sections), since (A, ¢) is uniformly observable.

Proposition 5 Observability of the pair (F, H) is recurrent if there exists a sequence
(t;)i>1 tending to infinity such that
ki < tlim k(t;) < ka. (71)

;00

Proof: (by contradiction) Assume that observability of the pair (F, H) is not recurrent.
Then for all sequences ¢! — oo, Jz¢ # 0 such that V' > 0 and with ®(#, s) the transition
matrix associated with F(¢)

4T
lim inf R ()2l T (¢, th)ecT ®(t, th) a0 dt = 0

th—oo Ji!
T 2

Take ¢; and T such that the interval [t}, ¢ + T] is centered on t;. This implies that a
subsequence of
RA(th + tal Tt + 1, )T ed(t + 1, 14) 20

uniformly tends to zero over the interval [0,T] as t; tends to infinity. Since the pair (F,¢)
is uniformly observable, this implies—keeping the same notation for the subsequence—
that h%(#: 4 ¢) uniformly tends to zero over the interval [0,7T] as ¢/ tends to infinity. By
definition, this is possible only if k(. + ¢) uniformly tends to k1 or ko over the interval
[0,T] as t! tends to infinity. But this contradicts (71) since ¢; € [t},t: + T] for each i. O

(R

Theorem 12 [Relaxed circle criterion] Under the assumptions of Theorem 11, with € = 0,
the condition (71) is sufficient for asymptotic stability of the null solution of (FS).

Proof: The proof is a direct consequence of the proof of Theorem 11, Proposition 5 and
of Theorem 2. a
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7 Conclusion

In this paper the problem of asymptotic stability for time-variant systems is discussed
from a Liapunov point of view. We propose several notions of observability with the
output derived from the Liapunov function. We develop a number of sufficient conditions
for asymptotic stability, all formulated within an observability framework. This theory
is then illustrated by means of some classical examples from control theory for which we
provide nontrivial extensions.
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