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Verbumculus and the Discovery of Unusual Words

Alberto Apostolico* Fangcheng Gong! Stefano Lonardit
U. of Padova & Purdue Celera Genomics U. of California, Riverside
Abstract

Measures relating word frequencies and expectations have been constantly of interest in
Bioinformatics studies. With sequence data becoming massively available, exhaustive enumera-
tion of such measures have become conceivable, and yet pose significant computational burden
even when limited to words of bounded maximum length. In addition, the display of the huge
tables possibly resulting from these counts poses practical problems of visualization and infer-
ence.

VERBUMCULUS is a suite of software tools for the efficient and fast detection of over- or
under-represented words in nucleotide sequences. The inner core of VERBUMCULUS rests on
subtly interwoven properties of statistics, pattern matching and combinatorics on words, that
enable one to limit drastically and a priori the set of over- or under-represented candidate words
of all lengths in a given sequence, thereby rendering it more feasible both to detect and visualize
such words in a fast and practically useful way. This paper is devoted to the description of the
facility at the outset and to report experimental results, ranging from simulations on synthetic
data to the discovery of regulatory elements on the upstream regions of a set of genes of the
yeast.

The software VERBUMCULUS is accessible at http://www.cs.ucr.edu/"stelo/Verbumculus/
or http://wwwdbl.dei.unipd.it/Verbumculus/

Keywords: verbumculus, unusual words, subword statistics, pattern discovery, regulatory ele-
ments, suffix trees
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1 Introduction

Over one decade after National Research Council mapped out the plan for the Human Genome
Project, the project has been developed into a full fledged research field — Genomics, which trans-
forms biology researches from cottage endeavor into enterprise operation. Genomic researches are
mainly organized around two areas: high throughput DNA sequencing and genome-wise detection
of gene expression. Sequence data in both public and private databases have been accumulating
at exponential rate under continuous improvement of sequencing technology and steady increase
of funding [24, 16]. Whole genome sequences have been constantly churning out from the genomic
centers around the world since the first whole genome sequence was published [19]. Over fifty whole
genome sequences are currently available for prokaryotic and eukaryotic organisms.

High density array technologies such as DNA microarray and gene chip not only provide a sys-
tematic and global snapshot of genome expression in relation to developmental stages, anatomical
structures, and/or external cues, but also offer a powerful means to cluster genes based on their
temporal, spatial and amplitude patterns of expression [44, 32, 17, 15]. Together with sequence
data, expression data would enable the assignment of functional information to genes of otherwise
unknown functions. The conceptual assumption of the approach is that genes that exhibit similar
expression patterns contribute to the same biological process or functions. Therefore such genes
share more or less common regulatory domains in the upstream regions for the coordinated control
of gene expression.

A large number of nucleotide motifs show distinct distribution patterns within the genomes of
various organisms, and can be distinguished from each other. Moreover, during the evolutionary
process, living organisms have accumulated certain biases towards or against some specific motifs
in their genomes, which are used as regulatory elements. Highly recurring nucleotide words are
often observed to correspond to regulatory regions or protein binding sites of genes. Vice versa, rare
nucleotide motifs may be discriminated against due to structural constraints of genomes or specific
reservations for global transcription controls, such as in early cascade of embryo development.

Whole genome sequences together with genome-wise expression data offer a global view of ge-
nomic structure and functions of a living system. However, it is a great challenge to assign functions
to DNA sequences. For example, out of circa 30-40 thousands genes in human genome, only about
10,000 are associated with known functions. Thus, global and systematic search for sequence pat-
terns in genomes is a necessary step to link structural sequences to defined functions. This paper
describes our software development (VERBUMCULUS) in a genome-wise searching system for over-
or under-represented nucleotide motifs, and our initial effort to attribute biological functions to
those motifs. The main advantages brought about by VERBUMCULUS are in terms of speed, flex-
ibility and visualization efficiency. This rests on the core structure of the program, which takes
advantage of strong properties at the intersection of statistics, pattern matching and combinatorics
on words [5, 4]. The facility at the outset can conduct global pattern discovery in linear time and
space.

In general, the task of detecting, enumerating and testing nucleotide word frequencies in large
genomes, which are typical cases for eukaryotic organisms, requires significant computational re-
sources even when limited to the words up to some maximum length. It often becomes infeasible
to detect and visualize such words in a fast and practically useful way. Among the tools avail-
able for these purposes, we list WORDUP [39], YEAST-TOOLS [49], and R'MES [43, 42]. Conceived
primarily as an aid in intercepting conserved segments in related sequences in a family, WORDUP
is based on a first order Markov model. It detects statistically significant sequence motifs of 6-10
nucleotides in a family of sequences by comparing the expected number of sequences containing a



given pattern with the number of observed sequences that contain that pattern. The facilities under
YEAST-TOOLS comprise tables of frequencies for nucleotide words of up to 10 bases as observed in
all coding and non-coding regions of the yeast genome. The related analyses of frequencies and
expectations invest the entire target genome, with the objective of identifying relatively simple
statistically relevant patterns represented by short motifs with a highly conserved core. R’MES
is a general-purpose set of programs to detect words that appear in a given DNA sequence with
unexpected frequency. Two classes of models are used to model the sequence: stationary Markov
chains and 3-periodic stationary Markov chains. Under either probabilistic model, the number of
occurrences of a word in a sequence is considered to be statistically interesting if it differs signif-
icantly from an estimator of its expected value. Estimators of the expected counts are obtained
using a Gaussian or (for long words) a compound Poisson approximation. In either case, R’'MES
provides a score indicating whether the word is under- or over-represented.

The search for unexpectedly frequent or rare substrings is only one component of the broader
quest for interesting patterns of more general kinds. Along these lines, patterns and families thereof
have been variously characterized, and criteria, algorithms and software developed in correspon-
dence. Without pretending to be exhaustive, we mention SPEXS [10, 11], MEME [8], PRATT [28, 27|,
YEBIS [52], SPLASH [14], TEIRESIAS [41], CONSENSUS [25], GIBBS SAMPLER [30, 36], WINNOWER
[40, 29], PROJECTION [13], WEEDER [38] MITRA [18], among others. The performance of these
tools has been increasing dramatically over the years, though the hardest challenges (see, e.g., [40])
are still terrain for contests.

This paper is organized as follows. In the next three sections, we describe the basic structure
and features of the VERBUMCULUS facility, leaving out most algorithmic and combinatorial details,
for which we refer to [5, 4]. Following that, we show the results of its application to the test analysis
of regulatory motifs of genes.

2 Statistical analysis of sequences

In the following, we use w to denote a generic nucleotide word, and wy; ;) to indicate the substring
of w that begins at position 7 and ends at position j. Two main notions of frequency are considered
of interest in our context. The first notion is given in terms of the number of occurrences of w
within a single given sequence. The second is concerned instead with the number of sequences
containing at least one occurrence of w out of the total number of sequences in a family. The
expressions and computations of the expected values, moments and related scores of significance
depend substantially on the particular notion at hand. We discuss first those based on a single
sequence, where we identified five common scores used in the scientific literature (shown on the left
of Table 1).

Here, f(w) is the number of observed occurrences of w in the input sequence, E(w) is the
number of expected occurrences of w under a Bernoulli (i.i.d.) model, Var(w) is the variance
on the number of occurrences of w under the same model, and Var(w) is an easier to compute,
first-order approximation of the true variance, which matches in fact the simplifying assumption of
uncorrelated symbol occurrences. Specifically, it is seen [5, 4] that for an input sequence of length
n and a pattern w of length m < (n + 1)/2 we have:

E(w) = (n —m+ 1)p(w)
and

Var(w) = E(w)(1 — p(w)) — p(w)?(2n — 3m + 2)(m — 1)
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Figure 1: Scores based on the number of occurrences (left) and scores based on the number of
sequences containing at least one occurrence (right)

+ 2p(w) > (n—m+1-d) ][] »plwy)
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where p(w) is the probability of occurrence of w and {di,ds,...,ds} are the lengths of the periods
of w. A string w has a period z if w is a prefix of z¥ for some integer k. Alternatively, a string z
is a period of a string w if w = z'v and v is a possibly empty prefix of z. We refer to [6, 5, 4] for
details and discussion. Truncating Var(w) after the first term yields Var(w) = E(w)(1 — p(w)).
Score z5 is after Brendel et al. (see [12] for details): £(w) is the expected frequency of w based on
the observed frequency of (m — 1)-mers and (m — 2)-mers, i.e.,

g(w) — f(w[l,m_1])f(w[2,m]) .

f(w[Q,mfl])

We now turn to the scores associated with frequencies defined on a set of strings {z1, z2, ...,z },
also called a multisequence. For multisequences, the three additional scores shown on the right of
Table 1 have been selected. Here E.(w) and c(w) are, respectively, the expected and observed

number of sequences that contain at least one occurrence of w. Given k sequences of respective
sizes n; for i € [1,k], Pesole et al. [39] define E.(w) as follows

E(w) = i (1— e=5:)

=1

where &;(w) is the expected number of occurrences of w in the i-th sequence. An estimator of the
true expectation is calculated after Stuckle et al. [48] by assuming a first order stationary Markov
chain
filwp ) filwpa,g) -« - filWim—1,m))

filwp) filwz) - - - fi(wpm-1))
where f;(w) is the observed number of occurrences of w in the i-th sequence.

In a typical, on-line application, parameters such as the probabilities of the individual symbols
are estimated from the corresponding frequencies in the input sequence. Alternatively, our algo-
rithm allows the submission of a separate model sequence from which probabilities are estimated.
Likewise, the analysis of the target sequence may proceed considering the sequence as a whole as
well as by performing computations independently within a number of consecutive segments in a
suitable cover of the input, and analyzing one such “window” at a time.

Ei(w) =

4



3 Methods

For a given choice of a probabilistic setting and score(s) one would like ideally to compute exhaus-
tive frequency tables reporting values for all substrings of a sequence, or perhaps at least for the
statistically most “surprising” among them. Even setting aside for a moment the effort involved
in the computation of the necessary parameters and scores, the sheer number of entries associated
with such an exhaustive tabular presentation would quickly become unfit for human inspection,
hence hardly useful at the outset. To see this, assume to be given a priori a source model, one
of the above z-scores, and some arbitrarily fixed threshold value ¢ for that score, whereby a word
will be considered surprising and thus included in the output table if its score exceeds t. Now an
observed sequence z of n bases might in principle exceed ¢ with all of its substrings. Since z may
contain about n?/2 distinct substrings, then a sequence of a modest n =1,000 bases might force us
to output about half a million subwords as being surprisingly frequent. While such an extreme case
seems entirely unrealistic, it does help illustrating a point of great practical relevance, namely, that
the volumes of data produced in this and other tasks of motif discovery risk to rapidly saturate the
perceptual bandwidth of the final user [3].

One of the main assets of VERBUMCULUS comes in form of a powerful property that limits
drastically the number of surprising subwords that one needs to consider. The property holds under
reasonable assumptions for scores that fit the general format z(w) = (f(w) — E(w))/N(w), where
N (w) is a nonnegative normalizing factor for the difference such as, e.g., the standard deviation for
the count. For scores of this kind, it is possible [5, 4] to confine the computation to only a number of
candidate surprising words linear in the length of the host sequence. Moreover, the set W of these
candidates can be identified a priori, and their relationship to any other, e.g., over-represented
word not in W is as follows (under-represented words obey a symmetric property). For any word
w not in W such that z(w) > ¢, there is a word w' in W such that:

1. w' = wv for some nonempty word v, i.e., the “neglected” word is embedded in a word of W
as a prefix;

2. z(w') > z(w), i.e., w' is at least as surprising as w.

Such a drastic limitation on the order of the number of candidates, as well as their identification,
weighing and display are all inextricably interwoven reflections of a same combinatorial property,
which has to do with the score being monotone within certain families of patterns. This property
requires that if w and an extension w' = wv of w are nonempty substrings of the text x such that
f(w) = f(wv), then the score of w does not exceed that of w’. Under these conditions, w can be
neglected as the surprise it conveys is subsumed by w'.

The tables below display a collection of monotonicity results established about the models and
z-scores considered. We refer to [4] for the corresponding proofs and discussion. For convenience
of notation, we set p(w) = E(w)/N(w), where N(w) appears in the score as the expected value of
some function of w. The interpretation of the tables is straightforward. For example, Property 1.1
states a simple fact on the monotonicity of E(w) given the monotonicity of p(w) and N(w). Under
some general conditions on N(w) and p(w) we can prove the monotonicity of any score functions
of the form described above.

Some of the properties are not straightforward. For example, Property 1.2 says that these scores
are monotonically decreasing when

YN(w) + N (wv)

f<E =Bw) N(w) + N(wv)
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Property Conditions
ol J ) Nw) < N(w), pwn) < pw)
(g [feg ot | fo s 2t N(wv) < N(w), plwv) < pw)

YN (w) + N(wo)
and f(w) > E(U))W
1.3)  f(wv) — E(wv) > f(w) — E(w) E(wv) < E(w)
1.4) ]{;((Z‘;)) > % E(wv) < E(w)
15 1 (w”% (ZU f)(“”’ > (wg_w]f (w) BE(wv) < E(w)
16 I (“’”)E_( Ui ()““’) > (“’)b:(i)(“’) E(wv) < E(w)
(1.7) ‘f (“’\”/)];(_ui()w”) NEi (“\’}_(_f)(w) E(w) > B(wv), f(w)> Ew)/y
s Y (wg_w]f)(w”))z U (w)E_( £(w))2 E(w) > E(wv), f(w)> E(w)\/7

Table 1: General monotonicities for scores associated with the counts f, under the hypothesis
f(w) = f(wv). We have set p(w) = E(w)/N(w) and v = E(wv)/E(w).

Property Conditions
(2.1) E(wv) < E(w) none
22)  f(wv)— E(wo) > f(w) - Bw) f(w) = f(wv)
3 L0 T F(w) = flwv)
f(wo) = B@) . fw) - E(w) B
- Fluwo) B(wo) _ ) Bw) oz e
wv) — wv w) — w _ wo
(2.5) ) o) fw) = f(wo)
(2.6 ‘f o) = Bluw) |, | 7w) — Blw) Flw) = Flwn), f) > Bu)yy
Fon) B (1) o Bl
wv) — E(wv w) — E(w
(2.7) e o f(w) = fwo), fw) > B(w)y7
(28 S - Ewy fw) — B(w) f(w) = fwo), plw) <1/2

VE(wv)(1 — p(w)q(v))
E(wv) E(w)

(2.10)
Var(wv Var(w
o Hoy - B 5 - pw)
Var(wv) Vv Var(w)
1z |0 =B ‘ ‘f(w) — B(w)
Var(wv) VVar(w)

Pmaz < 1/ V4m
Pmaz < \/i_ 1

f(w) = f(U)U), Pmaz < mln{l/ %7 \/5_ 1}
f(UJ) = f(’IUU), Pmaz < mln{]-/ m,ﬁ— 1}

v/ Var(w) + /Var(wo)
\/Var(w) + /Var(wv)

and f(w) > E(w)

Table 2: Monotonicities for scores associated with the number of occurrences f under the Bernoulli

model. We set v = E(wv)/E(w).



and monotonically increasing when f > E*. We can picture the dynamics of the score as follow.
Initially, we can assume E* > f, in which case the score is decreasing. As we extend the word,
keeping the count f constant, E* decreases (recall that E* is always in the interval [E(wv), E(w)]).
At some point, E* = f, in which case the score stays constant. By extending the word even
more, E* becomes smaller than f, and the score starts to grow. Some consequences of Property
1.2 are captured by Properties 1.7 and 1.8. Property 1.2 also holds by exchanging the condition
p(wv) < p(w) with f(w) > E(w) > E(wv).

Turning now to Table 2, we summarize monotonicity results for the Bernoulli, or i.i.d., model.
In this case, each symbol is generated from the same probability distribution, and independently
from its context. A comprehensive study of other models and scores can be found in [4].

As already observed, a tabular representation of surprising words in a sequence is bound to
become rapidly bulky with increasing sequence length, even if the number of candidates is linear in
that length. In our approach, the computation, storage and display of the statistical parameters of
interest are all organized around the structure of a special compact trie represented by a suitably
pruned version of a suffiz tree, the trie of all suffixes of a given sequence (see e.g., [34, 2, 23]). By
the trie being implemented in compact form it is meant that all nodes in it are branching nodes,
whence arcs are labeled by substrings of the input sequence rather than by individual symbols. In
a full-fledged tree, the leaves are in one-to-one correspondence with the suffixes of the input. Since
every subword of the input is a prefix of some such suffix(es), then any subword of the input will be
spelled out on a unique path leading from the root to some leaf and ending at a node or perhaps in
the middle of an arc. For a sequence of length n, the tree will have a number of leaves and hence
also of internal nodes bounded by 7, so that always less than 2n subwords of the input can end
precisely at a node in any pruned version of the trie. The property exploited by VERBUMCULUS
is that, within the ample domains of monotonicity of the scores considered, the set W coincides
precisely with the set of these subwords [5, 4]. In other words, for a monotone score z

the largest positive values of z and hence most over-represented words will occur at the
internal nodes of the trie rather than in the middle of an arc. Symmetrically, the most
under-represented words occur only as unit symbol extensions of those nodes.

Combined with the advantages of trie visualization over table listing, this remarkable property
opens the way to compactly displaying all of the unusual subwords of a sequence at once. Moreover,
the computations involved can be speeded up significantly. The tree itself is built in time linear
in the input by a number of well known methods. Once the tree is built and perhaps pruned to
some preliminary maximum length, subword occurrences and other similar counts can be similarly
obtained in linear time. For instance, the number of leaves in the subtree rooted at some node
represents the number of observed occurrences of the word spelled out on a path from the root to
that node or anywhere on the immediately preceding arc. VERBUMCULUS annotates the tree with
one or more of the above scores, depending on the type of analysis one wants to perform. The
typical process of annotation also takes linear time, which in cases like z4 is achieved through resort
to rather complex algorithmics, due to the structure of Var. For scores that require multiple tries
to be built and superimposed to one another, like in the computation of ¢(w) for z7, zg and zgy, the
linear time algorithm by Hui [26] is used.

4 Software description and usage

VERBUMCULUS is composed by three modules: the tree builder VERBUM, the graph drawing pro-
gram DOT, and the graphic interface TREEV1Z. The entire package consists of about ten thousand
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Figure 2: VERBUMCULUS’ web interface

lines of code.

VERBUM is written in C++ using the Standard Template Library which should allow great
portability under different platforms. The code has been compiled, without any change, under
Solaris and Linux. VERBUM reads the input sequence(s) and the various parameters supplied
by the user, and creates a (possibly pruned) suffix trie annotated with the score selected at the
beginning by the user. The output is a text file representing the tree in the dot format (see below).
VERBUM is particularly fast: although the time taken for the analysis depends heavily on the
particular score and other input parameters, it is typically in the order of few seconds for the most
common choices.

Dor is the graph drawing program by AT&T Labs, part of the GRAPHVIZ package [20]. It
reads graphs in the dot representation and outputs drawings in a dozen of formats, among which
Postscript and GIF. The source code and binary executables for common platforms are available
from their site, and licensing is almost open source.

TREEVI1Z is the graphical user interface that runs on the client side, and more specifically on
the browser of the user. It is entirely written in Java, and uses the GRAPPA libraries by AT&T
Labs.

A couple of thousand lines of Perl glue everything together. Perl scripts generate the HTML
for the input forms and control the execution of the various stages, handling exceptions and errors.

The user of VERBUMCULUS is presented with the form shown in Fig. 2. He has the option of
submitting the input either as a raw sequence of letters or in FASTA format. The input can be
“pasted” into the window or uploaded to the server. For analyzing long sequences, we strongly
advise to download the executable VERBUM and DOT and work locally, in order to avoid the
overhead of network communications and the relative inefficiencies of Perl scripts and Java.

Various parameters can be adjusted. The most important choice is the type of score to be used
in tree annotation. Additionally, a wide range of different filters is available to limit the size of the
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Figure 3: Example outputs of TREEVIZ

tree. The user can set the minimum and maximum length of the nucleotide words, a lower bound
on the absolute value of the score, a lower bound on the value of the expectation (to avoid “rare”
words) and a forbidden substring (to avoid, for example, words contains TATA).

For better performance, we have limited the visualization of TREEV1Z to 100 nodes: if the tree
is bigger, VERBUMCULUS will send a Postscript file with the drawing of the tree. If the user wants
to take advantage of the interactive facilities of TREEV1Z, he will have to increase the effectiveness
of the filters in order to produce a smaller tree.

The magnitude of a score value is transduced through font size, in the sense that for every word
w, the higher the absolute value of the score of w, the bigger the font used to represent w. Words
with a negative score are, in addition, printed in red italics (see Fig. 3, on the left).

Once TREEVIZ has drawn the tree, the user can navigate it looking for conspicuous nucleotide
motifs. At any time, clicking on an nucleotide word will visualize information about its number of
occurrences, the expected value of this number, and the corresponding value of the z-score. Along
with these values, a graphical representation of the positions of the occurrences of the nucleotide
word in the original sequence is produced and displayed (see Fig. 3, on the right).

Since the tree can be fairly big, TREEV1Z offers the option to get an overall picture of the tree
by clicking on the “bird’s eye” button, which produces the small window inset of Fig. 3. Finally,
TREEV1Z can generate a drawing of the tree in Postscript or GIF that can be saved on the machine
of the user for further and more accurate scrutiny.

5 Simulations and Dithering

Before showing the results of using VERBUMCULUS on real biological data, we report on some tests
performed on artificial sequences. In our present context, this is meant primarily to show the
effectiveness of the tool in the pattern discovery process. In practice, this or a similar procedure
may be followed fruitfully as a preliminary treatment, for the purpose of fine tuning the sensitivity
of the tool and adapt it to the particular sequence or family under study.

An example dithering procedure could be as follows. First, we generate and process several
pseudo-random strings assuming a symmetric Bernoulli model. For every random sequence pro-
duced, we generate and annotate the corresponding tree. As expected, we find that unless the



random sequence is very short the tree does not display any surprising word.

Next, we inject into the random sequences a controlled number of non-overlapping repetitions
of words. In our example, we use the two words GATTA and AAAAA, in separate experiments. Since
the process of overwriting the original random letters with occurrences of a given word changes the
probability distribution, we have to make some adjustments in the probability distribution. Let
pe denote the probability of symbol a € ¥ in the original sequence and w some word of length
|w| = m, with a proportion of a’s given by ¢g,. Forcing h substrings in our sequence to coincide
with w will change the probability accounting for the “free” occurrences of a outside the h copies
of w into

__ Pan — hmgq,
Poa=—7—"7F7—"".
n—hm

As the left part of Figure 4 displays, five occurrences of GATTA in a text of size 1,000 can be
enough, with our settings, in order for the program to output that word as the highest scoring
pattern. If the size of the text is increased to 10,000, then typically twenty occurrences of the word
turn out to be enough to produce the same visual effect (see right half of Figure 4).

For a broader analysis, we run 1,000 trials for all choices of h = 0,1,...,15, n =1,000 counting
the number of times that GATTA is the highest scoring pattern in the entire tree. The graph on the
left of Figure 5 shows the relative proficiency of the scores 29, z3 and z4 in separating the “signal”
GATTA, from “noise”. Specifically, the plots show the fraction of the 1,000 trials in which the word
GATTA was the highest scoring word in the tree, for increasing number A of injections. From the
graph we can observe that scores z3 and z4 have identical performance (as one would expect, since
GATTA has no periods) and they seem to be better than z5. On the right of Figure 5 we instead
plotted three pairs of curves respectively for scores 2, z3, 24 (it so happens that in this particular
case the pairs for z3 and z4 are on top of each other) with increasing number A of injections. For
each pair, the upper curve represents the average score for the word that achieves the largest score
in the tree, while the lower curve represents the average score for the word GATTA. Some observations
are in order. First, the score of GATTA grows linearly with h. Second, the average of the highest
zg-score is bigger than z3 and z4. Third, at some point ~A* the lower curve touches the upper curve
and the pattern is “discovered”. Note that the lower curve touches the upper curve sooner for z3
and z4 than zs.

If the pattern is periodic, like e.g. AAAAA, then we need fewer copies, i.e., a smaller value of
h in order to obtain a comparable visual impact. Figure 6 displays the results using four forced
occurrences in a sequence of size 1,000 and ten in a sequence of size 10,000. We run the same
simulation on 1,000 trials as before, this time injecting h = 0,1,...,15 occurrences of AAAAA (see
left half of Figure 7). We were expecting the score z4 to have an advantage over the other because
of the high periodicity of the word. Surprisingly, the figure shows that the score that detects sooner
the presence of AAAAA is z3. In the right half of Figure 7 we collected as before the average scores
for the words achieving the largest score in the tree (upper curve), and the average score for the
word AAAAA (lower curve). This time, the tree families of curves corresponding to zo, z3 and z4 are
clearly distinguishable. The function that returns the biggest scores is again 29, followed by z3 and
then z4. For all three, the score of AAAAA grows linearly with h. Note, however that zo and z3 have
different slopes than z4.

6 Tests and Experiments

We report here some results on experiments running VERBUMCULUS on the upstream regions of
some genes of the yeast. The upstream region of a gene is the untraslated region that precedes the
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AAACT

AATGG

AGTTT

CGGA ———— CGGAG ATTA —— ATTAA
CGAGT
CCGGA GTCAT
GGATT

GTGGG earr— GATTA
GAGT TGATT
GATTA
TACCT e

Figure 4: LEFT: trie from a random string of size 1,000 with 5 forced occurrences of the word GATTA.
RIGHT: trie from another random string of size 10,000 with 20 forced occurrences of GATTA. Both
tries are annotated using z3, with threshold 3.0

T T T T
'GATTA.z2.sym' — 'GATTA.z2.max’ ——
:GATTA.zS.sym: - Y'GATTA.ZZ.sco: —————
GATTA.z4.sym' ----- %ﬁr_;&zfamsgé s
'GATTA.z4.max’ -

'GATTA.z4.5c0~"~-

0.8

0.6 [

15 -

04

Average z-score over 1,000 trials

0.2

Proportion of times that GATTA is the highest scoring word

L L L L
12 14 16 18 20

1 1 1 1 1
12 14 16 0 2 4 6 8 10
Number of injections (h)

Number of injections (h)

Figure 5: LEFT: The fraction of 1,000 trials in which the word GATTA is the highest scoring word
in the tree for z-scores 2o, 23,24, versus number of injections h. RIGHT: Curve pairs for scores
22, 23,24 versus h. The upper curve in each pair represents the average score for the word that
achieves the maximum score, the lower curve represents the average score of the word GATTA. The
curves for z3 and z4 are hardly distinguishable due to substantial overlap.
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TACGG B AAQ E E

TGGGA AAAA
AAAAA —

- AAAAC
AAAA ATCGG

\

AAAAG

GAACT ATTTA
GGG TGTCC
Scece TGATT

Figure 6: LEFT: trie from a random string of size 1,000 with 4 forced occurrences of the word AAAAA.
RIGHT: trie from another random string of size 10,000 with 10 forced occurrences of AAAAA. Both
trees are annotated using z3, with threshold 3.0

T
'AAAAA Z2. sym’ —
'AAAAA z3.sym’ ----
'AAAAA.Z4.sym’ -----

Average z-score over 1,000 trials

Proportion of times that AAAAA is the highest scoring word

. . . . . . . .
6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20
Number of injections (h) Number of injections (h)

Figure 7: LEFT: fraction of times versus h that AAAAA is the highest scoring word in the tree, for
z-scores, 2, 23,24. RIGHT: curve pairs for the word AAAAA and the highest scoring words under
scores 2, 23, 24
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start codon ATG of size 500-1000 base pairs, when reading the sequence in the standard orientation
5" to 3’. It is usually known to contain several control signals that regulates the production of
the mRNA, called promoters or requlatory sites. Finding such motifs is usually the first step in
understanding how genes interact with the environment and with each other.

The first dataset we analyze is related to ten families of genes isolated by van Helden et al.
[49]. Each family contains a set of co-regulated genes, that is, genes that have similar expression
under the same external conditions. The hypothesis is that in each family the upstream region
will contain some common motif. Moreover, one can also expect that such signals are going to be
over-represented across the family. In this first experiment we use the same parameters and score
type on all the multisequences to test the general performance of our tool.

The second dataset comes from the work on the sporulation of the budding yeast conducted by
Chu et al. [15]. Seven families of co-regulated genes have been characterized using DNA micro-
array technology. Again, one of the purposes of the investigation is to find unusual words in the
upstream regions of these genes. Here we concentrate on a couple of families and we show the
sensitivity of our tool to different choices of parameters and score functions. Both experiments also
expose the limitations of our approach.

6.1 Regulatory sites in yeast

The metabolism of the yeast has been widely studied and provides several examples of known
regulatory sites. In many cases, the transcriptional factor involved in the common response is
known, as well as its binding site. van Helden et al. selected ten families of genes based on prior
biological knowledge on their activity. For each gene in a family its 800 bps upstream sequence
was extracted. The set of all upstream sequences belonging to the same family constitutes the
multisequence on which we performed the analysis using VERBUMCULUS.

The parameters of the analysis are as follows. We use scores based on the number of occurrences
(23 and z4), a threshold between 3 and 10 depending of the maximum size of pattern, the latter
being between 5 and 8 symbols. We adjusted the threshold to obtain a tree of about twenty nodes.
We also filtered out words containing one or more of the subwords TATA, AAAA and TTTT, when
these words were predominant.

Tables 3, 4 and 5 summarize the result of our tests. For each multisequence we report the
identifier, the number k of sequences, the motif previously known and characterized by experiments,
the motifs found by van Helden et al., and the trees produced with VERBUMCULUS. For the sake
of clarity, we manually circled the words that match the biologically significant motif.

VERBUMCULUS is capable of discovering the biologically significant patterns in families NIT,
MET, PHO, PDR, GAL, GCN and TUP, although sometimes partially. Moreover, these motifs can
be found among the highest scoring words. Also note that other patterns which are also scoring
high are usually in a suffix-prefix relation with the highest, suggesting that their occurrences are
correlated.

However, in the multisequences INO, HAP and YAP VERBUMCULUS assigns low scores to the
motifs and therefore they do not show up in the final tree. In two of these three cases, though, the
tool by van Helden et al. is also not capable of detecting these patterns as shown in the Tables.
Additionally, the tool by van Helden et al. does not give any satisfactory answer for the GAL family,
where instead VERBUMCULUS catches CGGCG and GCCGC which correspond the the beginning and
the end of the motif. Finally, note that, in general, VERBUMCULUS has great difficulty to handle
motifs contains multi-valued symbols, for example the ones for GAL and TUP families.
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Family & Motif van Helden et al. VERBUMCULUS
NIT 7 GATAAG CTGATAAGA catAA —( GATAAG
CCGCGC GCACGG
CGGCAC AAGA AAGAA AAGAAA
ATAAGA
ACATCT
CTTATC
CCGCGC
CCCGCG
CGCGCG
TTT NIT.X5.L6. TTTT.AAAA TATA
MET 11 TCACGTG GTCACGTG GTGGTGG
AAAACTGTGG AACTGTGGC T TrTeme
ATATAT TCACGTG
TATATA AAA ———(AAACTGT
GCTTCC AACTGTG
ACTGTGG
ACGTGAC
CACGTG »— CACGTG/—\
PHO 5 GCACGTGGG CGCACGTGGG TTCTT
GCACGTTTT CACGTTT
TGCAC
CTGCAC
ACGTG
TGCCAA
AAGAA CGTG — CGTGC
/
CGT — CGTCG
GCA —— GCAC —£{ GCACG
PHO\X(EBLE:TéT(ABA(A:
PDR 7 TCCGCGGA TCCG{C | T}GGAA GGGCCCGT

GCGCGA
AGGCACC

CCGCAGAG
CCGCGGA>
CCGTGGA
CGTGGAAA
TCCGTGGA

£ CCGCGGAA

CCGTGGAA

TCCGCGGA >

Table 3: van Helden dataset of co-regulated genes
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Family & Motif

van Helden et al.

VERBUMCULUS

GAL 6 CGGN°WN°CCG ?

CTAG
CTGCT
CTTC — CTTCC
CGGCG
AGAAG
AT ATC
AA
GCCGC
GAA GAAG — GAAGG
GAT GATC
GACGA
T
TA TAG
TCTTC

GALX4.L5Z3AAATTT

GCN 38 RRTGACTCTTT A{G|A}TGACTC{A|T}

CAGCGG
AACCGGC
CATCGAA

AGAGAG

CTA
crerer
CTTA
CAGCGG
CAGCAG
GAA
GACTCA
ATATAT
AAGAA
TGACTC TTC TTCT —— TTCTT
TTA
TAG
TATATA

cceeTe

v

TCTTCT

Vi

TAA
GCN.X6.L6.TTT.AAA

INO 10 CATGTGAAWT CAACAA{C | G} CCACTG
CCTTTT
CATGTGAA CAACAA
CACATG
TCTTCA CTTTTT
GAAAA
GTTCAA GTTGT
GCGGCA
GTCGCA ACAAGA
AACAA
AGAACA
TGTTG
TGTGCC
TTTT — TTTTT — TTTTTT
TTeTT — TTGTTG
TCTTC B
HAP 8 CCAA{T | C} AGAGAGA ACAAG
ATGGGGC

ACT
AAGA —
AA — AAG AAGAA
T AAGG
AGAAC
CCTTG
err 1A — TTAG
TTCTG
TCTCT TTCT
T oTTCTT
TT=— TG ___
" — TATAT T TTGC TTGCA
TGGGG TAG
GT TAAT
—
GGAA GTTA
GGGG — GGGGA
GGGCC

Gccee

Table 4: van Helden dataset of co-regulated genes (continued)
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Family £k Motif van Helden et al. VERBUMCULUS
YAP 16 TTACTAA CGTTCCGT
CGAAGA
CATTAC cTTe
CTGAAG
AGGCGG
TGCCTT
TTC TTCT —— TTCTTT
TTT — TTTC — TTICTT
TCTTC —— TCTTCT
GAAGA — GAAGAA
GGAACG
TUP 25 KANW*ATSYG*W TT{C|T}{CIG}NG*{T|C}{AIC}
AGGCACGGG -
AAA{A|G}AA o
AAGGAGGA AA _me
e o — ATC
ACAAACA L TAG
CTCCGC T
TCTT T e —"""°
{T | C}CTGCA ccc CCCC\ e
CGTCGC CC: e

TUP.X5.L4.23AAATTT

Table 5: van Helden dataset of co-regulated genes (continued)
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Hours 0% 25 7 911

Early |

Figure 8: Genes of the Early(I) cluster induced or repressed during sporulation. Adaptated, by
kind permission, from a figure at http://cmgm.stanford.edu/pbrown/sporulation/figures/
figbss.html

6.2 Sporulation of the Yeast

We report here some results from testing VERBUMCULUS on the dataset involved in the work on
sporulation conducted at Stanford by Chu et al. [15]. The authors used DNA micro-array technol-
ogy to expose the temporal patterns of gene expression of Saccharomyces Cerevisiae during meiosis
and spore formation. This was done along the lines of a rather standard procedure, as follows.
First, changes in the concentration of mRNA transcript from known genes of the budding yeast
were measured during seven consecutive intervals. Next, the average expression profiles were used
to classify the genes. Figure 8 reproduces an adaptation of the image at the outset, available in
full view at http://cmgm.stanford.edu/pbrown/sporulation/figures/figbss.html. As usual,
higher and higher degrees of expression translate into darker and darker shades of red, while lower
concentrations yield progressively darker shades of green. Seven clusters were produced in this par-
ticular experiment, labeled as Metabolic, Early(I), Early(II), EarlyMiddle, Middle, MidLate,
and Late.

The two bands of columns with blue bars in Figure 8 identify genes of which the promoters
contain a putative URS1 or MSE regulatory sequence, respectively. The degree to which the
sequence matches the consensus for each of these regulatory elements is indicated by the brightness
of the bar: the best matches are represented by the bright blue bars that appear to be concentrated
towards the left of each band, the less stringent matches cause the darker blue bars more visible
towards the right. The most stringent match for the URS1 site is 5’-TCGGCGGCTDW-3’, and the least
stringent is 5’-GGCGGC-3’. The most stringent match for the MSE site is 5’-HDVKNCACAAAAD-3’, and
the least stringent is 5’-DNCRCAAAWD-3’.

Figure 5 of [15] shows that the upstream sequences relative to the genes in the clusters Metabolic,
Early(I), and Early(II) contain several occurrences of the regulatory element URS1, while the
ones in the clusters EarlyMiddle and Middle contain many MSE sites. We report here results
regarding the analysis of the cluster Early(I) with the objective to expose the URSI site. We also
report a less satisfactory analysis of the cluster Middle.
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6.3 The Early(I) cluster

The cluster Early(I) contains 36 genes, namely RTS2, MEK1, NDJ1, MNE1, EHD2, DBP1, IPL1,
VPS30, UGA3, PCH2, SEO1, CIT2, SCC2, KIP3, RAD51, IME4, ZIP1, DMC1, RAD54, HFM1,
LEU1, PAD1, ATP10, CIK1, FKH1, HOP1, SPS19, KIN2, ECM17, RPM2, CCP1, BAT1, IME2,
SPO13, RED1, SMT4. We extracted the upstream region of 600 base pairs (allowing overlaps with
other ORFs) using the tool developed by VanHelden et al. [49].

Table 6 shows the trees produced by VERBUMCULUS on the family of 36 upstream regions and
annotated with the scores 2z, 23, 24, 28 and zg, maximum length 6 bps. Only patterns with a score
higher than 4.0 (in absolute value) are shown. For comparison purposes, Table 7 lists a few most
notable words along with their statistics. In [15] it is reported that 43% of the upstream regions
of the genes in the cluster Early(I) have a core URS1 motif, while we found only 33%. However,
the expected number of GGCGGC is so small that the reported occurrences of this word have to be
considered surprising by any measure, whether in terms of total number of occurrences or number
of sequences containing it.

Observe that the words in the zo-tree of Table 6 are not independent. Instead, prefixes of some
words are suffixes of others, which suggests that their occurrences might be correlated. We used
sequence alignment (see, e.g. [7]) to “assemble” short sequences in longer sequences (see Tables 8-
10). As seen in this example, the alignment step can be used to partially overcome the limitation
of VERBUMCULUS to discover exact motifs.

Table 8 shows an alignment produced by using four such overlapping words from the tree. The
consensus of the alignment TCGGCGGCA exactly matches two motifs in in the Transcription Element
Search System (TESS/TRANSFAC) database [51, 50], namely Y$HSP70_02 and Y$SSA1.01. This
pattern contains the core GGCGGC, mentioned repeatedly in [15].

Next, we used four more motifs from the tree to build another alignment (see Table 9). The
consensus TGCGCGGCT matches one motif in TESS, YSG3PDH_01, that is already known in the
literature [33].

Finally, we chose five motifs from the tree and build the multiple alignment of Table 10. The
consensus TAGCCGCGGA exactly matches five motifs in TESS, namely YSCAR1_.02, YSCAR2.01,
Y$MES1.01, Y§SPO13.01, Y$STOP1_01. For example, Y§SPO13_01 is known to be a key regulatory
of nitrogen repression and meiotic development [46]. However, the authors of [15] did not report
the finding of this regulatory element.

In conclusion, VERBUMCULUS not only succeeded in identifying the regulatory elements we were
looking for, but also found some other interesting new patterns in the cluster that were possibly
overlooked. At the same time, in the zy-tree of Table 6 there were also patterns such as CTTTTC,
AAAAAA, and ACCGGC. The former two have been detected as elements in scaffold/matrix attachment
regions (MARs) of eukaryotic genomes [1, 47]. MARs are basic components for high level genome
compaction and organization, therefore are highly frequent in genomic sequences [21, 9]. In addition,
biological experiments have shown that they anchor genomic sequences to proteinaceous nuclear
matrix and affect gene expression [45, 35, 9]. For the latter pattern, we have not found any biological
significance yet.

We went on producing a few more suffix trees annotated with other scores. Table 6 shows the
tree decorated with scores z3, z4, zs and z9. Some remarks are in order. The z3 and z4 trees are
quite similar except for the following: the tree for z3 enhances GCCGCC, TTTTT while the tree for z4
does not. Vice versa, the tree for z4 emphasizes TA as being under-represented, a phenomenon that
is missed in the tree annotated with z3.

The word GGCGGC appears again in both z3- and z4-trees. However, in the case of z3 the pattern
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Score T VERBUMCULUS Score T VERBUMCULUS
29 40 GCGCGC z3 80 GCGGCT
@CGGCT
GCCGGC
GCCGCC
/ GGCGG G G C G G C Geceee TTTTC TTTTCT
GGGCGG _—
I cescTa - T —— T
( TTTTT —— TTTTTT
CGGCGG
\\ CTTTTC AMG AAAAG AAAAAG
bcecco AA T
iiiiz: N AAAA - AAAAA - AAAAAA
ACCGGC
AGCCGC
Earlyl.600bps.z2.L6.X4 Earlyl.600bps.23.L6.X8
Z4 8.0 GCGGCT zZ8 9.0 GCGGCT
GCCGGC
GAAA GAAAA — GAAAAA GCCGTG
Cecese GCCGCC
____ TTTTC —— TTTTCT GGCGGC
TTT TTTT GGGCGG
N TAGCCG
TA CGGCTA
Srrrre MG AMARG CGCGC;&(EG
AAA AARARG CCGCCG
AAAA - AAAAA _ CCGGCG
AAAAAA CCGGCA
AAGAAA ACCGGC
- e
Earlyl.600bps.z4.L6.X8 Earlyl.600bps.z8.L6.X8
zg 100 —
[ GCGGCT
ﬁ GCCBTG
g
GCCGCC
s GGCGGC
TAGCCG
ceGeT CGGCTA
— CGGCGG
\c GGGGG
A\CTTTTC
——
———
N ammc
N AceACC
[N AcTaTA
\\ AGCCGC
Earlyl.600bps.z9.L6.X10
Table 6: Early(I) cluster as seen through VERBUMCULUS, T is the threshold
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occurrences sSequences
w | E(w) | f(w) | Be(w) | c(w)
AMAAAA | 26.44 | 109 | 25.74 | 22
TTTTTT | 29.38 | 110 | 27.63 | 25
GGCGGC | 1.15 | 25| 1.51| 12
TAGCCG | 2.43 9| 211 9

Table 7: Explicit statistics for some most devious words (in term of number of occurrences and/or
number of sequences containing at least one occurrence) in the 36 sequences that form cluster
Early(I). The individual symbol probabilities are .31 for A and T and .18 for G and C

Cc G ¢ C G ¢ - G g6 CGG - - -
SEREETEE
- ¢ G6GC G G -

e ccCcc o c - - - C G G C T A
o ¢ C ¢ o G G C G C G G C T A

Table 9: Alignment of four other highly over-

Table 8: Ali t of four highl lap-
abe \snment of Jour WSy overap lapping words picked from the tree of za-tree

ping words picked from the zo-tree of Table 6

of Table 6
A G C CG C - - -
- G ¢ ¢C G C - G -
- G ¢ ¢ G ¢C ¢C - -
- - ¢cCcGCg G -
- - CCG g C - A
A G C C G C C G A

Table 10: Alignment of five other highly overlapping words picked from the zo-tree of Table 6
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GGCGGC is no more the highest scoring one. GGCGGC ranks fifth after AAAAAA, AAAAA, AAAA, AAA. In
fact, as one would expect, the approximation of the variance used in z3 does affect in particular
the scores of highly periodic words.

It is somewhat surprising that the families of words AT and T* appear as strongly marked in
the tree under z4. The pervasive over-representation of AAA, TTT, TAT, ATA have been reported by
Nussinov [37], Brendel et al. [12] and Leung et al. [31]. They correspond to the highly occurring
"A box’ (AATAAAYAAA) and 'T box’ (TTWIWTTWTT) binding sites of MARs across different species
[22, 1, 35, 9, 47]. In any case, it is comforting to see that the word GGCGGC is still the highest
scoring motif in the tree.

The zg- and zg-trees pertain both to scores defined in terms of sequence families. 1t is interesting
to compare the tree for the score zg with the tree for z5. The tree for zg exposes GCCGTG, TAGCCG,
CGCCGA, CCGGCG and AGGACC while the tree annotated with zo does not. Vice versa, the tree for
2o shows GCGCGC, GGCGG, CTTTTC and AAAAAA. The fact that these trees are very similar seems to
suggest that, under our conditions, words that occur at least once in unexpectedly many sequences
in a family might be spotted just by looking for words with a high occurrence score in the family as
a whole. The function zg (defined as in WORDUP) happens to assign a high score the two motifs
GGCGGC and GCGGCT. Surprisingly, it exposes at least two words present in the tree for the score zo
but not appearing in the tree for zg, namely, GGCGG and CTTTTC.

We also analyzed the dataset replacing the underlying model with a Markov chain. We produced
five trees assuming models of order M = 0,...,4. Order M = 0 corresponds to the i.i.d. model,
whereas higher orders M > 0 assumes that the source is generating symbols with a probability
distribution which depends on the M preceding symbols. Figure 11 shows the trees computed
by VERBUMCULUS using a common score and parameters. To clarify the differences we produced
another figure where we removed the tree, we connected common words with a red line, and we
circled in green the singletons. We observe that for M = 0, 1,2 there is some general agreement:
in particular the word GGCGGC consistently achieves the highest score. However, for the order 3 we
are left only with one word (AGGACC) that does not appear anywhere else. If we had lowered the
threshold to 3, GGCGGC would have appeared among other other fifteen words. The fourth order
tree contains the prefix GGCGG, although other three unknown words scores a little higher. This
phenomenon can be expected, since we train our model on the sequences themselves. As the size
of the model grows its capability of prediction grows as well. Therefore there are less and less
surprising words. In order to get roughly the same amount of nodes in the trees, we should have
lowered the threshold as M increases.

6.4 The Middle cluster

We describe tests conducted with VERBUMCULUS on other cluster in the same dataset from [15].
This will show that when the core of consensus is not a fixed pattern, but admits instead multi-
valued positions, then it becomes more difficult to find by our method.

The cluster Middle is composed by 63 genes, namely: STE5, PBP2, MRPL37, APC11, YSW1,
UBC1, EKI1, CDC10, SPS2, SPS1, SPR6, GPI8, CDC26, CDH1, ISC10, CLB6, SUT1, HXT10,
PES4, SPR28, CDC20, GNP1, SPR3, YCK3, FET5, CDA2, CDA1, SPS18, CDC5, REV7, PIG1,
NMT1, MIP6, SPO20, CNM67, YCK2, SUR4, TEP1, RNH70, BNR1, CDC3, KAR1, CWP1,
HYM1, ORC1, NDT80, SPO12, FUS2, ORC3, APC9, CDC16, SSP1, PCT1, STO1, BBP1, MUD13,
AUT1, HXT14, SPS4, UBC11, SPR1, HST1, ECM23, SSP2.

The family of upstream sequences should display frequent occurrences of the MSE sites ranging
from HDVKNCACAAAAD (most stringent, appearing in 7 sequences) to DNCRCAAAWD (least stringent,

21



M VERBUMCULUS VERBUMCULUS
O GCGCGC GCGGCT
GCGGCT
GCCGGC GCCGGC
GCCGCC GCCGCC
GGCGGC GGCGGC
C(_:(;Gg(;e CGGCTA
°°°°° CGGCGG
CCGCCG
CCcGGCA CCGCCG
::22?; ACCGGC
AGCCGC AGCCGC
2 GCGGCT
GCCGGC
GCCGCC
TAGCCG O— AG GACC
CGGCTA o
CGGCGG
CCGCCG
AGCCGC
' GTGAGG

GGCGG
GGGGGT
CCCGCA

Earlyl.X4.z2.M4

Table 11: Early(I) cluster, score zq, threshold 4.0, M is the order of the Markov chain



MMO MM1 MM2 MM3 MM4
GCGGCT
GCGGCT oo  T—GCGGCT GTGAGG
GCCGGC — GCCGGC
GGCGG GGCGG G G CG G
GGCGGC —— GGCGGC GGCGGC AGGACC
GGGCGG GGGCGG TAGCCG
N caecTA GecaeT
i | T—CGGCGG CGGCGG
e ] ceeces CCGCCe CCCGCA
anonss accesc ————__AGCCGC
Az:éz(zzc AGCCGC

Figure 9: The collection of words from Figure 11. Identical words are connected with lines, while
singleton words are circled

occurrences Sequences
w E(w) | f(w) | Ee(w) | c(w)
CAAA | 24276 | 349 | 62.37 | 63
CTTT | 197.31 | 346 | 60.82 | 62
TTTT | 350.02 | 884 | 62.65| 63
CACAAA | 14.11| 40| 16.09 | 37
TTTTTT | 19.82 | 78| 3042 | 46

Table 12: Statistics for some notable words of the cluster Middle (63 sequences)

appearing in 31 sequences). The complication for VERBUMCULUS is that these patterns are not
fixed strings but rather regular expression, however trivial: for example N is a wildcard denoting
any letter in the set A, C, G,T, whereas R can be substituted only with a purine (A or G), Y with
a pyrimidine (C or T), etc.

We would like to isolate the core CAAA or, even better, CACAAA from the upstream regions
relative to the genes in the cluster Middle. Six sequences share another prominent motif, namely
CWBYSCTTT.

Unfortunately, it seems difficult to catch CACAAA in Middle. The zo-tree in Table 13 shows the
15 words with highest zy score: CACAAA does not show up among them. We have to lower the
threshold on that score to 5.0 before we can see CACAAA, but this has the simultaneous effect of
raising the tree size to almost 100 nodes. The same happens when we look for CAAA (see Table 13-
right). However, at least CTTT pops up now among the highest scoring motifs. Table 12 shows the
statistics of these and other notable words.

We used other scores to see if we could get CACAAA somewhere. Table 13 shows the z4-tree
for the cluster Middle that suffers again from the presence of the family of words A* and T*, but
no CACAAA. Tt also shows the zg-tree, but again no CACAAA. Finally, a surprise. The zg-tree shows
CACAAA in the high scoring patterns.
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Score T VERBUMCULUS Score T VERBUMCULUS
29 7.0 AAAAAA 29 3.0 AAGA
CGCCGC AAAA
CTTTTT AAAG
CAGGCG AGAA
CCTTTT CGCC
GTGCGG
[ GCGCCA CTIT
GCCACA GAAG
GCCAGC GAAA
TTITGTG |, —— TTTTTG GCCA TTTC
T — TTTTTT TTT TTTG
TTTTCC — 1r1171C TTCT TTTT
Mid.600bps.z2.L.6.X7 Mid.600bps.z2.L4.X3
z 10.0 o z 6.0
! AT * AGGCGG
AN CAGGCG
) CCGCAT
R GTGCGG
T s GCGACG
N GCGCCA
me  TTTTT - TTTTTT
e TGTGTC
TTTT — e Frrmre TACCCG
Mid.600bps.z4.1 6. X10 Mid.600bps.z8.L6.X6
29 12.0 CC?gACTTA
CAGGCG
CACAAA
CCGCAT
CCACAA
GACACA
GTGCGG
GCGACG
GCGCCA
TGTGTC
TACTGG
s
riTere

TTGTGT

Mid.600bps.z9.L6.X12

Table 13: Middle cluster, T is the threshold
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7 Conclusion

This paper describes a genome-wise searching system for over- or under-represented nucleotide mo-
tifs, called VERBUMCULUS. The main advantages brought about by this tool are speed, low memory
requirements and visualization capabilities. This rests on the core structure of the algorithm, which
takes advantage of strong properties at the intersection of statistics, pattern matching and combina-
torics on words. As a result, the facility at the outset can detect over- or under-represented patterns
in linear time and space for most of the scores in use. An array of experimental tests, ranging from
simulations on synthetic data to the discovery of regulatory elements on the upstream regions of a
set of genes of the yeast, was used to demonstrate the strengths as well as some limitations of the
tool.
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