Skip to main content
Log in

Equivalent network representation of boundary conditions involving generalized trial quantities

Représentation des conditions aux limites par un schéma équivalent avec des grandeurs d’essai généralisées

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Virtual adjustable sources are introduced in equivalent network representation of boundary conditions. For this purpose, integral equations are to be solved simple application of analog Kirchoff’s and Ohm’s laws. These adjustable sources represent generalized trial quantities. In order to illustrate this proposed approach, equivalent network representation of lossy planar transmission lines with arbitrary metallization thickness is presented.

Résumé

Des sources virtuelles et ajustables sont introduites dans une représentation des conditions aux limites par un schéma équivalent. Les équations intégrales à résoudre sont alors déduites d’une simple application des lois de Kirchhoff et de la loi d’Ohm. Ces sources ajustables représentent des grandeurs d’essai généralisées. Afin d’illustrer la formulation, ces grandeurs sont introduites pour résoudre des problèmes aux limites classiques; puis le schéma équivalent des lignes de transmission planaires avec une épaisseur quelconque de metallisation à pertes est présenté.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rozzi (T. E.), Int Veld (G.H.). Field and network analysis of interacting step discontinuities in planar dielectric waveguides.IEEE Trans. MTT (Apr. 1979),27, no 4, pp. 303–309.

    Article  Google Scholar 

  2. Harrington (R. F.), Mautz (J. R.). A generalized network formulation for aperture problems.IEEE Trans. AP (Nov. 1976), pp. 870–873.

  3. Plumb (R. G.), Harrington (R. F.), Adams (A. T.). An electromagnetic model for multiconductor connectors.IEEE Trans. EC (Feb. 1990),32, no 1, pp. 38–52.

    Google Scholar 

  4. Itoh (T.). Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines.IEEE Trans. MTT (Jul. 1980),28, no 7, pp. 733–736.

    Article  Google Scholar 

  5. Vegni (L.), Cicchetti (R.), Capece (P.). Spectral dyadic Green’s function formulation for planar integrated structures.IEEE Trans. AP (Aug. 1988), pp. 1057–1065.

  6. Liou (J.-C.), Lau (K. M.). Analysis of slow-wave transmission lines on multi-layered semiconductor structures including conductor loss.IEEE Trans. MTT (May 1993),41, no 8, pp. 824–829.

    Article  Google Scholar 

  7. Marcuvitz (N.), Schwinger (J.). On the representation of the electric and magnetic fields produced by currents and discontinuities in wave guides I.J. Appl. Phys. (June 1951),22, no 6.

  8. Sorrentino (R.). Numerical techniques for planar and quasi-planar millimeter-wave passive components.Ann. Telecommunic. (1988),43, n 7–8, pp. 392–404.

    Google Scholar 

  9. Itoh (T.). Numerical techniques for microwave and millimeter- wave passive structures.John Wiley & Sons (1989).

  10. Helard (M.), Citerne (J.), Picon (O.), Fouad Hanna (V.). Theoretical and experimental investigation of finline discontinuities.IEEE Trans. MTT (Oct. 1985),33, pp. 994–1003.

    Article  Google Scholar 

  11. Harrington (R. F.). Field computation by moment methods.Macmillan, New York (1968).

    Google Scholar 

  12. Souny (B.), Aubert (H.), Baudrand (H.). Elimination of spurious solutions in the calculation of eigenmodes by moment method.IEEE Trans. MTT (Jan. 1996),44, pp. 154–157.

    Article  Google Scholar 

  13. Bouzidi (F.), Aubert (H.), Bajon (D.), Baudrand (H.), Fouad Hanna (V.). Equivalent circuit representation of lossy coplanar waveguides.Ann. Telecommunic (Nov.-Dec. 1992),47, no 11–12, pp. 551–554.

    Google Scholar 

  14. Bouzidi (F.), Aubert (H.), Bajon (D.), Baudrand (H.). Equivalent network representation of boundary conditions involving generalized trial quantities : application to lossy transmission lines with finite metallization thickness.IEEE Trans. MTT (1996).

  15. Aubert (H.), Souny (B.), Baudrand (H.). Origin and avoidance of spurious solutions in transverse resonance method.IEEE Trans. MTT (March 1993)41, pp. 450–456.

    Article  Google Scholar 

  16. Rozzi (T.), Moglie (F.), Morini (A.), Marchionna (E.), Politi (M.). Hybrid modes, substrate leakage, and losses of slotline at millimeter-wave frequencies.IEEE Trans. MTT (Aug. 1990),38, no 8, pp. 1069–1078.

    Article  Google Scholar 

  17. Das (N. K.), Pozar (D. M.). Full-wave spectral-domain computation of material, radiation and guided wave losses in infinite multilayered printed transmission lines.IEEE Trans. MTT (Jan. 1991),39, n 1, pp. 54–63.

    Article  Google Scholar 

  18. Liou (J. C.), Lau (K. M.). Analysis of slow-wave transmission lines on multi-layered semiconductor structures including conductor losses.IEEE Trans. MTT (May 1993),41, no 5, pp. 824–829.

    Article  Google Scholar 

  19. Van Deventer (T. E.), Katehi (P. B.), Cangellaris (A. C.). An integral equation method for the evaluation of conductor and dielectric losses in high-frequency interconnects.IEEE Trans. MTT (Dec. 1989),37, no 12, pp. 1964–1972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudrand, H., Aubert, H., Bajon, D. et al. Equivalent network representation of boundary conditions involving generalized trial quantities. Ann. Télécommun. 52, 285–292 (1997). https://doi.org/10.1007/BF02996071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02996071

Key words

Mots clés

Navigation