Skip to main content
Log in

Relationship between the ambiguity function coordinate transformations and the fractional Fourier transform

Relation entre la transformation de coordonnÉes de la fonction d’ambiguÏtÉ et la transformation de fourier fractionnaire

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

It has been shown that the fractional Fourier transform, recently very intensively investigated in mathematics, quantum mechanics, optics and signal processing, can be obtained as a special case of the earlier introduced linear coordinate transformations of the ambiguity function or Wigner distribution. Some applications of the generalized fractional transform on the time-frequency analysis are presented.

Résumé

Il a été montré que la transformation de Fourier fractionnaire, qui a fait l’objet d’études récentes intensives en mathématique, en mécanique quantique, en optique et en traitement du signal, peut-être obtenue comme cas spécial des transformations de coordonnées linéaires de la fonction d’ambiguïté ou de la distribution de Wigner. Quelques applications de la transformation de Fourier fractionnaire à l’analyse temps-fréquence sont présentées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Namias (V.): The fractional order Fourier transform and its application to quantum mechanics,J. Inst. Math. Appl. 25, pp. 241–265, (1980).

    Article  MATH  MathSciNet  Google Scholar 

  2. Lohmann (A. W.): Image rotation, Wigner rotation and fractional Fourier transform,J. Opt. Soc. Amer A. 10, pp. 2181–2186, (1993).

    Article  Google Scholar 

  3. Lohmann (A. W.), Soffer (B. H.): Relation between the Radon-Wigner and fractional Fourier transform,J. Opt. Soc. Amer. A. 11, pp. 1798–1801, (1994).

    Article  MathSciNet  Google Scholar 

  4. Almeida (L. B.): The fractional Fourier transform and time-frequency representations,IEEE Trans. Signal Processing. 42, pp. 3084–3091,(1994).

    Article  Google Scholar 

  5. Zayed (A. I.): On the relationship between the Fourier transform and fractional Fourier transform,IEEE Signal Processing Letters, 3, no.12, pp. 310–211, (1996).

    Article  Google Scholar 

  6. Santhanam (B.), McClellan (J. H.): The discrete rational Fourier transform,IEEE Trans, on Signal Processing, 44, no. 4, (April 1996), pp. 994–997.

    Article  Google Scholar 

  7. Mcbride (A. C), Keer (F. H.): The discrete rational Fourier transform,IMA J. Appl. Math.,39, pp. 159–175, (1987).

    Article  MATH  MathSciNet  Google Scholar 

  8. Almeida (L.B.),: Product and convolution theorems for the fractional Fourier transform,IEEE Signal Processing Letters, 4, no.1, (Jan. 1997), pp. 15–17.

    Article  MathSciNet  Google Scholar 

  9. Weyl (N.): Quantenmechanik und groupentheorie,Ztsch. f. Physik,46, pp. 1–47,(1927).

    Article  Google Scholar 

  10. Wiener (N.): Hermintian polynomials and Fourier analysis,J. Math. Phys. MIT,8, pp. 70–73, (1929).

    Google Scholar 

  11. Harms (B.): Computing time-frequency distributions,IEEE Trans, on Signal Processing,39, no. 3, pp. 727–729, (March 1991).

    Article  Google Scholar 

  12. RiSTic (B.), Boashash (B.): Kernel design for time-frequency signal analysis using the Radon transform,IEEE Trans, on Signal Processing,41, no. 5, pp. 1996–2008, (May 1995).

    Article  Google Scholar 

  13. Wood (J. C), Barry (D. T.): Linear signal synthesis using the Radon-Wigner distribution,IEEE Trans, on Signal Processing,42, no. 8, pp. 2105–2111, (Aug. 1994).

    Article  Google Scholar 

  14. Wood (J. C), Barry (D. T.): Radon transform of time-frequency distributions for analysis of multicomponent signals,IEEE Trans, on Signal Processing,42, no. 11, pp. 3166–3177, (Nov 1994)

    Article  Google Scholar 

  15. Boashash (B.): Estimating and interpreting the instantaneous frequency of a signal-Part I Fundamentals,IEEE Proc. 80, no. 4, pp. 519–538, (April 1992).

    Google Scholar 

  16. Papoulis (A.): Ambiguity function in Fourier optics,J. opt. Soc. Amer.,64, no. 6, pp. 779–788, (June 1974).

    Article  Google Scholar 

  17. Papoulis (A.): Signal analysis,McGraw Hill Book Company, New York, pp. 287–289, (1977).

    MATH  Google Scholar 

  18. Sadowsky (J.) : An application of the Weyl theory to signal processing, inProc. 23rd Asilomar Conf., Circuits, Syst., Compy, pp. 628–632, (1989).

  19. Stankovic’ (S.): Wigner distribution in signal analysis Master thesis, University of Zagred. Croatia, pp. 20–25, (1992).

    Google Scholar 

  20. Stankovic’ (L. J.): An analysis of instantaneous frequency presentation using time-frequency distributions -Generalized Wigner distribution,IEEE Trans, on Signal Processing,43, no. 2, pp. 549–552, (Feb. 1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LJubiša StankoviĆ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DjuroviĆ, I., StankoviĆ, L. Relationship between the ambiguity function coordinate transformations and the fractional Fourier transform. Ann. Télécommun. 53, 316–319 (1998). https://doi.org/10.1007/BF02997688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02997688

Key words

Mots clés

Navigation