Skip to main content
Log in

Analyse de structures tridimensionnelles inhomogenes quelconques

Analysis of arbitrarily shaped and inhomogeneous 3D structures

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

Cet article présente le logiciel SR3D qui permet une étude rigoureuse des structures rayonnantes 3D incorporant des éléments filaires (fins ou épais), des volumes diélectriques et des plans de sol de dimensions finies. La méthode d’analyse associée utilise le formalisme des équations intégrales (formulation mixte électrique/magnétique) combiné à une approche variationnelle basée sur le principe de réaction. Le problème est résolu numériquement par une méthode d’éléments finis de surface : les surfaces conductrices et les interfaces entre domaines diélectriques homogènes sont décrites par un maillage en éléments finis de surface de forme triangulaire. Cet article discute des choix numériques qui ont été adoptés en ce qui concerne les fonctions de base, la densité de maillage et les problèmes posés par les éléments filaires. Enfin on met en évidence la précision de la méthode sur des exemples concrets pour lesquels des diagrammes de rayonnement et d’impédance théoriques et expérimentaux sont comparés.

Abstract

This paper illustrates the capability of SR3D software to rigorously analyze 3D radiating structures including wires (thin or thick), dielectric parts and finite ground planes. The analysis method is within the class of bound ary element method (bem) and use integral equation formulation (combined field integral equation cfie) to solve electromagnetic scattering problems. It includes a variational approach based on Rumsey reaction concept. The problem is numerically solved with a surface finite element method : surfaces of 3D conducting object and interfaces between dielectric domains are meshed using surface triangular patches. We discuss on the numerical options chosen, the basis functions used, discretization density, and treatment of wires. The last sections emphasize the accuracy of the method on examples for which computed and measured reflection coefficient and radiation patterns are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Richmond (J. H.). A wire-grid model for scattering by conducting bodies.IEEE Trans. AP (1966),14, pp. 783–786.

    Google Scholar 

  2. Mautz (J. R.), Harrington (R. F.). Radiation and scattering from bodies of revolution.Appl. Sci. Res. (1969),20, pp. 405–435.

    Article  Google Scholar 

  3. Harrington (R. F.). Field computation by moment method.Mac Millan, New York (1968).

    Google Scholar 

  4. Kress (R.). Numerical solution of boundary integral equations in time harmonic electromagnetic scattering.Electromagn. (1990),10, pp. 1–20.

    Article  Google Scholar 

  5. Berthon (A.), Bills (R.). Integral equation analysis of radiating structures of revolution.IEEE Trans. AP (Feb. 1989),37, n° 2, pp. 159–170.

    Article  Google Scholar 

  6. Rao (S. M.), Wilton (D. R.), Glisson (A. W.). Electromagnetic scattering by surfaces of arbitrary shape.IEEE Trans. AP (May 1982),30, n° 3, pp. 409–418.

    Google Scholar 

  7. Umashankar (K.), Taflove (A.), Rao (S. M.). Electromagnetic scattering by arbitrary shaped three dimensional homogeneous lossy dielectric objects.IEEE Trans. AP (June 1986),34, n° 6, pp. 758–766.

    Google Scholar 

  8. Ratajczak (P.),Brachat (P.),Guiraud (J. L.). Rigorous analysis of 3D structures incorporing dielectrics. IEEE Trans. AP (Aug. 1994), 42, n° 8.

  9. Brachat (P.). Sectoral pattern synthesis with primary feeds.IEEE Trans. AP (Apr. 1994),42, n° 4, pp. 484–491.

    Google Scholar 

  10. Nédélec (J. C),Bendali (A.),Devys (C),Ziani (A.). Magellan computing code. Ecole Polytechnique, Paris,Special report (Oct. 1986).

  11. Bendali (A.). Numerical analysis of the exterior boundary value problem for the time harmonic Maxwell equations by a boundary finite element method.Math. Comp. (1984),43, pp. 29–46.

    Article  MATH  MathSciNet  Google Scholar 

  12. Nédélec (C). Mixed finite elements inR 3.Numeric Math (1980),35, pp. 315–341.

    Article  MATH  Google Scholar 

  13. Dauvignac (J. Y.). Analyse rigoureuse de structures rayonnantes à 3 dimensions : applications aux antennes planaires.PhD Thesis, University of Nice-Sophia Antipolis, Fr. (Jan. 1993).

  14. Bousquet (T.). Modélisation rigoureuse de structures filaires par éléments finis de surface : application à des antennes 3D inhomogènes alimentées par sonde coaxiale.PhD Thesis, University of Nice-Sophia Antipolis, Fr. (Dec. 1995).

  15. Mittra (R.). Computer techniques in electromagnetics.Pergamon Press Ltd, Oxford (1973).

    Google Scholar 

  16. Chen-To Tai. Generalized vector and dyadic analysis.IEEE Press, New York (1992).

    MATH  Google Scholar 

  17. Miller (E. K.). A selective survey of computational electromagnetics.IEEE Trans. AP (Sep. 1988),36, n° 9 pp. 1281–1305.

    Google Scholar 

  18. Wang (J. J. H.). Generalized moment methods in electromagnetics.J. Wiley, New York (1991).

    Google Scholar 

  19. Rumsey (V. H.). Reaction concept in electromagnetic theory.Physical Review (June 1954),94, n° 6, pp. 1483–1491.

    Article  MATH  MathSciNet  Google Scholar 

  20. Marcuvitz (N.). Waveguide handbook.Peter Peregrinus Ltd, Londres (1986).

    Google Scholar 

  21. Schelkunoff (S. A.). Electromagnetic waves.D. Van Nostrand, New York (1943).

    Google Scholar 

  22. Jull (E. V.). Aperture antennas and diffraction theory.Peter Peregrinus Ltd, Stevenage (1981).

    Google Scholar 

  23. Jull (E. V.), Deloli (E. P.). An accurate absolute gain calibration of an antenna for radio astronomy.IEEE Trans. AP (1964),12, pp. 439–447.

    Google Scholar 

  24. Yeh (Y. S.), Mei (K. K.). Theory of conical equiangular spiral antennas, Part I, numerical technique.IEEE Trans. AP (Sep. 1967),15, pp. 634–639.

    Google Scholar 

  25. Brachat (P.),Kossiavas (I.). Antenne imprimée bibande fonctionnant en polarisation circulaire destinée aux systèmes mobiles par satellite de type Inmarsat. Proc. JINA 1994, Int. Symposium Antennas, Nice,France (Nov. 1994), pp. 572–576.

  26. Hansen (J. E.). Spherical near field antenna measurements.Peter Peregrinus Ltd, London (1988).

    Google Scholar 

  27. Nakano (H.), Takeda (H.), Honma (T.), Mimaki (H.), Yamauchi (J.). Extremely low profile Helix radiating a circularly polarized wave.IEEE Trans. AP (June 1991),39, n° 6, pp. 754–757.

    Google Scholar 

  28. Mosig (J. R.), Hall (R. C), Gardiol (F. E.). Numerical analysis of microstrip antennas. In the Handbook of Microstrip Antennas, J. R. James and P. S. Hall, Eds. UK:Peregrinus Press (1989), ch. 8.

    Google Scholar 

  29. Laheurte (J. M.),Mosig (J. R.). Effects of probe feed and soldering point in thick microstrip antennas.21st European Microwave Conference, Stuttgart (Sep. 1991), pp. 1179–1184.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Article invité présenté aux Journées Internationales de Nice sur les Antennes : JINA 96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brachat, P., Dedeban, C., Ratajczak, P. et al. Analyse de structures tridimensionnelles inhomogenes quelconques. Ann. Télécommun. 52, 489–502 (1997). https://doi.org/10.1007/BF02998478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02998478

Mots clés

Key words

Navigation