Skip to main content
Log in

A rigolous analysis of conformal microstrip antennas using the fdtd method in curvilinear coordinates

Analyse d’antennes microruban conformées par la méthode fdtd en coordonnées curvilignes

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

The analysis of conformal microstrip antennas printed on arbitrary curved surfaces is of importance as the shape of these surfaces directly influences the radioelectric performance of these antennas. This article proposes to simulate these structures using the finite difference time domain (fdtd) method developed in curvilinear coordinates. This method will be illustrated by several examples of conformal structures.

Résumé

L’étude d’antennes microrubans conformées imprimés sur des surfaces non planes quelconques s’avère d’autant plus indispensable que la forme de la surface influence directement les performances radioélectriques de l’antenne. Cet article propose de simuler ces structures par la méthode des différences finies dans le domaine temporel développée en coordonnées curvilignes. La méthode sera illustrée sur différents exemples de structures conformées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luk (K.-M.), Lee (K.-F), Dahele (J.). Analysis of the cylindrical-rectangular patch antenna.IEEE Trans. AP,37, no 2, pp. 143–147, (Feb. 1989).

    Google Scholar 

  2. Chujo (W.), Konishi (Y.), Ohtaki (Y.), Yasukawa (K.). Performance of a spherical array antenna fabricated by vacuum forming technique.EMC,2, pp. 1511–1516, (Sept. 1990).

    Google Scholar 

  3. Kashiwa (T), Onishi (T.), Fukai (I.). Analysis of microstrip antennas on curved surface using the conformal gridsFd-Td method.IEEE Trans. AP,42, no 3, pp. 423–427, (March 1994).

    Google Scholar 

  4. Yee (K. S). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media.IEEE Trans. AP,14, pp. 302–307, (May 1966).

    Article  Google Scholar 

  5. Reineix (A.), Jecko (B.). Analysis of microstrip patch antennas using finite difference time domain method.IEEE Trans. AP,37, no 11, pp. 1361–1369, (Nov. 1989).

    Google Scholar 

  6. Sheen (D.M.), Ali (S.M.), Abouzahra (M.D.), Kong (J.A.). Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits.IEEE trans. MTT,38, no 7, pp. 489–857, (July 1990).

    Article  Google Scholar 

  7. Wu (C), Wu (K.L.), Bl (Z.Q.), Litva (J.). Accurate characterization of planar printed antennas using finite-difference time-domain.IEEE Trans. AP,40, no 5, pp. 526–534, (May 1992).

    Google Scholar 

  8. Slager (K. L.), Schneider (J. B.). A selective survey of the finite-difference time-domain literature.IEEE AP Magazine,37, no 4, pp. 39–56, (August 1995).

    Google Scholar 

  9. Jurgens (T.G.), Taflove (A.), Umashankar (K.), Moore (T.G.). Finite-difference time-domain modeling of curved surfaces.IEEE Trans. AP,40, no 4, pp. 357–366, (April 1992).

    Google Scholar 

  10. Dey (S.), Mittra (R.). A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects.IEEE Microwave and Optical Technology Letters,17, no 6, pp. 349–352, (April 1998).

    Article  Google Scholar 

  11. Holland (R.). Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates.IEEE Trans. Nuclear Science,30, no 6, pp. 4589–4591, (Dec 1983).

    Article  MathSciNet  Google Scholar 

  12. Fusco (M.A.), Smith (M.V.), Gordon (L.W.). A three-dimensionalFdtd algorithm in curvilinear coordinates.IEEE Trans. AP,39, no 10, pp. 1463–1471, (Oct. 1991).

    Google Scholar 

  13. Stratton (J.A.). Electromagnetic theory.Mcgraw Hill book company, INC, 702 p., (1941).

  14. Fusco (M.).Fdtd algorithm in curvilinear coordinates.IEEE Trans. AP,38, no 1, pp. 76–89, (Jan. 1990).

    Google Scholar 

  15. Wu (C), Navarro (E.A.), Chung (P.Y), Litva (J.). Modeling of waveguide structures using the nonorthogonalFdtd method with aPml absorbing boundary.Microwave and Opt. Techn. Letters,8, no 4, pp. 226–228, (March 1995).

    Article  Google Scholar 

  16. Roden (J. A.),Gedney (S. D.). Efficient implementation of the uniaxial-basedPml media in three-dimensional nonorthogonal coordinates with the use of theFdtd technique,14, no 2, pp. 71–75, (Feb. 1997).

  17. Mur (G.). Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations.IEEE Trans. EMC,23, no 4, pp. 377–382, (Nov. 1981).

    Google Scholar 

  18. Kitamurat (T.), Koshimae (T.), Hira (M.), Kurazono (S.). Analysis of cylindrical microstrip lines utilizing the finite difference time-domain method.IEEE Trans. MTT,42, no 7, pp. 1279–1282, (July 1994).

    Article  Google Scholar 

  19. Cangellaris (A.C.). Time-domain finite methods for electromagnetic wave propagation and scattering.IEEE Trans. Magnetics 27, no 5, pp. 3780–3785, (Sept. 1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravard, K., Gillard, R. & Citerne, J. A rigolous analysis of conformal microstrip antennas using the fdtd method in curvilinear coordinates. Ann. Télécommun. 54, 19–29 (1999). https://doi.org/10.1007/BF02998644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02998644

Key words

Mots clés

Navigation