Skip to main content
Log in

Couplage du lancer de rayons et des interactions arêtesurface pour une analyse 3d rapide de cibles complexes

Shooting ray and edge-surface interaction coupling for fast 3D analysis of complex targets

Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

Nous présentons une méthode rapide hautes fréquences d’analyse de cibles 3D complexes parfaitement conductrices par une technique de lancer de rayons. Un ensemble de rayons représentant l’onde plane incidente est lancé vers la cible et chaque rayon est suivi au cours de ses interactions. Nous considérons la diffusion des surfaces interceptées au cours des réflexions multiples, la diffraction des arêtes, les interactions surface- arête et arête- surface. Toutes ces contributions sont sommées en champ lointain afin d’évaluer le rayonnement de la cible. Nous présentons des résultats de Surface Equivalente Radar (ser) pour un trièdre, un hélicoptère, un dièdre et une tour.

Abstract

A fast high frequency analysis method of complex 3D perfectly conducting targets is carried out using a Shooting and Bouncing Ray (sbr) approach. A set of rays representating the incident plane wave is shot towards the target and each ray is followed according to reflection and/or diffraction laws. The scattering of intercepted surfaces throughout the multiple bounces, the edge diffraction, the surface- edge and the edge- surface interactions are considered. All these contributions are summed up to compute the target far field. We present Radar Cross Section (rcs) results about an helicopter, a tower and corner reflectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Bibliographie

  1. Baldauf (J.), Lee (S.-W., Un (L., Jeng (S.-K., Scarborough (S.M.), High frequency scattering from trihedral corner reflectors and other benchmark targerts: sbr versus experiment,IEEE Trans. AP,39, n° 9, pp. 1345–1351, (Sept. 1991).

    Google Scholar 

  2. Bermes (S.), Les arbres octaux paresseux: une méthode dynamique de subdivision spatiale pour le lancer de rayons,Thèse de l’École Nationale Supérieure de l’Aéronautique et de l’Espace, n° 240, (mai 1998).

  3. Bhalla (R., Ling (H., Moore (J., Andersh (D.J., Lee (S.-W., Hughes (J.), 3d scattering center representation of complex targets using the Shooting and Boucing Ray technique: a review,IEEE AP Magazine,40, n° 5, pp. 30–39, (Oct. 1998).

    Google Scholar 

  4. Combes (PP.), Micro-Ondes: T2, Circuits passifs, propagation, antennes,Dunod, (1997).

  5. Domingo (M.), Torres (R.P.), Catedra (M.F.), Calculation of the RCS from the interaction of edges and facets,IEEE Trans. AP,42, n° 6, pp. 885–888, (June 1994).

    Google Scholar 

  6. Domingo (M.), Rivas (F.), Perez (J.), Torres (R.P.), Catedra (M.F.). Computation of the RCS of complex bodies modeled using nurbs surfaces,IEEE AP Magazine,37, n° 6, pp. 36–47, (Dec. 1995).

    Google Scholar 

  7. Griesser (T.), Balanis (C. A.), Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction,IEEE Trans. AP,35, n° 10, pp. 1137–1146, (Oct. 1987).

    Google Scholar 

  8. Knott (E. F.), The relationship between Mitzner’s ildc and Michaeli’s equivalent currents,IEEE Trans. AP,33, pp. 112–114, (Jan. 1985).

    Google Scholar 

  9. Kouyoumjian (R.G.), Pathak (P. H.), A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,Proceding IEEE,62, n° 11, pp. 1448–1461, (Nov. 1974).

    Article  Google Scholar 

  10. Latger (J.), Talaron (J. F.), Onde, a numerical tool for describing environment,Defence and Optronics symposium ’96.

  11. Lee (S.W.), Mittra (R), Fourier transform of a polygonal shape function and its application in electromagnetics,IEEE Trans. AP. 34, pp. 99–103, (Jan. 1983).

    Google Scholar 

  12. Ling (H.), Chou (R.-C), Lee (S.-W.), Shooting and Boucing Rays: calculating the RCS of an arbitrarily shaped cavity,IEEE Trans. AP,37, n° 2, pp. 194–205, (May 1989).

    Google Scholar 

  13. Mcnamara (D.A.), Plstorius (C.W.I.), Malherbe (J.A.G.), Introduction to the Uniform Geometrical Theory of Diffraction,Artech House, Norwood, (1990).

  14. Michaeli (A.), Elimination of infinities in equivalent edge currents, Part I: fringe currents components,IEEE Trans. AP,34, pp. 912–918, (July 1986).

    Google Scholar 

  15. Mitzner (K.M.), Incremental length diffraction coefficients,Aircraft Division Northrop Corp., Tech. Rep. AFAL-TR-73-296, (April 1974).

  16. Pitot (P.), The Voxar Project,IEEE Computer Graphics and Application, pp. 27-33, (Jan. 1993).

  17. Rius (J.M.), Ferrando (M.), Jofre (L.), High-frequency RCS of complex radar targets in real-time,IEEE Trans. AP,41, n° 9, pp. 1308–1319, (Sept. 1993).

    Google Scholar 

  18. Rius (J. M.), VALL-llossera (M.), Cardama (A.), Greco: graphical processing methods for high-frequency RCS prediction, Ann. Télécommunic, 50, n° 5–6, (1995).

  19. Volakis (J.L.), Xpatch, a high-frequency electromagnetic-scattering prediction code and environment for complex three-dimensionnal objects,IEEE AP magazine,36, n° 1, pp. 65–69, (Feb. 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Grégory Ramière, Paul François Combes, Henri-José Mametsa or Paul Pitot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramière, G., Combes, P.F., Mametsa, HJ. et al. Couplage du lancer de rayons et des interactions arêtesurface pour une analyse 3d rapide de cibles complexes. Ann. Télécommun. 55, 633–643 (2000). https://doi.org/10.1007/BF02999834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02999834

Mots clés

Key words

Navigation