Skip to main content
Log in

Novel applications of fiber bragg grating components for next-generation WDM systems

Nouvelles Applications des Composants Utilisant la Technologie des Réseaux de Bragg Dans Les Fibres Pour Les Systèmes WDM de Prochaine Génération

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main purpose of this paper is to present an overview of novel applications enabled by major improvements realized in FBG technology. First, we will review the principle of operation of FBG-based components and the numerous recording techniques used to fabricate those types of components. We will next show that this technology combined with new innovative manufacturing process is well suited to overcome the challenges imposed on optical components for next-generation WDM systems.

Résumé

L’objectif principal de cet article est de présenter une revue des nouvelles applications rendues possible grâce aux derniers développements réalisés dans le domaine des réseaux de Bragg dans les fibres. Nous présenterons tout d’abord le principe de fonctionnement des composants utilisant la technologie des réseaux de Bragg ainsi que les principales techniques d’enregistrement de ce type de composants dans les fibres optiques. Par la suite, nous montrerons que cette technologie combinée à des procédés de fabrication innovateurs permet la réalisation de composants optiques rencontrant les futures besoins des systèmes à multiplexage en longueur d’onde de prochaine génération.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hill (K.O.), Fujii (Y.), Johnson (D.C.), Kawasaki (B.S.), Photosensitivity in optical fiber waveguides: Applications to reflection filter fabrication,Applied Physics Letters,32, no 10, pp. 647–649, May 15, 1978.

    Article  Google Scholar 

  2. Ventrudo (B.F.), Rogers (G.A.), Lick (G.S.), Hargreaves (D.), Demayo (T.N.), Wavelength and intensity stabilisation of 980 nm diode lasers coupled to fibre Bragg gratings,Electronics Letters,30, no 25, pp. 2147–2149, December 8, 1994.

    Article  Google Scholar 

  3. Giles (C.R.), Erdogan (T.), Mizrahi (V.), Simultaneous wavelength stabilization of 980-nm pump lasers,Photonics Technology Letters,6, no 8, pp. 907–909, August 1994.

    Article  Google Scholar 

  4. Kashyap (R.), Fiber Bragg Gratings,Academic Press, 458 pp., 1999.

  5. Hill (K.O.), Malo (B.), Bilodeau (F.), Johnson (D.C.), Albert (J.), Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,Applied Physics Letters,62, no 10, pp. 1035–1037, March 8, 1993.

    Article  Google Scholar 

  6. Cole (M.J.), Loh (W.H.), Laming (R.I.), Zervas (M.N.), Barcelos (S.), Moving fibre/phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,Electronics Letters,31, no 17, pp. 1488–1490, 1995.

    Article  Google Scholar 

  7. Martin (J.), Ouellette (F.), Novel writing technique of long and highly reflective in-fibre gratings,Electronics Letters,30, no 10, pp. 811–812, 1994.

    Article  Google Scholar 

  8. Mihailov (S.J.), Bilodeau (F.), Hill (K.O.), Johnson (D.C.), Albert (J.), Stryckman (D.), Shu (C.), Comparison of fiber Bragg grating dispersion-compensators made with holographic and e-beam written phase masks,Photonics Technology Letters,11, no 5, pp. 572–574, May 1999.

    Article  Google Scholar 

  9. Komukai (T.), Inui (T.), Kurihara (M.), Fujimoto (S.), Group-delay ripple reduction in step-chirped fiber Bragg gratings by using laser-beam written step-chirped phase masks,Photonics Technology Letters,14, no 11, pp. 1554–1556, November 2002.

    Article  Google Scholar 

  10. Guy (M.),Trépanier (F.), Chirped fiber Bragg gratings equalize gain,WDM Solutions, pp. 77–82, March 2001.

  11. Tilsch (M.),Hulse (C.A.),Hendrix (K.D.),Sargent (R.B.), Design and demonstration of a thin-film based gain equalization filter for C-band EDFAs,NFOEC Conference Proceedings, 1999.

  12. Wysocki (P.F.), Judkins (J.B.), Espindola (R.P.), Andrejco (M.), Vengsarkar (A.), Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,Photonics Technology Letters,9, no 10, pp. 1343–1345, October 1997.

    Article  Google Scholar 

  13. Kashyap (R.), Wyatt (R.), Campbell (R.J.), Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,Electronics Letters,29, no 2, pp. 154–156, January 21, 1993.

    Article  Google Scholar 

  14. Gautheron (O.),Sansonetti (P.),Bassier (G.),Riant (I.), Optical gain equalisation with short period fiber gratings,Technical digest ECOC’97, Edinburgh, UK, 1997.

  15. Delevaque (E.), Georges (T.), Landousies (B.), Taufflieb (E.), Multichannel equalised and stabilised gain amplifier for WDM transmissions,Electronics Letters,31, no 25, pp. 2149–2150, December 1995.

    Article  Google Scholar 

  16. Rochette (M.), Guy (M.), Larochelle (S.), Lauzon (J.), Trépanier (F.), Gain equalization of EDFAS with Bragg gratings,Photonics Technology Letters,11, no 5, pp. 536–538, May 1999.

    Article  Google Scholar 

  17. Riant (I.), UV-photoinduced fibre gratings for gain equalization,Optical Fiber Technology,8, pp. 171–194, 2002.

    Article  Google Scholar 

  18. Johlen (D.),Knappe (F.),Renner (H.),Brinkmeyer (E.),uv-induced absorption, scattering and transition losses inUV side-written fibers,OFC Conference Proceedings, (ThDl-1), pp. 50–52, 1999.

  19. Erdogan (T.), Mizrahi (V.), Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,Journal of the Optical Society of America B,11, no 10, pp.2100–2105, October 1994.

    Article  Google Scholar 

  20. Trépanier (F.),Morin (M.),Robidoux (G.),Guy (M.), Fiber Bragg grating gain flattening filters for high-performance optical amplifiers,OAA Conference Proceedings, 2002.

  21. Nykolak (G.), Eggleton (B.J.), Lenz (G.), STRASSER (T.A.), Dispersion penalty measurements of narrow fiber Bragg gratings at 10 Gbit/s,Photonics Technology Letters,10, no 9, pp. 1319–1321, September 1998.

    Article  Google Scholar 

  22. Lenz (G.), Eggleton (B.J.), Giles (C.R.), Madsen (C.K.), Slusher (R.E.), Dispersive properties of optical filters for WDM systems,Journal of Quantum Electronics,34, no 8, pp. 1390–1402, August 1998.

    Article  Google Scholar 

  23. Eggleton (B.J.), Lenz (G.), Litchinitser (N.), Patterson (D.B.), Slusher (R.E.), Implications of fiber grating dispersion for WDM communications systems,Photonics Technology Letters,9, no 10, pp. 1403–1405, October 1997.

    Article  Google Scholar 

  24. Ennser (K.), Ibsen (M.), Durkin (M.), Zervas (M.N.), Laming (R.I.), Influence of nonideal chirped fiber Bragg grating characteristics on dispersion cancellation,Photonics Technology Letters,10, no 10, pp. 1476–1478, October 1998.

    Article  Google Scholar 

  25. Sheerer (C.),Glingener (C.),Fischer (G.),Bohn (M.),Rosenkranz (W.), Influence of filter group delay ripples on system performance,ECOC Conference Proceedings, 1999.

  26. Garthe (D.), Milner (G.), Cai (Y.), System performance of broadband dispersion compensating gratings,Electronics Letters,34, no 6, pp. 582–583, March 19, 1998.

    Article  Google Scholar 

  27. Painchaud (Y.), Mailloux (A.), Morin (M.), Trépanier (F.), Guy (M.), Larochelle (S.), Bragg grating flattening filters with small group delay ripples,ECOC Conference Proceedings,4, (Th.M.1.2), pp. 490–491, 2001.

    Google Scholar 

  28. Chotard (H.), Painchaud (Y.), Mailloux (A.), Morin (M.), Trépanier (F.), Guy (M.), Group delay ripple of cascaded Bragg grating gain flattening filters,Photonics Technology Letters,14, no 8, pp. 1130–1132, August 2002.

    Article  Google Scholar 

  29. Bakhshi (B.), Vaa (M.), Golovchenko (E.A.), Li (H.), Harvey (G.T.), Impact of gain-flattening-filter ripple in long-haul WDM systems,ECOC Conference Proceedings,3, (We.P.36), pp. 448–449, 2001.

    Google Scholar 

  30. Riziotis (C.),Zervas (M.N.), Effect of in-band group delay ripple onWDM filter performance,ECOC Conference Proceedings, 1999.

  31. Bernard (P.),Grégoire (N.),Lafrance (G.), Automated laser trimming for ultra-low error function GFF,SPIE Conference Proceedings, Bruges, 2002.

  32. Ibsen (M.),Geiger (H.),Laming (R.I.), In-band dispersion limitations of uniform apodised fibre gratings,ECOC Conference Proceedings, pp. 413–414, 1998.

  33. Ibsen (M.), Durkin (M.K.), Cole (M.J.), Laming (R.I.), Optimised square passband fibre Bragg grating filter with in-band flat group delay response,Electronics Letters,54, no 8, pp. 800–802, 1998.

    Article  Google Scholar 

  34. Feced (R.), Zervas (M.), Muriel (M.A.), An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,Journal of Quantum Electronics,35, no 8, pp. 1105–1115, August 1999.

    Article  Google Scholar 

  35. Guy (M.),Trépanier (F.), Fiber Bragg gratings: better manufacturing = better performances,Photonics Spectra, pp. 106–110, March 2002.

  36. Ibsen (M.),Petropoulos (P.),Zervas (M.N.),Feced (R.), Dispersion-free fibre Bragg gratings,OFC Conference Proceedings, (MC1-1), 2001.

  37. Ibsen (M.),Feced (R.),Fells (J.A.J.),Lee (W.S.), 40 Gbit/s high performance filtering for DWDM networks employing dispersion-free fibre Bragg gratings,ECOC Conference Proceedings, (Th.B.2.1), pp. 594–595, 2001.

  38. Othonos (A.), Lee (X.), Measures (R.M.), Superimposed multiple Bragg gratings,Electronics Letters,30, no 23, pp. 1972–1974, November 1994.

    Article  Google Scholar 

  39. Everall (L.A.), Sugden (K.), Williams (J.A.R.), Bennion (I.), Liu (X.), Aitchison (J.S.), Thoms (S.), De La Rue (R.M.), Fabrication of multipassband moiré resonators in fibers by the dual-phase-mask exposure method,Optics Letters,22, no 19, pp. 1473–1475, 1997.

    Article  Google Scholar 

  40. Doyle (A.), Juignet (C.), Painchaud (Y.), Brown (M.), Chummun-Courbet (N.), Pelletier (E.), Guy (M.), FBG-based multi-channel low dispersion WDM filters,Electronics Letters,38, no 24, pp. 1561–1563, November 21, 2002.

    Article  Google Scholar 

  41. Painchaud (Y.),Mailloux (A.),Chotard (H.),Pelletier (E),Guy (M.), Multi-Channel fiber Bragg gratings for dispersion and slope compensation,OFC Conference Proceedings, (ThAA5), pp. 581–582, 2002.

  42. Ouellette (F.), Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,Optics Letters,12, no 10, pp. 847–849, 1987.

    Article  Google Scholar 

  43. Sahara (A.), Komukai (T.), Yamada (E.), Nakazawa (M), 40 Gbit/s return-to-zero transmission over 500 km of standard fibre using chirped fibre Bragg gratings with small group delay ripples,Electronics Letters,37, no 1, pp. 8–9, January 4, 2001.

    Article  Google Scholar 

  44. Durkin (M.), Ibsen (M.), Cole (M.J.), Laming (R.I.), I m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,Electronics Letters,33, no 22, pp.1891–1893, October 1997.

    Article  Google Scholar 

  45. Brennan III (J.F.),Labrake (D.L.), Realization of >10-m-long chirped fiber Bragg grating,BGPP Conference Proceedings, pp. 128–130, 1999.

  46. Ibsen (M.), Fu (A.), Geiger (H.), Laming (R.I.), Fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,Electronics Letters,35, no 12, pp. 982–983, June 1999.

    Article  Google Scholar 

  47. Ibsen (M.), Durkin (M.K.), Cole (M.J.), Laming (R.I.), Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,Photonics Technology Letters,10, no 6, pp. 842–844, June 1998.

    Article  Google Scholar 

  48. Rothenberg (J.E.),Caldwell (R.F.),Li (H.),Li (Y.),Popelek (J.),Sheng (Y.),Wang (Y.),Wilcox (R.B.),Zweiback (J.), High-Channel-Count fiber Bragg gratings fabricated by phase-only sampling,OFC Conference Proceedings, (ThAA1), pp. 575–577, 2002.

  49. Rothenberg (J.E.), Li (H.), Li (Y.), Popelek (J.), Sheng (Y.), Wang (Y.), Wilcox (R.B.), Zweiback (J.), Dammann fiber Bragg gratings and phase-only sampling for high channel counts,Photonics Technology Letters,14, no 9, pp. 1309–1311, September 2002.

    Article  Google Scholar 

  50. Yan (L.S.),Luo (T.),Yu (Q.),Xie (Y.),Wilner (A.E.),Feng (K.M.),Khosravani (R.),Rothenberg (J.), System impact of group-delay ripple in single and cascaded chirpedfbgs,OFC Conference Proceedings, (ThGG63), pp. 700–702, 2002.

  51. Buryak (A.V.),Stepanov (D.Y.), Novel multi-channel grating designs,BGPP Conference Proceedings, (BthB3-1-3), 2001.

  52. Painchaud (Y.), Chotard (H.), Mailloux (A.), Vasseur (Y.), Superposition of chirped fiber Bragg grating for third order dispersion compensation over 32WDM channels,Electronics Letters,38, no 24, pp. 1572–1573, November 21, 2002.

    Article  Google Scholar 

  53. Loh (W.H.), Zhou (F.Q.), Pan (J.J.), Sampled fiber grating based-dispersion slope compensator,Photonics Technology Letters,11, no 10, pp. 1280–1282, October 1999.

    Article  Google Scholar 

  54. Huff (L.), Mulrooney (C.), Dynamic dispersion compensation: when and where will it be needed?,Photonics Spectra,35, no 12, pp. 122–125, December 2001.

    Google Scholar 

  55. Willner (A.), Tunable compensators master chromatic-dispersion impairments,WDM Solutions, pp. 51–58, July 2001.

  56. Sugihara (T.)et al., Automatic Tracked Dispersion Compensation with Penalty-Free Tunable Dispersion Equalizer for 40 Gbit/s Systems,OFC Conference Proceedings, (ThAA2), pp. 577–578, 2002.

  57. Feng (K.M.), Cai (J.X.), Grubsky (V.), Starodubov (D.S.), Hayee (M.I.), Lee (S.), Jiang (X.), Willner (A.E.), Feinberg (J.), Dynamic dispersion compensation in a 10 Gbit/s optical system using novel voltage tuned nonlinearly chirped fiber Bragg grating,Photonics Technology Letters,11, no 3, pp. 373–375, March 1999.

    Article  Google Scholar 

  58. Willner (A.E.), Feng (K.M.), Cai (J.), Lee (S.), Peng (J.), Sun (H.), Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,Journal of Selected Topics Quantum Electronics,5, no 5, pp. 1298–1311, September/October 1999.

    Article  Google Scholar 

  59. Hill (P.C.), Eggleton (B.J.), Strain gradient chirp of fiber Bragg grating,Electronics Letters,30, no 14, pp. 1172–1174, 1994.

    Article  Google Scholar 

  60. Ohn (M.M.), Alavie (A.T.), Maaskant (R.), Xu (M.G.), Bilodeau (F.), Hill (K.O.), Dispersion variable fiber grating using a piezoelectric stack,Electronics Letters,32, no 21, pp. 2000–2001, 1996.

    Article  Google Scholar 

  61. Lauzon (J.), Thibault (S.), Martin (J.), Ouellette (F.), Implementation and characterization of fiber Bragg gratings linearly chirped by temperature gradient,Optics Letters,19, no 23, pp. 2027–2029, December 1, 1994.

    Article  Google Scholar 

  62. Eggleton (B.J.), Nielsen (T.N.), Rogers (J.A.), Westbrook (P.S.), Strasser (T.A.), Hansen (P.B.), Dreyer (K.F.), Dispersion compensation in 20 Gbit/s dynamic nonlinear Lightwave systems using electrically tunable chirped fibre grating,Electronics Letters,35, no 10, pp. 832–833, May 13, 1999.

    Article  Google Scholar 

  63. Eggleton (B.J.), Ahuja (A.), Westbrook (P.S.), Rogers (J.A.), Kuo (P.), Nielsen (T.N.), Mikkelsen (B.), Integrated tunable fiber gratings for dispersion management in high-bit rate systems,Journal of Lightwave Technology,18, no 10, pp. 1418–1432, October 2000.

    Article  Google Scholar 

  64. Lachance (R.L.),Painchaud (Y.),Doyle (A.), Fiber Bragg gratings and chromatic dispersion,ICAPT Conference Proceedings, 2002.

  65. Kohnke (G.E.),Spammer (S.J.),Mlejnek (M.),Agogliati (B.),Caironi (D.),Arcangeli (L.),Belmonte (M.),Garcia (F.),Ellis (A.D.), Fiber Bragg gratings for dispersion compensation,OFC Conference Proceedings, (ThAA3), pp. 578–580, 2002.

  66. Chen (L.R.), Influence of grating group delay ripple on the reduction of dispersion induced intensity noise in subcarrier multiplexed systems,Optics Communications,187, no 1–3, pp. 125–128, January 2001.

    Article  Google Scholar 

  67. Lachance (R.L.), Morin (M.), Painchaud (Y.), Group delay ripple in fiber Bragg grating tunable dispersion compensators,Electronics Letters,38, no 24, pp. 1505–1507, November 21, 2002.

    Article  Google Scholar 

  68. Sumetsky (M.), Eggleton (B.J.), De Sterke (C.M.), Theory of group delay ripple generated by chirped fiber gratings,Optics Express,10, no 7, pp. 332–340, April 8, 2002.

    Google Scholar 

  69. Lachance (R.L.),Lelièvre (S.),Painchaud (Y.), 50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,OFC Conference Proceedings, (TuD3), 2003.

  70. Moss (D.J.),McLaughlin (S.),Randall (G.),Lamont (M.),Ardekani (M.),Colbourne (P.),Kiran (S.),Hulse (C.A.), Multichannel tunable dispersion compensation using all-pass multi-cavity etalons,OFC Conference Proceedings, (TuT2), pp. 132–133, 2002.

  71. Lenz (G.), Madsen (C.K.), General optical all-pass filter structures for dispersion control inWDM systems,Journal of Lightwave Technology,17, no 7, pp. 1248–1254, July 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guy, M., Trépanier, F., Doyle, A. et al. Novel applications of fiber bragg grating components for next-generation WDM systems. Ann. Télécommun. 58, 1275–1306 (2003). https://doi.org/10.1007/BF03001732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001732

Key words

Mots clés

Navigation