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Abstract 

We argüe that in order to exploit both Independent And- and Or-parallelism in 
Prolog programs there is advantage in recomputing some of the independent goals, 
as opposed to all their solutions being reused. We present an abstract model, called 
the Composition-Tree, for representing and-or parallelism in Prolog Programs. The 
Composition-tree closely mirrors sequential Prolog execution by recomputing some in­
dependent goals rather than fully re-using them. We also outline two environment 
representation techniques for And-Or parallel execution of full Prolog based on the 
Composition-tree model abstraction. We argüe that these techniques have advantages 
over earlier proposals for exploiting and-or parallelism in Prolog. 

1. Introduct ion 

One of the most attractive features of logic programming languages is that they 
allow implicit parallel execution of programs. There are three main forms of parallelism 
present in logic programs: or-parallelism, independent and-parallelism and dependent 
and-parallelism. In this paper we restrict ourselves to or-parallelism and independent 
and-parallelism. There have been numerous proposals for exploiting or-parallelism in 
logic programs [AK90, HC87, LW90, W84, W87, etc.]§ and quite a few for exploiting 
independent and-parallelism [H86, LK88, etc.]. Models have also been proposed to ex­
ploit both or-parallelism and independent and-parallelism in a single framework [BK88, 

§ See [GJ90] for a systematic analysis of the various models. 
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GJ89, RK89]. It is the latter aspect of combining independent and- and or-parallelism 
that this paper addresses. 

One aspect which most models that have been proposed (and some implemented) 
so far for combining or-parallelism and independent and-parallelism have in common is 
that they have either considered only puré logic programs (puré Prolog), e.g. [RK89, 
GJ89], or, alternatively, modified the language to sepárate parts of the program that 
contain extra-logical predicates (such as cuts and side-effects) from those that contain 
purely logical predicates, and then allowed parallel execution only in parts containing 
purely logical predicates [RS87, BK88]. In the former case practical Prolog programs 
cannot be executed since most such programs use extra-logical features. The latter 
approach has a number of disadvantages: first, it requires programmers to divide the 
program into sequential and parallel parts themselves. As a result of this, parallelism 
is not exploited completely implicitly since some programmer intervention is required. 
This also rules out the possibility of taking "dusty decks" of existing Prolog programs 
and running them in parallel. In addition, some parallelism may also be lost since parts 
of the program that contain side-effects may also actually be the parts that contain 
parallelism. It has been shown that or-parallelism and independent and-parallelism can 
be exploited in full Prolog completely implicitly (for example, in the Aurora and Muse 
Systems [HC88, LWH90, AK91], and in the &-Prolog system [HG90, MH89, CC89]). 
We argüe that the same can be done for systems that combine independent and- and 
or-parallelism and that will be one of the design objectives of the approach presented 
in this paper, Le., aiming towards facilitating the support of the full Prolog language. 

The paper thus describes a general approach for combined exploitation of inde­
pendent and- and or-parallelism in full Prolog. We present an abstract model of and-or 
parallelism for logic programs which mirrors sequential Prolog execution more closely, es-
sentially by recomputing some independent goals (those that Prolog recomputes) rather 
than re-using them, and show the advantages of this approach. Our presentation is then 
two-pronged, in that we propose two alternative efficient environment representation 
techniques to support the model: paged binding arrays and stack copying. Using the 
concept of teams of processorsj, we also briefly discuss issues such as scheduling and 
memory management. 

The environment representation techniques proposed are extensions of techniques 
designed for purely or-parallel systems—specifically the Aurora [LW90] and Muse 
[AK90] systems. The method for encoding independent and-parallelism is taken from 
purely independent and-parallel systems—specifically the &-Prolog system [HG90]: we 
use the parallel conjunction operator "&" to signify parallel execution of the goals 
separated by this operator and Conditional Graph Expressions (CGEs) [HN86,H86]§. 
Henee our model can be viewed as a combination of the &-Prolog system and a purely 
or-parallel system such as Aurora or Muse—in the presence of only independent and-
parallelism our model behaves like &-Prolog while in the presence of only or-parallelism 

| We refer to the working "agents" of the system -the "workers" of Aurora and Muse and "agents" of 
&-Prolog- simply as processors, under the assumption that the term will generally represent processes 
mapped onto actual processors in an actual implementation. 

3 Note that CGEs and & operators can be introduced automatically in the program at compile time 
[MH89a] and thus the programmer is not burdened with the parallelization task. 



it behaves like the Aurora or Muse systems, depending on the environment representa-
tion technique chosen. 

The rest of the paper is organised as follows: Section 2 describes or-parallelism 
and independent and-parallelism in Prolog programs. Section 3 presents arguments 
for favouring recomputation of some independent and-parallel goals over their com­
plete reuse. Section 4 then presents an abstract model called the Composition-tree 
for representing and-or parallel execution of Prolog with recomputation, and describes 
how Prolog's sequential semantics can be supported. Section 5 deals with environment 
representation issues in the Composition-tree: section 5.1 presents a comparison of en­
vironment representation techniques based on whether there is sharing or non-sharing] 
section 5.2 presents an extensión of the Binding Arrays method, an environment rep­
resentation technique based on sharing; while section 5.3 presents another technique, 
based on non-sharing, which employs stack-copying. Finally, section 6 presents our con-
clusions. We assume that the reader is familiar to some extent with Binding Arrays 
[W84, W87], the Aurora and Muse Systems [LWH90, AK90], and the &-Prolog system 
[HG90], as well as with some aspects of sequential Prolog implementation. 

2. Or- and Independent And-paral le l i sm 

Or-parallelism arises when more than one rule defines some relation and a proce-
dure cali unifies with more than one rule head in that relation—the corresponding bodies 
can then be executed in or-parallel fashion. Or-parallelism is thus a way of efficiently 
searching for solutions to a goal, by exploring alternative solutions in parallel. It corre-
sponds to the parallel exploration of the branches of the proof tree. Or-parallelism has 
successfully been exploited in full Prolog in the Aurora [LWH90] and the Muse [AK90] 
systems both of which have shown very good speed up results over a considerable range 
of applications. 

Informally, Independent And-parallelism arises when more than one goal is present 
in the query or in the body of a procedure, and the run-time bindings for the vari­
ables in these goals are such that two or more goals are independent of one another. 
In general, independent and-parallelism includes the parallel execution of any set of 
goals in a resolvent, provided they meet some independence condition. Independent 
and-parallelism is thus a way of speeding up a problem by executing its subproblems 
in parallel. One way for goals to be independent is that they don't share any vari­
able at run-time (strict independence [HR90]f). This can be ensured by checking that 
their resulting argument terms after applying the bindings of the variables are either 
variable-free (i.e., ground) or have non-intersecting sets of variables. Independent and-
parallelism has been successfully exploited in the &-Prolog system [HG90]. Independent 
and-parallelism is expressed in the &-Prolog system through the parallel conjunction 
operator "&", which will also be used in this paper. For syntactic brevity we will also 
use &-Prolog's Conditional Graph Expressions (CGEs), which are of the form 

(condition => goal\ & goafa & . . . & goaln ) 

I There is a more general concept of independence, non-strict independence [HR90], for which the 
same results (the model presented in this paper included) apply. However, the rest of the presentation 
in this section will refer for simplicity, and without loss of generality, to strict independence. 



meaning, using the standard Prolog if-then-else construct, 

(condition —> goal\ & . . . & goaln ; goali,. . . , goaln) 

Le., that , if condition is true, goals goal\ . . . goaln are to be evaluated in parallel, other-
wise they are to be evaluated sequentially. The condition can obviously be any prolog 
goal but is normally a conjunction of special builtins which include ground/l} which 
checks whether its argument has become a ground term at run-time, or independent/2, 
which checks whether its two arguments are such at run-time that they don't have 
any variable in common, or the constant true meaning that goal\ . . . goaln can be 
evaluated in parallel unconditionally. As mentioned before, it is possible to genérate 
parallel conjunctions and or CGEs automatically and quite successfully at compile-time 
using abstract interpretation [MH89a,MH90]. Thus, exploitation of independent and-
parallelism in &-Prolog is implicit (although user annotation is also allowed). 

There have been a number of at tempts to exploit or- and independent and-
parallelism together in a single framework [GJ89, RK89, WR87, etc.]. However, and as 
mentioned earlier, they either don't support the full Prolog language, or require user 
intervention. Also, in general these systems advócate full solution sharing which, as will 
be argued in the following section, stands in the way of supporting full Prolog. 

3. R e c o m p u t a t i o n vs R e u s e 

In the presence of both and- and or-parallelism in logic programs, it is possible 
to avoid recomputing certain goals. This has been termed as solution sharing [GJ89, 
G91a] or goal reuse[SH91]. For example, consider two independent goals a(X) , b(Y), 
each of which has múltiple solutions. Assuming that all solutions to the program are 
desired, the most emcient way to execute this goal would be to execute a and b in their 
entirety and combine their solutions (possibly incrementally) through a join [BK88, 
GJ89, RK89]. However, to solve the above goal in this way one needs to be sure that 
the set of solutions for a and b are static (i.e., if either goal is executed múltiple times, 
then each invocation produces an identical set of solutions). Unfortunately, this can 
hold true only if clauses for a and b are puré logic programs. If side-effects are present 
(as is usually the case with Prolog programs), then the set of solutions for these goals 
may not be static. For example, consider the case where, within b, the valué of a 
variable is read from the standard input and then some action taken which depends on 
the valué read. The solutions for b may be different for every invocation of b (where 
each invocation corresponds to a different solution of a), even if the goal is completely 
independent of the others. Henee solution sharing would yield wrong results in such a 
case. The simple solution of sequentializing such and-parallel computations results in 
loss of too much and-parallelism, because if a(X) , b(Y) falls in the scope of some other 
goal, which is being executed in and-parallel, then that goal has to be sequentialized 
too, and we have to carry on this sequentialization process right up to the top level 
query. If, however, the goals are recomputed then this sequentialization can be avoided, 
and parallelism exploited even in the presence of cuts and side-effects [GS92d]. 

Henee, there is a strong argument for recomputing non-deterministic and-parallel 
goals, especially, if they are not puré, and even more so if we want to support Prolog as 



the user languagef. Additionally, recent simulations of and-or parallelism [SH91] show 
that typical Prolog programs perform very little recomputation, thus providing further 
evidence that the amount of computation saved by a system which avoids recomputation 
may be quite small in practice. Presumably this behaviour is due to the fact that Prolog 
programmers, aware of the selection and computation rules of Prolog, order literals in 
ways which result in efficient search which minimises the recomputation of goals. Finally, 
note that the use of full or partial recomputation can never produce any slowdown with 
respect to Prolog since Prolog itself uses full recomputation. 

Recomputation of independent goals was first used in the context of &-Prolog, 
incorporated as part of its backtracking scheme [HN86].|. It is obviously also used 
in Aurora and Muse (since, performing no goal independence analysis, no possibility 
of sharing arises) and has made these three systems quite capable of supporting full 
Prolog. Recomputation in the context of and-or parallelism has also been proposed in 
[SH91]§. The argument there was basically one of ease of simulation and, it was argued, 
of implementation (being a simulation study no precise implementation approach was 
given). Here we add the important argument of being able to support full Prolog. In the 
next few sections we provide an abstract representation of the corresponding execution 
tree, and outline two emcient implementation approaches. 

4. A n d - O r C o m p o s i t i o n Tree 

The most common way to express and- and or-parallelism in logic programs is 
through the traditional concept of and-or trees, i.e. trees consisting of or-nodes and 
and-nodes. Or-nodes represent múltiple clause heads matching a goal while and-nodes 
represent múltiple subgoals in the body of a clause being executed in and-parallel. 
Since in the model presented herein we are representing and-parallelism via parallel 
conjunctions, our and-nodes will represent such conjunctions. Thus, given a clause 

q : - ( t r u e => a & b) 

and assuming that a and b have 3 solutions each (to be executed in or-parallel form) 
and the query is 

? - q 

then the corresponding and-or tree would appear as shown in figure 1. 

One problem with such a traditional and-or tree is that bindings made by different 
alternatives of a are not visible to different alternatives of b, and vice-versa, and henee 
the correct environment has to be created before the continuation goal of the parallel 
conjunction can be executed. Creation of the proper environments requires a global 
operation, for example, Binding Array loading in AO-WAM [GJ89, G91a], the com-
plex dereferencing scheme of PEPSys [BK88], or the "global forking" operation of the 

I There is a third possibility as well: to recompute trióse independent and-parallel goals that have 
side-effeets and share those that don't. Since the techniques for implementing solution sharing are in 
the literature and techniques for implementing solution recomputation are presented herein such an 
approach would represent a -perhaps non-trivial- combination of the given methods. 

| In the case of &-Prolog there are even further arguments in favour of recomputation, related to 
management of a single binding environment and memory economy. 

§ The idea of recomputation is referred to as "or-under-and" in [SH91]. 



Extended Andorra Model [W90]. To eliminate this possible source of overhead in our 
model, we extend the traditional and-or tree so that the various or-parallel environments 
that simultaneously exist are always sepárate. 

q 

(a & b) 

Key: 

• Choice point 

a l 

Figure 1: And-Or Tree 

The extensión essentially uses the idea of recomputing independent goals of a par-
allel conjunction. Thus, for every alternative of a, the goal b is computed in its entirety. 
Each sepárate combination of a and b is represented by what we term as a composi­
tion node (c-node for brevity), where each composition node in the tree corresponds to 
a different solution for the parallel conjunction, Le., a different "continuation". Thus 
the extended tree, called the Composition-tree (C-tree for brevity), for the above query 
might appear as shown in figure 2—for each alternative of the and-parallel goal a, goal 
b is entirely recomputed (in fact, the tree could contain up to 9 c-nodes, one for each 
combination of solutions of a and b). To represent the fact that a parallel conjunction 
can have múltiple solutions we add a branch point (choice point) before the different 
composition nodes. Note that c-nodes and branch points serve purposes very similar 
to the Parcall frames and markers of the RAP-WAM [H86, HG90]. The C-tree can 
represent or- and independent and-parallelism quite naturally—execution of goals in 
a c-node gives rise to independent and-parallelism while parallel execution of untried 
alternatives gives rise to or-parallelism.f 

Notice the topological similarity of the C-tree with the purely or-parallel tree shown 
in figure 3 for the program above. Essentially, branches that are "shared" in the purely 
or-parallel tree (i.e. that are "common", even though different binding environments 
may still have to be maintained -we will refer to such branches and regions for simplicity 
simply as "shared") are also shared in the C-tree. This sharing is represented by means 
of a share-node} which has a pointer to the shared branch and a pointer to the composi­
tion node where that branch is needed (figure 2). Due to sharing, the subtrees of some 
independent and-parallel goals may be spread out across different composition nodes. 
Thus, the subtree of goal a is spread out over c-nodes C l , C2 and C3 in the C-tree of 
figure 2, the total amount of program-related work being essentially maintained. 

I In fact, a graphical tool capable of representing this tree has shown itself to be quite useful for 

implementors and users of independent and- and or-parallel systems [CGH91]. 

\ 



Key: 

• Choice point 

• Share Node 

Composition Node 

Figure 2: Composition Tree 

Also note that subtrees corresponding to the continuation goal of the CGE can 
be placed below each leaf of the subtree of the rightmost goal in the CGE, i.e., in our 
example, after each of the nine b alternatives. As a result, during backtracking no special 
action needs to be taken. The exception is the need to distinguish between the two cases 
of "outside" and "inside" backtracking [H86]. A marker node is placed between the leaf 
node of the trees of the rightmost goal and the first node of the corresponding trees of 
the continuation goal, so that these two cases of backtracking can be distinguished. 

Key: 

indicates end 
of a's branch 

Figure 3: Or-Parallel Tree 

4.1 A n d - O r Paral le l ism &¿ Teams of Processors 

We will present some of the implementation issues from the point of view of ex-



tending an or-parallel system to support independent and-parallelism. When a purely 
or-parallel model is extended to exploit independent and-parallelism then the following 
problem arises: at the end of independent and-parallel computation, all participating 
processors should see all the bindings created by each other. However, this is completely 
opposite to what is needed for or-parallelism where processors working in or-parallel 
should not see the (conditional) bindings created by each other. Thus, the requirements 
of or-parallelism and independent and-parallelism seem anti-thetical to each other. The 
solutions that have been proposed range from updating the environment at the time 
independent and-parallel computations are combined [RK89, GJ89] to having a complex 
dereferencing scheme [BK88]. All of these operations have their cost. 

We contend that this cost can be reduced by organising the processors into teams. 
Independent and-parallelism is exploited among processors within a team while or-
parallelism is exploited among teams. Thus a processor within a team would behave 
like a processor in a purely and-parallel system while all the processors in a given team 
would collectively behave like a processor in a purely or-parallel system. This entails 
that all processors within each team share the data structures that are used to maintain 
the sepárate or-parallel environments. For example, if binding arrays are being used to 
represent múltiple or-parallel environments, then only one binding array should exist 
per team, so that the whole environment is visible to each member processor of the 
team. If copying is used, then processors in the team share the copy. Note that in the 
limit case there will be only one processor per team. Also note that despite the team 
arrangement a processor is free to migrate to another team as long as it is not the only 
one left in the team. Although a fixed assignment of processors to teams is possible 
a flexible scheme appears preferable. This will be discussed in more detail in section 
4.4. The concept of teams of processors was proposed and has been successfully used 
in the Andorra-I system [SW91], which extends an or-parallel system to accommodate 
dependent and-parallelism. 

4.2 . C-tree &¿ A n d - O r Paral le l ism 

The concept of organising processors into teams also meshes very well with C-trees. 
A team can work on a c-node in the C-tree—each of its member processors working on 
one of the independent and-parallel goals in that c-node. We illustrate this by means of 
an example. Consider the query corresponding to the and-or tree of figure 1. Suppose 
we have 6 processors P l , P2, . . ., P6, grouped into 3 teams of 2 processors each. Let us 
suppose P l and P2 are in team 1, P3 and P4 in team 2, and P5 and P6 in team 3. We 
illustrate how the C-tree shown in figure 2 would be created. 

Execution commences by processor P l of team 1 picking up the query q and execut-
ing it. Execution continúes like normal sequential execution until the parallel conjunc-
tion is encountered, at which point a choice point node is created to keep track of the 
information about the different solutions that the parallel conjunction might genérate. 
A c-node is then created (node Cl in figure 2). The parallel conjunction consists of two 
and-parallel goals a and b, of which a is picked up by processor P l , while b is made 
available for and-parallel execution. The goal b is subsequently picked up by processor 
P2, teammate of processor P l . Processor P l and P2 execute the parallel conjunction 
in and-parallel producing solutions a l and b l respectively. In the process they leave 



choice points behind. Since we allow or-parallelism below and-parallel goals, these un-
tried alternatives can be processed in or-parallel by other teams. Thus the second team, 
consisting of P3 and P4 picks up the untried alternative corresponding to a2, and the 
third team, consisting of P5 and P6, picks up the untried alternative corresponding to 
a3. Both these teams créate a new c-node, and restart the execution of and-parallel 
goal b (the goal to the right of goal a): the first processor in each team (P3 and P5, 
respectively) executes the alternative for a, while the second processor in each team 
(P4 and P6, respectively) executes the restarted goal b. Thus, there are 3 copies of 
b executing, one for each alternative of a. Note that the nodes in the subtree of a, 
between c-node Cl and the choice points from where untried alternatives were picked, 
are "shared" among different teams (in the same sense as the nodes above the parallel 
conjunction are—different binding environments still have to be maintained). 

Choice point -rhg composition-nodes Cl, C2 and C3 are created one each 
Sli Node ^or *ne t n r e e alternatives for and-parallel goal a. C4 and C5 

are created when two of the alternatives from the subtree of 
ComDosition Node and-parallel goal b in composition node C3 are picked by 

others. The equivalent purely or-parallel tree is shown in fig 3. 

Figure 4: C-tree for 5 Teams 

Since there are only three teams, the untried alternatives of b have to be executed 
by backtracking. In the C-tree, backtracking always takes place from the right to mimic 
Prolog's behaviour—goals to the right are completely explored before a processor can 
backtrack inside a goal to the left. Thus, if we had only one team with 2 processors, 
then only one composition node would actually need to be created, and all solutions 
would be found via backtracking, exactly as in &-Prolog, where only one copy of the 
Parcall frame exists [H86, HG90]. On the other hand if we had 5 teams of 2 processors 
each, then the C-tree could appear as shown in fig 4. In figure 4, the 2 extra teams 
steal the untried alternatives of goal b in c-node C3, This results in 2 new c-nodes being 
created, C4 and C5 and the subtree of goal b in c-node C3 being spread across c-nodes 
C3, C4 and C5. The topologically equivalent purely or-parallel tree of this C-tree is still 
the one shown in figure 3. The most important point to note is that new c-nodes get 
created only if there are resources to execute that c-node in parallel. Thus, the number 
of c-nodes in a C-tree can vary depending on the availability of processors. 

It might appear that intelligent backtracking, that accompanies independent and-
parallelism in &-Prolog, is absent in our abstract and-or parallel C-tree model. This is 
because if b were to completely fail, then this failure would be replicated in each of the 
three copies of b. We can incorpórate intelligent backtracking by stipulating that an 



untried alternative be stolen from a choice point, which falls in the scope of a parallel 
conjunction, only after at least one solution has been found for each goal in that parallel 
conjunction. Thus, c-nodes C2, C3, C4 and C5 (fig 4) will be created only after the first 
team (consisting of P l and P2) succeeds in finding solutions a l and b l respectively. In 
this situation if b were to fail, then the c-node Cl will fail, resulting in the failure of the 
whole parallel conjunction. 

4.3 . Support ing Extra-logical Predicates 

One of the main goals of our approach is to support full Prolog as the user language 
in the independent and-or parallel system. That is, in the presence of extralogical (e.g. 
a s s e r t and r e t r a c t ) , metalogical (e.g. cut and var), and side-effect (e.g. read and 
write) predicates in a program, the user-observed behaviour during parallel execution 
of that program should be identical to its behaviour during sequential execution (in 
such a case we say that the parallel system preserves Prolog's sequential semantics).j 
The execution of these predicates is sensitive to the order in which computation is done, 
therefore, preserving sequential semantics is not an easy problem. 

Our techniques for preserving sequential semantics during parallel execution rely 
on the 1-1 correspondence that exists between the C-tree and the purely or-parallel 
tree. In the purely or-parallel tree, an execution-order sensitive predicate can be exe-
cuted when the branch containing it becomes leftmost with respect to the root of the 
tree [HC88, GS92d]. We can do the same thing for the C-tree during and-or parallel 
execution—detect the condition when the extralogical predicate will become leftmost in 
the equivalent purely or-parallel tree. To do this the following rules should be observed 
when an execution-order sensitive predicate is reached in a goal inside a CGE [GS92d]. 
Consider an extralogical predicate e encountered in one of the alternatives of the goal 
g¿ in the CGE (true => gi & . . . & g n ) that is encountered during execution of a pro­
gram. During combined independent and- and or-parallel execution, the extra-logical 
predicate e can be executed if: 

(i) It is in the leftmost branch of the subtree rooted at g¿, and; 

(ii) All subgoals to the left of g¿ in the CGE, Le., gi through g¿_i have finished ex­
ecution, and the applicable solutions correspond to the leftmost branch of their 
respective subtrees, and; 

(iii) The CGE containing g¿ recursively satisfies conditions (i) and (ii) with respect to 
the subtree and outer CGEs that may contain it. 

The above conditions to determine if an extra-logical predicate can be executed or 
not have an elegant implementation. Essentially, we apply the techniques that have 
been developed for purely or-parallel systems, such as Aurora [S92], and keep track of 
the "subroot node"§ of every node dynamically. An extra-logical predicate can now 

I Note tha t this approach does not prevent incorporating "parallel" versions of the side effects 

[MH89] which do not impose Prolog's sequentiality. It simply also allows running all s t andard Prolog 

programs. 

§ Subroot node of a node TI is the root node of the largest subtree of the topologically equivalent 

or-parallel tree in which TI is in the leftmost branch. 



be executed when the subroot node of the node containing the extra-logical predícate 
coincides with the root of the whole tree. 

4.4. Processor Schedul ing 

Since our abstract C-trees model is dependent upon the number of processors avail-
able, some of the processor scheduling issues can be determined at an abstract level, 
without going into the details of a concrete realization of the C-trees. As mentioned 
earlier, teams of processors carry out or-parallel work while individual processors within 
a team perform and-parallel work. Since and-parallel work is shared within a team, a 
processor can in principie steal and-parallel work only from members of its own team. 
Or-parallel work is shared at the level of teams, thus only an idle team can steal an 
untried alternative from a choice point. An idle processor will first look for and-parallel 
work in its own team. If no and-parallel work is found, it can decide to migrate to 
another team where there is work, provided it is not the last remaining processor in 
that team. If no such team exists it can start a new team of its own, perhaps with idle 
processors of other teams, and the new team can steal or-parallel work. The system has 
to carefully and dynamically balance the number of teams and the number of processors 
in each team, to fully exploit all the and- and or-parallelism available in a given Prolog 
program. | 

5. Env ironment Representa t ion 

So far we have described and-or parallel execution with recomputation at an ab­
stract level. We have not addressed the crucial problem of environment representation 
in the C-tree. In this section we discuss how to extend the Binding Arrays (BA) method 
[W84,W87] and the Stack-copying [AK90] methods to solve this problem. 

5.1 Sharing vs Non-Shar ing 

In an earlier paper [GJ90] we argued that environment representation schemes that 
have constant-time task creation and constant-time access to variables, but non-constant 
time task-switching, are superior to those methods which have non-constant time task 
creation or non-constant time variable-access. The reason being that the number of 
task-creation operations and the number of variable-access operations are dependent on 
the program, while the number of task-switches can be controlled by the implementor 
by carefully designing the work scheduler. 

The schemes that have constant-time task creation and variable-access can be fur-
ther subdivided into those that physically share the execution tree, such as the Binding 
Arrays scheme [W84, W87, LW90] and the Versions Vectors [HC87] scheme, and those 
that do not, such as MUSE [AK90] and Delphi [CA88]. Both these kinds of schemes 
have their advantages and disadvantages. The advantage of non-sharing schemes such 
as Muse and Delphi is that less synchronization is needed in general since each processor 
has its own copy of the tree and thus there is less parallel overhead [AK90]. This also 
means that they can be implemented on non-shared memory machines more emciently. 

| Some of the 'flexible scheduling' techniques that are being developed for the Andorra-I system 
[D91] can be directly adapted for distribution of or- and and-parallel work in C-trees. 



However, these schemes place some tight constraints on the way múltiple environment 
must be managed (e.g., in MUSE a segment copied from an address space to another 
should occupy identical memory addresses to avoid relocating pointers) resulting in less 
flexibility. On the other hand, schemes that share the execution tree are more flexible 
since such constraints are absent (for instance, supporting side-effects in Aurora is quite 
straightforward, while in MUSE it requires some smart tricks). Since at present it is 
not clear whether schemes that share the execution tree are better than those that do 
not, and vice versa, we extend our techniques to both kinds of schemes. Thus, not only 
we show how different kinds of or-parallel schemes can be extended with independent 
and-parallelism, we also demónstrate that our proposed extensions are quite general. 
To that end, we first describe an extensión of the Binding Arrays scheme, and then an 
extensión of the stack-copying technique. Due to space limitations the essence of both 
approaches will be presented rather than specifying them in detail as full models, which 
is left as future work. 

5.2. Env ironment Representa t ion using B A s 

Recall that in the binding-array method [W84, W87] an offset-counter is maintained 
for each branch of the or-parallel tree for assigning offsets to conditional variables (CVs) | 
that arise in that branch. The 2 main properties of the BA method for or-parallelism 
are the following: 

(i) The offset of a conditional variable is fixed for its entire life. 

(ii) The offsets of two consecutive conditional variables in an or-branch are also con-
secutive. 

The implication of these two properties is that conditional variables get allocated 
space consecutively in the binding array of a given processor, resulting in optimum space 
usage in the BA. This is important because a large number of conditional variables might 
need to be created at runtime§. 

In the presence of independent and-parallel goals, each of which has múltiple Solu­
tions, maintaining contiguity in the BA can be a problem, especially if processors are 
allowed (via backtracking or or-parallelism) to search for these múltiple solutions. Con-
sider a goal with a parallel conjunction: a, ( t r u e => b & c) , d. A part of its C-tree 
is shown in figure 5(i) (the figure also shows the number of conditional variables that 
are created in different parts of the tree). If b and c are executed in independent and-
parallel by two different processors P l and P2, then assuming that both have private 
binding arrays of their own, all the conditional variables created in branch b - b l would 
be allocated space in BA of P l and those created in branch of c - c l would be allocated 
space in BA of P2. Likewise conditional bindings created in b would be recorded in BA 
of P l and those in c would be recorded in BA of P2. Before P l or P2 can continué 
with d after finding solutions b l and e l , their binding arrays will have to be merged 
somehow. In the AO-WAM [GJ89, G91a] the approach taken was that one of P l or P2 
would execute d after updating its Binding Array with conditional bindings made in the 
other branch (known as the BA loading operation). The problem with the BA loading 

| Conditional variables are variables tha t receive different bindings in different environments [GJ90]. 

3 For instance, in Aurora [LW90] about 1MB of space is allocated for each BA. 



operation is that it acts as a sequential bottleneck which can delay the execution of d, 
and reduce speedups. To get rid of the BA loading overhead we can have a common 
binding array for P l and P2, so that once P l and P2 finish execution of b and c, one 
of them immediately begins execution of d since all conditional bindings needed would 
already be there in the common BA. This is consistent with our discussion in section 4.1 
about having teams of processors where all processors in a team would share a common 
binding array. 

Figure 5: Conditional Variables and Independent And-Parallelism 

However, if processors in a team share a binding array, then backtracking can 
cause inefEcient usage of space, because it can créate large unused holes in the BA. 
This is because processors in a team are working on different independent and-parallel 
branches, and may need to allocate offsets in the binding array concurrently. The 
exact number of offsets needed by each branch cannot be allocated in advance in the 
binding array because the number of conditional variables that will arise in a branch 
cannot be determined a priori. Thus, the offsets of independent and-branches will 
overlap: for example, the offsets of k\ CVs in branch b l will be intermingled with those 
of &2 CVs in branch e l . Due to overlapping offsets, recovery of these offsets, when 
a processor backtracks, requires tremendous book-keeping. Alternatively, if no book-
keeping is done, it leads to large amount of wasted space that becomes unusable for 
subsequent offsets [GS92, G91, G91a]. 

5.2 .1 . Paged Binding Array 

To solve the above problem we divide the binding array into fixed sized segments. 
Each conditional variable is bound to a pair consisting of a segment number and an 
offset within the segment. An auxiliary array keeps track of the mapping between the 
segment number and its starting location in the binding array. Dereferencing CVs now 
involves double indirection: given a conditional variable bound to (¿,o), the starting 
address of its segment in the BA is first found from location i of the auxiliary array, 
and then the valué at offset o from that address is accessed. A set of CVs that have 
been allocated space in the same logical segment (i.e. CVs which have common i) can 
reside in any physical page in the BA, as long as the starting address of that physical 
page is recorded in the zth slot in the auxiliary array. Note the similarity of this scheme 



to memory management using paging in Operating Systems, henee the ñame Paged 
Binding Array (PBA)f. Thus a segment is identical to a page and the auxiliary array is 
essentially the same as a page table. The auxiliary and the binding array are common 
to all the processors in a team. From now on we will refer to the BA as the Paged 
Binding Array (PBA), the auxiliary array as the Page Table (PT) , and our model of 
and-or parallel execution as the PBA model j . 

Every time execution of an and-parallel goal in a parallel conjunction is started by 
a processor, or the current page in the PBA being used by that processor for allocat-
ing CVs becomes full, a page-marker node containing a unique integer id i is pushed 
onto the trail-stack. The unique integer id is obtained from a shared counter (called a 
p t_counte r ) . There is one such counter per team. A new page is requested from the 
PBA, and the starting address of the new page is recorded in the zth location of the 
Page Table. The location i is referred to as the page number of the new page. Each 
processor in a team maintains an offset-counter, which is used to assign offsets to CVs 
within a page. When a new page is obtained by a processor, the offset-counter is reset. 
Conditional variables are bound to the pair <i, o>, where i is the page number, and o 
is the valué of the offset-counter, which indicates the offset at which the valué of the 
CV would be recorded in the page. Every time a conditional variable is bound to such 
a pair, the offset counter o is incremented. If the valué of o becomes greater than K, 
the fixed page size, a new page is requested and new page-marker node is pushed. 

A list of free pages in the PBA is maintained separately (as a linked list). When a 
new page is requested, the page at the head of the list is returned. When a page is freed 
by a processor, it is inserted in the free-list. The free-list is kept ordered so that pages 
higher up in the PBA oceur before those that are lower down. This way it is always 
guaranteed that space at the top of the PBA would be used first, resulting in optimum 
space usage of space in the PBA. 

While selecting or-parallel work, if the untried alternative that is selected is not in 
the scope of any parallel conjunction, then task-switching is more or less like in purely 
or-parallel system (such as Aurora), modulo allocation/deallocation of pages in the 
PBA. If, however, the untried alternative that is selected is in the and-parallel goal g of 
a parallel conjunction, then the team updates its PBA with all the conditional bindings 
created in the branches corresponding to goals which are to the left of g. Conditional 
bindings created in g above the choice point are also installed. Goals to the right of 
g are restarted and made available to other member processors in the team for and-
parallel execution. Notice that if a C-tree is folded into an or-parallel tree according 
to the relationship shown in figures 2 and 3, then the behaviour of (and the number 
of conditional bindings installed/deinstalled during) task switching would closely follow 
that of a purely or-parallel system such as Aurora, if the same scheduling order is 
followed. 

I Thanks to David H. D. Warren for pointing out this similarity. 

| A paged binding array has also been used in the ElipSys system of E C R C [VX91], but for entirely 
different reasons. In ElipSys, when a choice point is reached the BA is replicated for each new branch. 
To reduce the overhead of replication, the BA is paged. Pages of the BA are copied in the children 
branches on demand, by using a "copy-on-write" strategy. In ElipSys, unlike our model, paging is not 
necessitated by independent and-parallelism. 



Note that the paged binding array technique is a generalization of the environment 
representation technique of AO-WAM [GJ89, G91a], henee some of the optimizations 
[GJ90a] developed for the AO-WAM, to reduce the number of conditional bindings to 
installed/deinstalled during task-switching, will also apply to the PBA model. Lastly, 
seniority of conditional variables, which needs to be known so that "older" variables 
never point to "younger ones", can be easily determined with the help of the <i, o> 
pair. Older variables will have a smaller valué of i; and if i is the same, then a smaller 
valué of o. 

5.3. T h e Stack Copying Approach 

An alternative approach to represent múltiple environments in the C-tree is to use 
explicit stack-copying. Rather than sharing parts of the tree, the shared branches can 
be explicitly copied, using techniques similar to those employed by the MUSE system 
[AK90]. 

To briefly summarize the MUSE approach, whenever a processor P l wants to share 
work with another processor P2 it seleets an untried alternative from one of the choice 
points in P2's stack. It then copies the entire stack of P2, backtracks up to that choice 
point to undo all the conditional bindings made below that choice point, and then con­
tinúes with the execution of the untried alternative. In this approach, provided there is 
a mechanism for copying stacks, the only cells that need to be shared during execution 
are those corresponding to the choice points. Execution is otherwise completely inde-
pendent (modulo side-effect synchronization) in each branch and identical to sequential 
execution. 

If we consider the presence of and-parallelism in addition to or-parallelism, then, 
depending on the actual types of parallelism appearing in the program and the nesting 
relation between them, a number of relevant cases can be distinguished. The sim-
plest two cases are of course those where the execution is purely or-parallel or purely 
and-parallel. Trivially, in these situations standard MUSE and &-Prolog execution re-
spectively applies, modulo the memory management issues, which will be dealt with in 
section 5.3.2. 

Of the cases when both and- and or-parallelism are present in the execution, the 
simplest represents executions where and-parallelism appears "under" or-parallelism but 
not conversely (i.e. no or-parallelism appears below c-nodes). In this case, and again 
modulo memory management issues, or-parallel execution can still continué as in Muse 
while and-parallel execution can continué like in &-Prolog (or in any other and-parallel 
way). The only or-parallel branches which can be picked up appear then above any and-
parallel node in the tree. The process of picking up such branches would be identical 
to that described above for MUSE. 

In the presence of or-parallelism under and-parallelism the situation becomes 
slightly more complicated. In that case, an important issue is carefully deciding which 
portions of the stacks to copy. When an untried alternative is picked from a choice-point, 
the portions that are copied are precisely those that have been labeled as "shared" in 
the C-tree. Note that these will be precisely those branches that will also be copied in an 
equivalent (purely or-parallel) MUSE execution. In addition, precisely those branches 



will be recomputed that are also recomputed in an equivalent (purely and-parallel) 
&-Prolog execution. 

Consider the case when a processor selects an untried alternative from a choice 
point created during execution of a goal gj in the body of a goal which occurs after a 
parallel conjunction where there has been and-parallelism above the selected alternative, 
but all the forks are finished. Then not only will it have to copy all the stack segments 
in the branch from the root to the parallel conjunction, but also the portions of stacks 
corresponding to all the forks inside the parallel conjunction and those of the goals 
between the end of the parallel conjunction and gj. All these segments have in principie 
to be copied because the untried alternative may have access to variables in all of them 
and may modify such variables. 

On the other hand, if a processor selects an untried alternative from a choice point 
created during execution of a goal g¿ inside a parallel conjunction, then it will have to 
copy all the stack segments in the branch from the root to the parallel conjunction, 
and it will also have to copy the stack segments corresponding to the goals g\ . . . gi-\ 
(i.e. goals to the left). The stack segments up to the parallel conjunction need to be 
copied because each different alternative within the g¿s might produce a different binding 
for a variable, X, defined in an ancestor goal of the parallel conjunction. The stack 
segments corresponding to goals g\ through gi-\ have to be copied because the different 
alternatives for the goals following the parallel conjunction might bind a variable defined 
in one of the goals g\ . . . gi-\ differently. 

5.3 .1 . Execut ion wi th Stack Copying 

We now illustrate by means of a simple example how or-parallelism can be exploited 
in non deterministic and-parallel goals through stack copying. Consider the tree shown 
in figure 1 that is generated as a result of executing a query q containing the parallel 
conjunction ( t r u e => a(X) & b(Y)) . For the purpose of illustration we assume that 
there is an unbounded number of processors, P l . . . Pn. 

Execution begins with processor P l executing the top level query q. When it 
encounters the parallel conjunction, it picks the subgoal a for execution, leaving b for 
some other processor. Let's assume that processor P2 picks up goal b for execution 
(figure 6.(i)). As execution continúes P l finds solution a l for a, generating 2 choice 
points along the way. Likewise, P2 finds solution b l for b. 

Since we also allow for full or-parallelism within and-parallel goals, a processor can 
steal the untried alternative in the choice point created during execution of a by P l . 
Let us assume that processor P3 steals this alternative, and sets itself up for executing 
it. To do so it copies the stack of processor P l up to the choice point (the copied part 
of the stack is shown by the dotted line; untried alternatives or embryonic nodes are 
shown by a double dashed line ending in a circle containing the ñame of the solution the 
alternative will lead to; see index at the bottom of figure 6), simulates failure to remove 
conditional bindings made below the choice point, and restarts the goals to its right 
(i.e. the goal b). Processor P4 picks up the restarted goal b and finds a solution b l for 
it. In the meantime, P3 finds the solution a2 for a (see figure 6.(ii)). Note that before 
P3 can commence with the execution of the untried alternative and P4 can execute the 
restarted goal b, they have to make sure that any conditional bindings made by P2 



while executing b have also been removed. This is done by P3 (or P4) getting a copy 
of the trail stack of P2 and resetting all the variables that appear in it. 

PI P2 

(a & b) 

( i ) 

P7 

(a & b) 

M 
,/fe> )s> 

(iv) 
b 2 

P3 P4 

(a & b) 

/© 

a2 ( ü ) 

P8 

(a & b) 

H 
a2 (v) 

b2 

P5 P6 

(a & b) 

( i i i ) 

¡ P9 

(a & b) 

\ 

fe 
a 3 

(vi) b2 

O 
branch executed locally 

embryonic branch 
(untried alternative) 

copied branch 

choice point 
(branch point) 

Figure 6: Parallel Execution with Stack Copying 

Like processor P3 , processor P5 steals the untried alternative from the second choice 
point for a, copies the stack from P l and restarts b, which is picked up by processor P6. 
As in MUSE, the actual choice point frame is shared to prevent the untried alternative 
in the second choice point from being executed twice (once through P l and once through 
P3). Eventually, P5 finds the solution a3 for a and P6 finds the solution b l for b. 

Note that now 3 copies of b are being executed, one for each solution of a. The 
process of finding the solution b l for b leaves a choice point behind. The untried 
alternative in this choice point can be picked up for execution by another processor. 
This is indeed what is done by processors P7, P8 and P9 for each copy of b that is 
executing. These processors copy the stack of P2, P4 and P6, respectively, up to the 
choice point. The stack segments corresponding to goal a are also copied (figures 6.(iv), 
6.(v), 6.(vi)) from processors P l , P3 and P5, respectively. The processors P7, P8 and 
P9 then proceed to find the solution b2 for b. 

Execution of the alternative corresponding to the solution b2 in the three copies of 
b produces another choice-point. The untried alternatives from these choice points can 
be picked up by other idle teams in a manner similar to that for the previous alternative 



of b (not shown in figure 6). Note that if there were no processors available to steal 
the alternative (corresponding to solution b3) from b then this solution would have 
been found by processors P7, P8 and P9 (in the respective copies of b that they are 
executing) through backtracking as in &-Prolog. The same would apply if no processors 
were available to steal the alternative from b corresponding to solution b2. 

5.3.2 . Manag ing the Address Space 

While copying stack segments we have to make sure that pointers in copied portions 
do not need relocation. In Muse this is ensured by having a physically sepárate but 
logically identical memory spaces for each of the processors [AK90]. In the presence of 
and-parallelism and teams of processors a more sophisticated approach has to be taken. 

All processors in a team share the same logical (virtual) address space. If there 
are n processors in the team the address space is divided up into m memory segments 
(m > n). The memory segments are numbered from 1 to m. Each processor allocates its 
heap, local stacks, trail etc. in one of the segments (this also implies that the máximum 
no. of processors that a team can have is m). Each team has its own independent logical 
address space, identical to the address space of all other teams. Also, each team has an 
identical number of segments. Processors are allowed to switch teams so long as there 
is a memory segment available for them to allocate their stacks in the address space of 
the other team. 

Consider the scenario where a choice point, which is not in the scope of any parallel 
conjunction, is picked up by a team Tq from the execution tree of another team Tp. 
Let x be the memory segment number in which this choice point lies. The root of the 
Prolog execution tree must also lie in memory segment x since the stacks of a processor 
cannot extend into another memory segment in the address space. Tq will copy the 
stack from the xth memory segment of Tp into its own xth memory segment. Since the 
logical address space of each team is identical and is divided into identical segments, 
no pointer relocation would be needed. Failure is then simulated and the execution of 
the untried alternative of the stolen choice point begun. In fact, the copying of stacks 
can be done incrementally as in MUSE [AK90] (other optimizations in MUSE to save 
copying should apply equally well to our model). 

Now consider the more interesting scenario where a choice point, which lies within 
the scope of a parallel conjunction, is picked up by a processor in a team Tq from 
another team Tp. Let this parallel conjunction be the CGE (true =>• g\&¿ . . . &¿gn) and 
let gi be the goal in the parallel conjunction whose sub-tree contains the stolen choice 
point. Tq needs to copy the stack segments corresponding to the computation from the 
root up to the parallel conjunction and the stack segments corresponding to the goals 
g\ through g¿. Let us assume these stack segments lie in memory segments of team Tp 
and are numbered x\,. . . , Xk- They will be copied into the memory segments numbered 
xi,...,Xk of team Tq. Again, this copying can be incremental. Failure would then 
be simulated on g¿. We also need to remove the conditional bindings made during the 
execution of the goal <7¿+i . . . gn by team Tp. Let Xk+i • • • x¡ be the memory segments 
where <7¿+i . . . gn are executing in team Tp. We copy the trail stacks of these segments 
and reinitialize (i.e. mark unbound) all variables that appear in them. The copied 
trail stacks can then be discarded. Once removal of conditional bindings is done the 



execution of the untried alternative of the stolen choice point is begun. The execution 
of the goals <7¿+i . . . gn is restarted and these can be executed by other processors which 
are members of the team. Note that the copied stack segments occupy the same memory 
segments as the original stack segments. The restarted goals can however be executed 
in any of the memory segments. 

An elabórate description of the stack-copying approach, with techniques for sup-
porting side-effects, various optimizations that can be performed to improve emciency, 
and implementation details are left as future work. Preliminary details can be found in 
[GHS91]. 

6. Conclus ions A n d Compar i son W i t h Other Work 

In this paper, we presented a high-level approach capable of exploiting both in­
dependent and-parallelism and or-parallelism in an emcient way. In order to find all 
solutions to a conjunction of non-deterministic and-parallel goals in our approach some 
goals are explicitly recomputed as in Prolog. This is unlike in other and-or parallel sys-
tems where such goals are shared. Recomputing and-parallel goals allows our scheme 
to incorpórate side-effects and to support Prolog as the user language more easily and 
also simplifies other implementation issues. 

In the context of this approach we further presented two techniques for environment 
representation in the presence of independent and-parallelism which are extensions of 
highly successful environment representation techniques for supporting or-parallelism. 
The first technique, the Paged Binding Arrays technique, is based on Binding Arrays 
[W84, W87] and yields a system which can be viewed as a direct combination of the 
Aurora [LW90] and &-Prolog [HG90] systems. The second technique is based on Stack 
Copying [AK90] and, when fully developed, will yield a system which can be viewed as 
a direct combination of the MUSE [AK90] and &-Prolog systems. If an input program 
has only or-parallelism, then the system based on Paged Binding Arrays (or on Stack 
copying) will behave exactly like Aurora (or as Muse). If a program has only indepen­
dent and-parallelism the two models will behave like &-Prolog (except that conditional 
bindings would be allocated in the binding array in the system based on Paged Binding 
Arrays). Our approach is designed to support the extra-logical features of Prolog (such 
as cuts and side-effects) transparently [GS92d], something which does not appear to be 
easy in other independent-and/or parallel models [BK88, GJ89, RK89]. Control in the 
models is quite simple, due to recomputation of independent goals. Memory manage-
ment is also relatively simpler. We firmly believe that the approach, in its two versions 
of Paged Binding Array and Stack Copying can be implemented very einciently, and 
indeed their implementation is scheduled to begin shortly. The implementation tech­
niques described in this paper can be used for even those models that have dependent 
and-parallelism, such as Prometheus [SK92], and IDIOM (with recomputation) [GY91]. 
They can also be extended to implement the Extended Andorra Model [W90] and its 
implementations such as AKL [JH90]. 
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