
Appears in New Generation Computing �� ������ �	
����

Induction of Logic Programs� FOIL and Related Systems

J� R� Quinlan
University of Sydney
Sydney Australia ����
quinlan�cs�su�oz�au

and R� M� Cameron�Jones
University of Tasmania

Launceston Australia ����
Michael�CameronJones�appcomp�utas�edu�au

Abstract� foil is a 	rst�order learning system that uses information
in a collection of relations to construct theories expressed in a dialect
of Prolog� This paper provides an overview of the principal ideas and
methods used in the current version of the system
 including two recent
additions� We present examples of tasks tackled by foil and of systems
that adapt and extend its approach�

�� Introduction

All symbolic machine learning leads to the formulation or modi	cation of theories

so the language in which theories are expressed is an important consideration� First�
order theory languages have been used for at least thirty years
 as documented
by Sammut ��

��� Explanation�based generalisation systems �Mitchell
 Keller and
Kedar�Cabelli
 �
��� DeJong and Mooney
 �
��� have always required them
 but the
early and in�uential work of Shapiro ��
��� and Sammut and Banerji ��
��� also
employed them in an inductive learning context� Nevertheless
 	rst�order empirical
learning
 including what we now call inductive logic programming
 did not attract
widespread attention until the �

�s�

Training data in zeroth�order learning consists of attribute�value vectors
 each be�
longing to a known class� Theories are propositional functions from attribute values
to classes and are expressed in forms such as decision trees �Quinlan
 �

��� In 	rst�
order learning
 training data comprises a target relation
 de	ned extensionally as a
set of tuples of ground terms
 and a set of background relations that might be de	ned
extensionally or intensionally� The goal of learning is to construct a logic program
that constitutes an intensional de	nition of the target relation in terms of itself and
the background relations� Such theories permit recursion and limited quanti	cation

both advantageous when dealing with structured objects that are di�cult to describe
in attribute�value form� Where zeroth�order learning refers to examples and counter�
examples of some concept
 	rst�order learning refers analogously to tuples belonging

or not belonging
 to the target relation� Since this is somewhat long�winded
 we refer
to such tuples here as � or � tuples respectively�

We say that a �complete� theory covers a tuple if the corresponding ground query
to the logic program succeeds� The goal of 	rst�order learning can thus be stated as
the construction of a theory that covers all � tuples and no � tuples of the target

�

relation� During learning
 however
 when only a partial theory exists
 this de	nition of
�covers� might be bent slightly� for instance
 a recursive literal might be evaluated by
lookup in the extensional de	nition of the target relation rather than by attempting
to execute the incomplete program�

First�order learning systems can be grouped into two families� Most earlier systems
such as mis �Shapiro
 �
���
 Marvin �Sammut and Banerji
 �
���
 and Cigol �Mug�
gleton and Buntine
 �
��� are based on the successive revision method� A faulty
theory is too general if it covers a � tuple and too speci	c if it fails to cover a �
tuple� When a new tuple is treated erroneously
 the query computation is examined

perhaps with the help of an oracle
 to pinpoint the defect in the theory that is re�
sponsible for the error� The theory is revised accordingly and the process continues
with the next tuple� This style of learning falls within the identi�cation in the limit
paradigm �Gold
 �
��� in which it is often possible to prove that systems will converge
on a correct theory after seeing su�cient training tuples� In practice
 though
 this
family of algorithms is computationally demanding and is e�ectively limited to tasks
that involve a small number of carefully chosen examples�

The other family uses instead a separate�and�conquer strategy pioneered by Michalski
��
���� All training tuples are considered together and
 at each iteration
 a clause of
the theory is found that covers some � tuples but no � tuples� The covered tuples
are then discarded and the process iterates until all � tuples are covered by at least
one clause� The family is further subdivided by the method used to 	nd a suitable
clause� Top�down systems such as foil �Quinlan
 �

�� start with a general clause
head and add literals to the body until all � tuples are excluded� Bottom�up systems
exempli	ed by golem �Muggleton and Feng
 �

�� form a most speci	c generalisation
of a small subset of the � tuples
 then generalise this further by dropping literals so
long as the clause covers no � tuples� Both bottom�up and top�down systems have
successfully tackled large�scale tasks and have proven to be orders of magnitude faster
than systems based on successive revision�

This paper focusses on foil
 an early member of the top�down group� We describe
the learning task in more detail and outline key features of the system� Many of these
have been reported previously �the best general references being �Quinlan
 �

�� and
�Cameron�Jones and Quinlan
 �

��� and so are only sketched here
 but two more
recent additions to foil are treated at greater length� Examples of tasks investigated
with foil
 two of which are new
 are presented� Numerous other systems have adapted
or extended elements of foil�s approach and several of these related systems are
reviewed� We 	nish with some areas for further research�

�� Description of foil

As mentioned above
 input to foil includes information about relations� In common
with many �but not all� 	rst�order learning systems
 foil requires the target and

�

all background relations to be de	ned extensionally by sets of tuples of constants�
Every relation argument has a speci	ed type� there may be many distinct types or
all constants can be regarded as belonging to a single type� Although the intensional
de	nition learned from these extensional relations is derived from a particular set of
examples
 it is intended to be executable as a Prolog program in which the background
relations may also be speci	ed intensionally by de	nitions rather than by sets of
ground tuples� For example
 foil might learn a de	nition of even integer from just
the integers in ��
��� and background relations de	ned over these integers
 but the
learned de	nition
 when used with intensional background relations
 should be capable
of deciding whether an arbitrary integer is even�

The language in which foil expresses theories is a restricted form of Prolog that
omits cuts
 fail
 disjunctive goals
 and functions other than constants� This last does
not pose any particular problem since Prolog programmers are accustomed to de	ning
functions by relations� a k�ary function can be represented by a k���argument relation
in which the last argument gives the value of the function applied to the 	rst k
arguments� Negated literals not�L������ are permitted
 where not is interpreted as
negation by failure as in Prolog�

As an example of a task
 consider learning a de	nition of the membership relation
on lists from a small world containing just the lists � �
 ���
 ���
 ���
 �����
 �����
 and
�������� The target relation member�E�L� contains pairs whose 	rst constant denotes
an element that belongs in the list denoted by the second� In this small world there
are just ten tuples in member�

h�����i h�����i h�����i h�������i h�������i
h�������i h�������i h���������i h���������i h���������i

the 	rst denoting that element � is a member of the list ��� and so on� As far as
foil is concerned
 lists like ������� are just constants
 so a background relation com�
ponents�L�H�T� is required to show how to 	nd the head H and tail T of a list L� The
tuples making up components are

h������� �i h������� �i h������� �i h�����������i h�����������i h��������������i

where the 	rst states that list ��� has head � and tail � ��

All the tuples that belong to the relation member are clearly � tuples� The corre�
sponding � tuples needed by foil can be provided explicitly or
 more commonly
 can
be determined using the closed world assumption� That is
 all tuples consisting of
an element and a list as above that do not appear explicitly in the relation member
can be assumed not to belong to the relation
 implying that h��� �i
 h�����i
 h�������i
and so on are all � tuples� The number of such � tuples may be overwhelming when
the target relation has high arity
 so foil contains an optional facility to use only a
random sample of them�

�

Initialisation�
theory �� null program
remaining �� all � tuples of target relation R

While remaining is not empty

�	 Grow a new clause 	�

clause �� R�A�B� ���� �

While clause covers � tuples of R

Find appropriate literal�s� L �e�g� to exclude some � tuples�
Add L to right
hand side of clause

Remove � tuples covered by clause from remaining
Add clause to theory

Figure �� Outline of foil

��� Overview of the learning algorithm

As outlined in Figure �
 foil uses the separate�and�conquer method
 iteratively learn�
ing a clause and removing the � tuples that it covers until none remain� A clause
is grown by successive specialisation
 starting with the most general clause head and
adding literals to the body until the clause does not cover any � tuples�

Clause construction is guided by the bindings of the variables in the partial clause
that satisfy the clause body� If the clause contains k variables
 a binding is a k�tuple
of constants that speci	es the value of all variables in order� Each such possible
binding is labelled � or � according to whether the tuple of values for the variables
in the clause head does or does not belong in the target relation�

We illustrate the process using the member relation� The initial clause consists of just
the head

member�A�B� ��

in which each variable is unique� The labelled bindings corresponding to this initial
partial clause are just the � and � tuples of the target relation
 namely

�

h�����i� h�����i� h�����i� h�������i� h�������i�
h�������i� h�������i� h���������i� h���������i� h���������i�
h��� �i� h�����i� h�����i� h�������i� h��� �i�
h�����i� h�����i� h��� �i� h�����i� h�����i�

h�������i�

If the literal components�B�A�C� is now added to the clause body to give

member�A�B� �� components�B�A�C�

the new clause has three variables and is satis	ed by the bindings

h������� �i� h������� �i� h������� �i� h�����������i� h�����������i� h���������������i�

For instance
 h������� �i is included because the values A��
 B����
 C�� � satisfy the
clause body
 and is labelled � because the tuple h�����i formed by the values of the
clause head variablesA and B belongs inmember� Since all the bindings are labelled�

the clause covers no � tuples and so is complete� The � tuples covered by this clause
are removed
 leaving only h�������i
 h�������i
 h���������i and h���������i to be covered by
subsequent clauses in the de	nition�

The next iteration commences with the remaining � tuples and all � tuples
 namely

h�������i� h�������i� h���������i� h���������i� h��� �i�
h�����i� h�����i� h�������i� h��� �i� h�����i�
h�����i� h��� �i� h�����i� h�����i� h�������i�

If the literal components�B�C�D� is added to the clause head to give the partial clause

member�A�B� �� components�B�C�D�

with four variables
 the bindings that satisfy this partial clause are

h�������������i� h�������������i� h�����������������i� h�����������������i�
h��������� �i� h��������� �i� h�������������i� h��������� �i�
h��������� �i� h��������� �i� h��������� �i� h�������������i�

Adding a further literal to give the new partial clause

member�A�B� �� components�B�C�D�� member�A�D�

restricts the bindings to just

�

h�������������i� h�������������i� h�����������������i� h�����������������i�

For instance
 the binding h��������� �i is now excluded because the values A��
 B����

C��
 D�� � do not satisfy the requirement that A is a member of D� All bindings are
labelled�
 again signalling completion of the clause� Each tuple in the target relation
is now covered by the clauses

member�A�B� �� components�B�A�C��
member�A�B� �� components�B�C�D�� member�A�D��

so the de	nition of member is complete� Using the Prolog notation for lists
 these
clauses might be written

member�A�	AjC
��
member�A�	CjD
� �� member�A�D��

This example begs some important questions such as how to 	nd appropriate literals
to add to the clause body� The next several subsections take up issues of this kind
that are central to foil�s learning method�

��� Selecting literals

Literals that can appear in the body of a clause are restricted by the requirement
that programs be function�free
 other than for constants appearing in equalities� The
possible forms that foil considers are�

� Q�V�� V�� ���� Vk� and not�Q�V�� V�� ���� Vk��
 where Q is a relation and the Vi�s
denote existing variables bound earlier in the clause or new variables�

� Vi�Vj or Vi ��Vj
 for existing variables Vi and Vj of the same type�

� Vi�c and Vi ��c
 where Vi is an existing variable and c is a constant of the
appropriate type� Only constants that have been designated as suitable to
appear in a theory are considered � a reasonable theory for member might
reference the null list � � but should not involve an arbitrary list such as ������

� Vi � Vj
 Vi � Vj
 Vi � t
 and Vi � t
 where Vi and Vj are existing variables with
numeric values and t is a threshold chosen by foil�

If the learned theory must be pure Prolog
 negated literal forms not�Q������ and Vi �����
can be excluded by an option�

Literals of the forms Q����� and not�Q������ are further constrained� At least one
variable must have been bound earlier in the partial clause
 either by the head or
a literal in the body� As with golem
 the depth of new variables is limited
 where

�

variables appearing in the head have depth � and a new variable in a literal has depth
one greater than the maximum depth of its existing variables� Finally
 if Q is the
target relation
 recursive body literals that could cause non�termination are excluded
as discussed in Section ����

A literal in the body of a clause can serve two purposes� It may increase the proportion
of � bindings
 thereby moving the clause closer to completion when all bindings are
�� Alternatively
 a literal of the form Q����� may introduce new variables needed in
the 	nal clause� Literals of the 	rst kind
 referred to as gainful
 may also introduce
new variables
 but this is the primary motivation for the second class of determinate
literals�

Gainful literals are evaluated using an information heuristic� Let the number of� and
� bindings of a partial clause be n� and n� respectively� The average information
provided by the discovery that one of the bindings has label � is

I�n�� n�� � � log
�
n�� �n� � n�� bits�

If a literal L is added
 some of these bindings may be excluded and each of the rest
will give rise to one or more bindings for the new partial clause� Suppose that k of
the n� bindings are not excluded by L
 and that the numbers of bindings of the new
partial clause are m� and m� respectively� The total information gained by adding
L is then

k � �I�n�� n�� � I�m��m��� bits�

In the member example
 there are �� � and �� � bindings at the start of the 	rst
clause� Adding components�B�A�C� excludes all but

h�����i� h�����i� h�����i� h�������i� h�������i� h���������i�

each of which gives rise to a single binding for the new clause� The total information
gained by adding this literal is then �� �I���� ���� I��� ��� or ���� bits�

Determinate literals are inspired by golem�s determinate terms but
 whereas golem
can learn only theories in which all terms are determinate
 foil implements the
idea as a preference rather than a requirement� A determinate literal is one that
introduces new variables such that the new partial clause has exactly one binding for
each � binding in the current clause
 and at most one binding for each � binding�
Determinate literals are useful because they introduce new variables
 but neither
reduce the potential coverage of the clause nor expand the set of bindings� This is
exempli	ed by the 	rst literal components�B�C�D� of the second clause above� every
binding other than those of the form h���� �i� yields a single new binding in which new
variables C and D are the head and tail of B respectively� Notice that this literal is
also gainful as it increases the proportion of � bindings�

All sensible literals derived from all relations are considered when adding literals to
a clause� Some literals can be omitted
 for instance

�

� literals that do not satisfy the argument type constraints�

� a literal Q����� X� ���� X� ���� with the same variable in argument positions i and
j
 when no tuple in the relation Q has the same constant in positions i and j�
and

� recursive literals that might cause in	nite recursion �see below��

Further
 evaluation of a literal can often be abandoned when it becomes clear that it
is not determinate and cannot come close to the gain of the most gainful literal found
so far� On occasion a literal can be omitted altogether from consideration because it
is a specialisation of a literal already known to exclude too many � bindings�

��� Assuring recursive soundness

Theories found by foil are intended to be executable as Prolog programs
 so it is
important that recursive theories do not lead to in	nite recursion� To this end
 foil
incorporates a sophisticated scheme that bars recursive literals unless they can be
proven to be problem�free
 at least to the extent of ensuring termination on ground
queries to a single target relation�� The approach
 described in detail in �Cameron�
Jones and Quinlan
 �

�a�
 has three phases�

Ordering constants� The constants of each type T can be given to foil in their
natural order
 if one exists
 or foil can 	nd a plausible ordering� In the latter case

each pair of arguments Ai� Aj of type T in every relationR is examined to see whether
the tuples of constants de	ning R are consistent with a partial order
 here denoted
Ai � Aj �since it is impossible to distinguish between Ai � Aj and Ai � Aj�� If the
arguments exhibit such a partial order
 each tuple in relation R will give ci � cj for
the constants ci� cj in the ith and jth positions respectively� The argument partial
order is ruled out only when the closure of these inequalities between constants implies
ck � ck for some constant ck�

Having found all potential partial orderings of pairs of arguments of type T across
all relations
 foil orders the constants of type T to be consistent with the maximum
number of the argument partial orders� This process is carried out just once for each
type for which an ordering is not speci	ed by the user�

Ordering pairs of variables� The ordering of constants of type T may imply an or�
dering of pairs of variables Vi� Vj of type T in a partial clause� Each binding of the
partial clause speci	es values ci� cj for Vi and Vj � if it is always the case that ci � cj

then Vi � Vj�

Ordering recursive literals� Recursive termination will be assured if
 for all clauses
with head R�V�� V�� ���� and body literal R�W��W�� ����
 the body literal is less than
the head� To order literals
 foil considers schemes of the form

�That is� with no mutually recursive de�nitions of two or more relations�

�

R�W��W�� ���� � R�V�� V�� ���� if
W� �� V�
 or
W� � V� and W� �� V�
 or
W� � V� and W� � V� and W� �� V�
 or ���

for suitable argument positions �
 �
 	
 ��� and where �i denotes � if the real order of
constants is known
 otherwise a choice between � or 	� Whenever a recursive literal
is being considered
 foil tries to construct a literal ordering scheme of this kind that
is satisfactory for both this literal and all other recursive literals in the de	nition so
far� If such a scheme does not exist
 the recursive literal is ruled out�

For the member example
 foil 	nds that the de	nition of the components�L�H�T�
relation is consistent with T� L and orders the list constants

� � � ��� � ��� � ��� � ��� �� � ��� �� � ��� �� ���

Now consider the partial clause

member�A�B� �� components�B�C�D�

where
 by the ordering above
 D� B� When considering the addition of the recursive
literal member�A�D�
 it is clear that an ordering scheme

member�W��W�� � member�V�� V�� i� W�� V�

will guarantee that the body literal is less than the head and so ensure that this literal
cannot cause in	nite recursion�

Many 	rst�order learning systems employ simplermechanisms� to prevent problematic
recursion
 or no mechanisms at all� Even though this scheme is relatively complex

it is computationally e�cient in practice and is necessary for learning more di�cult
recursive de	nitions such as Ackermann�s function �discussed in Section �����

��� Controlling search

foil�s exploration of the space of possible de	nitions is fundamentally greedy
 but
the system incorporates mechanisms to curtail search down a particular path and to
recover from poor choices of literals� Recovery is achieved by establishing checkpoints
when a gainful literal added to a clause is only marginally better than an alternative
literal� A small
 	xed number of checkpoints �default ��� is maintained and
 if the
current partial clause cannot be completed so as to exclude all � tuples
 search is
restarted from the best remaining checkpoint� This non�chronological backtracking
is invoked relatively infrequently since greedy search is usually su�cient to 	nd a
clause� Backtracking is not used to attempt to 	nd a better clause
 although this
could become an option in future versions�

�Early versions of foil used a weaker scheme that required one argument of the body literal to

be less than the corresponding argument of the head�

Greedy search can fail either because there is no literal that could be added to a
clause or
 more commonly
 because the addition of another literal will render the
clause too complex with respect to the training data� The complexity criterion is
based on Rissanen�s Minimum Description Length Principle �Quinlan and Rivest

�
�
� and requires that the cost of encoding a clause should never exceed the cost of
identifying explicitly the tuples that it covers� Since determinate literals are added
indiscriminately
 they are excluded from the calculation of the cost to encode a clause

de	ned as the number of bits needed to identify the relation and arguments of all non�
determinate literals in the clause body� The cost of identifying the n tuples that it
covers among the � and � tuples of the target relation is the logarithm to base � of
the number of ways in which n tuples could be selected� This criterion thus rules out
elaborate clauses that cover few tuples�

When exploring literals to add to the developing clause body
 foil sometimes notices
a literal that would complete the clause but prefers another literal that is determinate
or has higher gain� The best of the complete clauses encountered during search is
retained in the wings and
 if the 	nal clause is not superior in terms of compactness
or coverage
 the saved clause is substituted in its place�

The 	nal modi	cation to straightforward search occurs when a literal L chosen for
addition to the partial clause contains only variables that appear in the clause head�
L could have appeared as the 	rst literal of the clause body while intervening literals
introducing new variables might have restricted the clause�s coverage� In such situ�
ations
 all non�determinate literals that introduce variables are discarded and search
resumes from the shortened partial clause�

��� Pruning de	nitions

A particular literal in a completed clause may be needed because it prevents the
clause from covering � tuples
 because it introduces a variable used in a later literal

or because it establishes a partial order on which recursion control depends� As a
consequence of its incremental construction
 a clause may contain literals that serve
none of these purposes� Removal of such literals has two bene	ts� the clause becomes
simpler
 and it may also cover more � tuples of the target relation�

The policy of adding all determinate literals to the clause body is the principal source
of unnecessary literals� Consequently
 clause pruning proceeds in two stages� All
determinate literals that introduce variables not used by later literals are removed�
This operation is fast but fallible
 so the shortened clause is tested to see that it is still
valid and recursively sound� if not
 the original clause is restored� Then a literal�by�
literal pruning process is carried out
 starting from the last literal in the clause body�
At each step a literal is removed
 the residual clause tested
 and the literal restored
only if the pruned clause is unsatisfactory� This iterative pruning can be costly when
the initial clause is long
 but generalising the clause as much as possible can expedite
learning of the rest of the de	nition since fewer � tuples remain to be covered�

��

De	nitions themselves can also be redundant since the � tuples covered by early
clauses may also be covered by later clauses� When the de	nition is complete
 each
clause is examined to see whether it uniquely covers one or more � tuples� if not
 the
clause is discarded�

��
 Dealing with closed worlds

We now come to the 	rst of the more recent developments in foil� Unlike aspects
described above
 these are not documented elsewhere and so are presented in more
detail�

foil requires that the target and background relations be de	ned extensionally as
tuples of constants� This cannot be done when the relation is inherently in	nite

so the usual practice is to specify a 	nite closed world and to limit tuples to those
containing only constants that appear in the closed world� This implicitly assumes
that a satisfactory de	nition for the closed world will be correct in general
 even
when used in conjunction with intensionally�de	ned background knowledge� Bell and
Weber ��

�� call this the open domain assumption�

Consider the task of learning the concept of a simple list as one that contains at most
one element� We might establish a closed world consisting of all lists with up to three
elements drawn from f�����g in which simple�L� is de	ned by the tuples fh� �i
 h���i

h���i
 h���ig� Background relations are components�L�H�T� as before
 and conc�A�B�C�
meaning that the result of concatenating lists A and B is list C� Notice that conc does
not contain tuples representing the result of concatenating two two�element or two
three�element lists
 since these would form lists that lie outside the closed world�

For this task
 foil immediately 	nds the surprising de	nition

simple�A� �� conc�A�A�B��

The de	nition is correct for the closed world since
 when A has two or more elements

the result of concatenating A with itself lies outside the closed world and the corre�
sponding tuple does not appear in conc� Unfortunately
 though
 this de	nition is not
correct in general�

Enlarging the closed world merely postpones the problem� In a new closed world
including all lists up to length four
 for example
 foil 	nds a similar de	nition

simple�A� �� conc�A�A�B�� conc�B�B�C��

This is still correct for the larger closed world � if A has two or more elements then
B has four or more and so the result of concatenating B to itself again is not de	ned
in the closed world�

��

This problem is not restricted to foil but is a consequence of using extensionally
de	ned relations� For instance
 golem �Muggleton and Feng
 �

�� also requires
relations to be de	ned by ground assertions and 	nds identical de	nitions for these
tasks�

The solution we have implemented in foil involves a special constant
 denoting
out
of
world� In the three�element world
 the de	nition of conc would include the
tuple h�����������������i to indicate that the result of concatenating ������� to itself is
not de	ned in the closed world� This constant
 has special signi	cance for foil� a
literal is barred if adding it to the clause body would cause
 to appear in any of the
bindings� The rationale for this is that all de	nitions are forced to stay within the
closed world and cannot exploit boundary e�ects attributable to its 	nite size�

Returning to the example
 we see that � tuples for simple include h�������i� The literal
conc�A�A�B� is therefore excluded since it would generate a binding h���������i� The
de	nition now found by foil is more complex�

simple�� ���
simple�A� �� components�A�B�� ���

or
 in Prolog notation

simple�� ���
simple�	B
��

This de	nition satis	es the open domain assumption since it is correct in general
 not
just for the particular closed world in which it was learned�

��� Making clauses more understandable

An important goal of all symbolic learning is to 	nd theories that make sense to
people� To this end
 foil contains mechanisms intended to re�express clauses in
more intuitive form� Some transformations are relatively easy
 such as removing
literals Vi�Vj and Vj�c from the body by substituting Vi or c respectively for each
occurrence of Vj� For instance
 the 	rst clause of the de	nition above initially has the
form

simple�A� �� A�� ��

The body literal was removed and � � substituted for A in the head�

Such simple transformations are not su�cient to render some clauses intelligible

even after pruning� An example of this arises while foil is learning a de	nition of
sort�A�B� given just the background relations components�L�H�T� and less�than�A�B��
After learning the base case �sorting the null list gives itself�
 foil embarks on a
second clause� The literals added to the clause body are

��

components�A�C�D�� components�B�E�F� �both determinate�
sort�D�G� �determinate��

components�H�C�G� �determinate�
B�H �gainful�
D�� � �gainful��

After pruning and substitution
 the clause becomes

sort�A�B� �� components�A�C�� ��� sort�� ��G�� components�B�C�G��

which is equivalent to

sort�	C
�	CjG
� �� sort�� ��G��

This clause is correct � it forces A and B to be identical single�element lists � but
it is certainly not intuitive� The fundamental problem is that literals in the clause
body establish implicit equalities that must be made explicit if the clause is to be
intelligible� For example
 sort�� ��G� forces G to be the null list in all bindings
 but
the literal G�� � does not appear in the clause� We have found that addition of such
implicit literals to the clause before pruning often leads to a simpler clause�

When a clause is completed
 its variable bindings are examined for equalities of the
form Vi�Vj or Vj�c that do not appear explicitly in the clause body� Any such
equalities are inserted into the clause immediately after the 	rst literal that binds Vj�
Explicit equalities are also promoted within the clause
 the goal being to retain them
in the pruned clause as long as possible� The clause is then pruned from the end in
the usual way�

In the case of this clause
 the implicit equalities established by the literals are A�B

A�H
 C�E
 F�� � and G�� �� When these are inserted and the literal D�� � promoted

the clause body becomes

A�B�
components�A�C�D��
D�� ��
components�B�E�F��
C�E�
F�� ��
sort�D�G��
G�� �

components�H�C�G��
A�H�
B�H�

�It might seem that there should be a corresponding determinate literal sort�F�H�� However� F is

the tail of a sorted list and is therefore sorted already� thus H�F and this literal introduces no new

variables�

��

All but the 	rst three literals are now pruned and
 after substitution
 this base case
clause becomes much more recognisable as

sort�A�A� �� components�A�C�� ���

or

sort�	C
�	C
��

�� Applications

This section examines a representative sample of tasks to which foil has been applied�
Our intention is to demonstrate that the system�s approach is e�ective across a range
of domains encompassing most areas of 	rst�order learning�

The original foil paper �Quinlan
 �

�� presents results on six families of tasks ad�
dressed by other learning systems
 including classics such as the de	nition of an arch
�Winston
 �
���
 classifying trains �Michalski
 �
���
 discovering rules for the card
game Eleusis �Dietterich
 �
���
 and deciding when chess positions are illegal �Mug�
gleton et al
 �
�
�� Several experiments involving larger datasets or more di�cult
de	nitions have subsequently been completed� two are reported here for the 	rst
time�

��� Recursive list�processing functions

Perhaps our most comprehensive study comes from the domain of learning simple list�
processing functions
 reported in �Quinlan and Cameron�Jones
 �

��� All the �� such
tasks presented in Chapter � of Bratko�s ��

�� well�known Prolog text are tackled
by foil� Two closed worlds are de	ned
 containing respectively all lists of length
up to three using elements f�����g and all lists of length up to four using elements
f������	g� For each function
 the target relation is speci	ed exhaustively over the
particular closed world so that there is no question of the system�s performance being
in�uenced by the choice of examples� The background relations include components
and all functions that appear in the previous tasks
 most of which are irrelevant to
the task at hand�

In almost all cases foil is able to 	nd a satisfactory de	nition
 although some de	�
nitions are correct only in the closed world�� In one case
 foil 	nds a more concise
de	nition than that given in the book� The relation dividelist�A�B�C� is intended to put
alternate elements from A into lists B and C� Bratko gives a three�clause de	nition

whereas foil�s has just two clauses�

�Later versions of foil� especially since the introduction of the out�of�world constant �� overcome

most of the remaining problems on these tasks�

��

dividelist�� ��� ��� ���
dividelist�A�B�C� �� components�A�D�E�� components�B�D�F��

dividelist�E�C�F��

where the second clause might be written

dividelist�	DjE
�	DjF
�C� �� dividelist�E�C�F��

Other list�processing functions have been investigated
 notably learning the quicksort
procedure �Quinlan
 �

���

��� Arithmetic functions

Functions such as n�choose�m can also be learned from small closed worlds� The most
complex studied to date is Ackermann�s function
 de	ned as

F �m�n� �

���
��

n� � if m � �
F �m� �� �� if n � �
F �m� �� F �m�n� ��� otherwise

In function�free form
 the corresponding predicate Ackermann�A�B�C�means F �A�B� �
C� From a closed world containing integers � to �� and a background relation
succ�A�B� meaning B � A��
 foil takes ���� seconds on a DECstation ���� ��� to
	nd the de	nition

Ackermann�
�B�C� �� succ�B�C��
Ackermann�A�
�C� �� succ�D�A�� Ackermann�D���C��
Ackermann�A�B�C� �� succ�D�A�� succ�E�B�� Ackermann�A�E�F��

Ackermann�D�F�C��

This program is interesting because it contains two recursive clauses
 one being doubly
recursive� Learning this last clause requires subtle control of recursion since the literal
Ackermann�A�E�F� decreases the second argument while Ackermann�D�F�C� increases
the second argument but decreases the 	rst� foil is the only system we know of that
is capable of learning this de	nition�

��� Attribute�value data

Since the theory language available to foil encompasses all symbolic zeroth�order
theories
 it is relevant to enquire how the performance of foil compares to that
of zeroth�order systems on attribute�value tasks� A group of two�class classi	cation
tasks was investigated
 using no background relations and target relations of the
form Class��V��V������ and Class��V��V������ with one argument for each attribute�
Experiments were carried out
 	rst restricting foil to literals of the forms Vi�c

Vi�t and Vi�t �giving exactly the same theory language available to most zeroth�
order learning systems�
 then allowing an extended language including literals such
as Vi�Vj and Vi�Vj that compare the values of pairs of attributes�

��

Results of these experiments appear in �Cameron�Jones and Quinlan
 �

�b�� Our
general conclusion is that foil performs slightly better than C��� �Quinlan
 �

�� on
these datasets
 especially when permitted to use the extended theory language
 but
that learning generally requires more computation� The theories found by foil are
often less simple than those found by C���
 indicating that the mechanism to limit
clause complexity described in Section ��� does not adequately prevent over	tting of
the training data� This 	nding is supported by other researchers such as F!urnkranz
��

���

��� Protein secondary structure

More evidence for over	tting comes from another task of learning to predict protein
secondary structure �Muggleton
 King and Sternberg
 �

��� Proteins consist of long
chains of amino acid residues and at certain positions they form structures such as ��
helices and ��sheets� The target relation here is alpha�Protein�Position� that indicates
when an ��helix occurs at the speci	ed position in a particular protein� Twenty�	ve
background relations identify the residue at each position and provide chemical and
physical properties of the residues� The training set consists of ���� tuples taken
from twelve proteins with a further ��� tuples from four di�erent proteins used as a
test set�

golem
 augmented with a hand�crafted criterion to avoid over	tting in this domain

is able to 	nd �� clauses that exhibit a predictive accuracy of ��" on the test set�
foil performs relatively poorly
 	nding �� clauses that have an accuracy of ��" on
the test tuples
 �" lower than the corresponding 	gure for golem�

�golem�s performance on this task is further improved by a form of bootstrapping�
The 	rst �level �� theory learned above predicts occurrences of ��helices additional to
those recorded in the training data� When these are added as new � tuples
 golem
learns a revised �level �� theory from the modi	ed data� Repeating the process gives
a level � theory whose accuracy on the test data jumps to ��"��

��� Identifying document components

We come now to the 	rst new application reported in this paper � learning rules to
locate the logical components of a document such as that shown in Figure �� Di�erent
documents have varying numbers of components and relationships �such as alignment�
between pairs of components
 so this is a good example of a task that is ill�suited to
zeroth order learning methods based on 	xed�length attribute�value vectors�

Five target relations identify document components relevant to sender
 receiver
 date

reference and logo� Plentiful background information is provided by �� relations that
describe ��� components of �� single�page documents
 giving each component�s size

type �e�g� text
 picture�
 position on the page
 and alignment with other components�
The document x� of Figure � with ten components x����x�� is described by ��� tuples

��

x��sender�

x��receiver�x�

x��logo�
x��date�x��reference�

x�
x	

x
�

x

Figure �� Sample document showing components �following Semeraro et al ��

����

in the background relations�

Results of a leave�one�out cross�validation appear in Table �� In each run
 information
about components of one document is omitted from the training data and used to
test the theory learned from the components of the remaining documents
 the same
procedure being repeated for each target relation and each document� Test errors
are broken down into false positives �� tuples incorrectly predicted to belong to the
target relation� and false negatives �� tuples not covered by the learned theory��
Accuracy on unseen test data is excellent
 ranging from ���" for sender and logo to

���" for date�

Table �� Results on unseen data
 document identi	cation tasks�

Target False False Total Error
Relation Pos Neg Errors Rate
sender � � � �
receiver � � � ���"
date � �
 ���"
reference � � � ���"
logo � � � �

��

Table �� Results on chess endgame

foil gcws

Moves Positions Clauses Uncovered Total Clauses
zero �� � � � �
one �� � � �� ��
two ��� �� � �� ��
three �� �� � �� ��
four �
� �� �� �� �

�ve ��� �� � �� ���
six �
� �� �� �� �
seven ���
� �� ��� �
eight ����
� �� ��� �
nine ���� ���
� ��
 �
ten �
�� ���
� ��� �
eleven ���� ��� ��� ��� �
twelve ��
� ��� ��� ��� �
thirteen ��
� ��� ��� ��� �
fourteen ���� ��� �� ��� �
�fteen ���� �� � �� �
sixteen �
� � � � �
�drawn� ��
�

��
 Moves to win in a chess endgame

The 	nal application concerns the simplest chess endgame
 King and Rook versus
King� Bain ��

�� studies the task of learning to predict the minimum number of
moves required for a win by the Rook�s side �with values � through ��� or
 failing
this
 a draw � there are no positions in which the Rook�s side loses�

Bain formulates this problem as a cascade of learning tasks� From a database of
all legal positions after the removal of symmetric variants
 a theory is learned that
describes positions won in zero moves� These positions are then eliminated from the
data and the next task
 discriminatingpositionswon in one move from drawn positions
and those won in two or more moves
 is presented to the learning system� The process
continues in a similar fashion with the 	nal theory discriminating positions won in
�� moves from drawn positions� Bain uses a system called gcws
 based on golem

that allows exception predicates to be invented and used in clauses� with it
 he 	nds
correct de	nitions for the 	rst six levels of this task�

Table � summarises results obtained when the experiment was repeated using foil
rather than gcws� For each number of moves to win
 the Table shows the number of
� tuples that must be covered by the learned theory� The de	nitions found by foil
often fail to cover all � tuples so
 following the practice used by golem
 uncovered �
tuples are added as ground clauses� the number of clauses in the 	nal theory appears

��

in the column labelled Total� For comparison
 the 	nal column shows the size of the
theories constructed by gcws�

foil handles this domain comparatively well� Correct de	nitions are found for each
number of moves
 with one exception � the de	nition of positions lost in eleven moves
has one false positive error� foil�s de	nitions generally compress the data more than
those found by gcws
 with some exact clauses being remarkably simple� Even better
results are obtained if drawn positions are identi	ed 	rst
 then positions lost in one
move and so on
 leaving the 	nal theory to distinguish between positions lost in 	fteen
and sixteen moves�

�� Related Systems

Elements of foil�s approach have been used in other systems
 often with considerable
modi	cation and innovative extension� These developments are typically aimed at
broadening the learning task itself �such as by taking account of additional domain
knowledge�
 correcting some perceived de	ciency in foil �such as its tendency to
over	t�
 or specialising it for a particular family of tasks �such as learning control
heuristics��

focl �Pazzani
 Brunk and Silverstein
 �

�� Pazzani and Kibler
 �

�� is an early
extension of foil that takes advantage of domain knowledge in the form of a partial
theory
 intensionally�speci	ed background relations
 and relational clich#es� The prior
theory may contain clauses that are too general in that they cover � tuples
 and too
speci	c in failing to cover � tuples of the target relation� To investigate this
 the
prior theory is elaborated by unfolding its proof tree
 guided by the same information
metric that foil uses to select literals to be added to clauses
 and complete paths
in the tree that remain too general are specialised by invoking foil�s literal�adding
procedure� Background relations de	ned as clauses rather than as sets of tuples are
evaluated intensionally and
 when a clause of a background de	nition has high gain
 an
appropriate specialisation of the clause body is added to the current partial clause�
Similarly
 relational clich#es consist of schemas containing sequences of literals that
tend to belong together in de	nitions� foilmaymiss such combinations unless at least
one of the individual literals is determinate or has high gain� focl thus represents a
clean union of ideas from explanation�based learning and empirical induction�

Another system from UCI
 Audrey II �Wogulis and Pazzani
 �

��
 uses similar
mechanisms to specialise over�general theories and to add new clauses
 both within a
theory�revision context� Rather than being limited to adding literals
 however
 this
system uses four revision operators that include replacing some literals in an existing
clause�

Several other researchers have modi	ed foil to make it more robust
 especially with
respect to noisy data� mfoil �Lavra$c and D$zeroski
 �

�� replaces foil�s greedy

�

search with beam search
 thereby increasing the chances of 	nding a good clause�
chooses literals to add to the clause body on the basis of the estimated accuracy of
the new clause
 rather than on information gain� and uses a statistical signi	cance
test instead of the MDL criterion to decided when a clause should not be allowed to
grow further� fossil �F!urnkranz
 �

�� employs a single correlation criterion both
for selecting the next literal to add and for stopping the growth of a clause� These
systems perform much better than foil on a chess�derived relation illegal �Muggleton
et al
 �
�
� corrupted by moderate levels of noise
 learning more compact de	nitions
with higher predictive accuracy�

hydra �Ali and Pazzani
 �

�� deals with noise by extending foil in three dimensions�
The learning task is widened to allow for any number of classes rather than just the
de	nition of a �binary� target relation� hydra then constructs a de	nition for each
class� in our context
 this involves learning separate de	nitions for the target relation
R and for not�R�� Since the language of clauses is not closed under negation
 one
de	nition might be considerably simpler and more robust than the other� Secondly

the reliabilities of individual clauses in all theories are estimated from likelihood ratios
derived from their respective coverages of � and � tuples� A query is evaluated
against all theories
 e�g� against both the theory for R and the theory for not�R��
The outcome is determined by the most reliable clause from any theory that succeeds
on the query� Finally
 hydra uses likelihood improvement rather than information
gain to select the next literal to be added to the clause body� Ablation experiments
suggest that all three changes help to produce more robust learning�

A most promising area for relational learning is the formulation of control heuristics�
Dolphin �Zelle and Mooney
 �

�� blends ideas from explanation�based learning and
induction with the goal of making logic programs run faster� The central idea is to in�
sert a guard literal useful�R�k�query� as the 	rst body literal in each nondeterministic
clause k of relation R
 preventing the clause from being evaluated unless it is judged
likely to succeed� The � and � tuples of this relation are provided by examples of
when the particular clause succeeds and fails that are extracted from an execution
trace of the original program� from these
 a learning program 	nds a de	nition of
the guard literal� Although the learning program is based on foil
 it embodies an
innovative method of specialising incomplete clauses� The proof of the original query
is generalised by replacing constants with unique variables and from it Dolphin con�
structs a set of specialisation pairs hG�Li
 where G is a solved subgoal and L is either
true or an operational literal from the proof that shares one or more variables with G�
Each such pair provides a candidate specialisation of a partial clause H �� B obtained
by unifying head H with G �with most general uni	er
�
 and altering the clause to

�H �� B�L�� This allows the head of a clause
 as well as its body
 to be specialised
and considers only new body literals that are known to be relevant to part of the
proof� foil�s information gain criterion is then used to select a specialisation from
the candidates above� In one impressive example
 Dolphin is able to transform a
naive permute�and�check sorting algorithm of complexity O�n�� to an O�n�� insertion
sort�

��

The same authors have developed another similarly�motivated system Chillin �Zelle

Mooney and Konvisser
 �

�� Zelle and Mooney
 �

�� that has learned search control
rules for a nondeterministic English parser� The initial theory consists of ground
clauses obtained directly from the � tuples of the target relation� Successive steps
compress this de	nition by introducing more general clauses and removing subsumed
clauses� A more general clause is found by selecting two existing clauses
 forming
the head of a new clause as the least general generalisation of their heads in the
manner of golem
 then specialising the clause by adding literals to the clause body�
This last stage is similar to foil
 except that the metric used to select literals is
based on notions of compression rather than information gain� Chillin also includes
a mechanism derived from champ �Kijsirikul
 Numao and Shimura
 �

�� that can
assess the bene	t of introducing a new relation and learning its de	nition�

Grasshopper �Leckie and Zukerman
 �

�� is another interesting system that learns
to control search in planning domains� Examples of search decisions
 both good and
bad
 are extracted from the planner�s execution trace and grouped according to the
planning goal that they address and the action chosen� A learning algorithm based on
foil generalises the examples of each group to produce search control heuristics� In
a 	nal step
 the utility of the learned rules is assessed by comparing their evaluation
cost against their bene	t in reduced search cost
 leading to an optimised subset that
minimises overall planning time�

The overview of foil presented in Section ��� talks only of learning a de	nition for a
single target relation� The implementation
 however
 allows for any number of target
relations� foil simply tackles them one after another� De Raedt
 Lavra$c and D$zeroski
��

�� point out that there are situations in which mutually recursive target relations
can lead to non�terminating programs � recall the caveats to recursive soundness in
Section ���� To overcome this problem
 their system mpl develops all de	nitions of
target relations in parallel
 checking for global as well as local consistency and using
heuristics for specialising partial clauses that are similar to mfoil�s�

A quite di�erent kind of extension is embodied in Grendel and Grendel� �Cohen

�

�a
b�� Relations with high arity can pose severe computational problems for foil
since
 if there are v variables in a partial clause
 a relation of arity r can give rise
to O��v � r�r� potential next literals� Even when many or most of these are ruled
out by type constraints and the like
 the remaining candidates might still be too
numerous to contemplate� Further
 high�arity relations may require an impossibly
large set of � tuples if over�generalised clauses are to be avoided� Grendel� attacks
this problem within a foil�like framework by specifying a hypothesis language that
restricts the form of de	nitions to those that make sense in the domain� This not
only prevents consideration of useless literals and literal combinations
 but can also
serve in place of � tuples to prevent over�generalisation� the goal is then to 	nd a
de	nition in the hypothesis language that covers the � tuples of the target relation�
Cohen ��

�a� discusses an application to reverse engineering in which the goal is to
reconstruct the speci	cation of a database interface consisting of over a million lines
of C� Grendel� is able to recover an accurate description of one�third of the system

��

despite the presence of relations with high arity and clause�level domain constraints
that defeat foil�

�� Areas for Further Research

Systems such as the above extend the basic general�to�speci	c paradigm for inducing
	rst�order theories� The issues that they address are important for the development
of more powerful and �exible learning methods
 and many more issues remain to be
tackled in this vigorous research area� In this Section we raise a couple of fundamental
problems that limit foil and that
 we suspect
 apply in some degree to most 	rst�
order systems�

��� Irrelevant information

Any learning problem can be made harder by adding unhelpful information� The e�ect
is to increase the space of possible theories that could be learned
 thereby enlarging the
haystack in which we are searching for a 	gurative needle� In zeroth�order systems

where this problem is synonymous with the presence of irrelevant attributes
 e�ective
methods for weeding out the non�useful features have been developed �e�g� John

Kohavi and P�eger
 �

�� Moore and Lee
 �

��� in a sense
 the problem is under
control� In 	rst�order learning
 on the other hand
 irrelevant information in the form
of unnecessary relations and or useless 	elds of relations can have a dramatic impact
on learning time�

An example comes from the list�processing tasks discussed in Section ��� using the
smaller closed world of three�element lists� The 	rst task is to learn a de	nition of
member and foil requires only ���� seconds to 	nd the de	nition of Section ���� If
the second relation conc�A�B�C� is included as an additional background relation
 the
time required to learn the same de	nition jumps to ���� seconds
 or more than ��
times as long� Similarly
 adding this excess relation increases golem�s learning time
by a factor of ��
 although it now learns a di�erent de	nition

member�A�	BjC
� �� conc�D�	AjE
�	BjC
��

The impact of extra relations is somewhat unpredictable� Although learning a def�
inition of dividelist
 the last task in the original series
 does not make use of any of
the �� relations de	ned by preceding tasks
 deleting them produces a comparatively
small reduction in foil�s learning time from �� seconds to �� seconds�

Practical learning systems will need to be able to deal with large volumes of infor�
mation
 selecting only that part relevant to the task at hand� We regard this as the
most pressing unsolved problem in 	rst�order learning�

��

��� Incomplete information

When learning recursive de	nitions
 most 	rst�order systems require that the set of
� tuples for the target relation be largely complete� The few exceptions constrain
the form that de	nitions can take
 or depend on information additional to the tuples
themselves� force� �Cohen
 �

�� limits de	nitions to two clauses
 one base case and
one linearly recursive clause
 and requires that instances of the base clause be iden�
ti	ed� crustacean �Aha
 Lapointe
 Ling and Matwin
 �

�� searches for de	nitions
consisting of a unit base clause and a single recursive clause containing one literal
in its body� Both systems can then learn accurate de	nitions from sparse
 random
samples of tuples from the target relation� Although restricted theory languages such
as these are adequate for a surprisingly large class of relations
 there does not seem
to be an easy way to extend approaches of this kind towards more complex recursive
de	nitions�

From foil�s perspective
 the problem is that the utility of a clause

R�V�� V�� ���� �� ����
 R�W��W�� ����
 ����

may not become apparent unless there are numerous ground instances of the clause in
which the ground instances of hV�� V�� ���i and hW��W�� ���i both belong to R� without
this
 the recursive literal R�W��W�� ���� has low gain� Even when there are relatively
few missing � tuples
 foil may propose additional clauses to cover what seem to be
special cases�

Learning a de	nition of member again illustrates this� When �� of the �� � tuples of
member are deleted at random
 foil 	nds the de	nition

member�A�B� �� components�B�A�C��
member�A�B� �� components�B�C�D�� components�D�A�E��
member�A�B� �� components�B�C�D�� member�A�D��

or

member�A�	AjC
��
member�A�	C�AjE
��
member�A�	CjD
� �� member�A�D��

Notice that the second clause has been added to cover �exceptions� to the general
rule given by the 	rst and third clause� From the same data
 golem learns a similarly
verbose de	nition

member�A�	AjB
��
member�A�	B�AjC
��
member�A�	B�CjD
� �� member�A�	BjD
��

It might seem as though this problem can be solved simply by evaluating clauses in�

��

tensionally when removing the � tuples that they cover� However
 foil often learns
a recursive clause before 	nding a base case
 the latter being essential for any inten�
sional coverage at all� A better approach might use the same kind of bootstrapping
employed by Muggleton et al with the protein data �Section ����� At each iteration

covered tuples that do not appear explicitly in either the � or � tuples would be
added to the former� In this way it may be possible to assemble a more complete
extensional speci	cation of the target relation
 leading to a more accurate de	nition�

	� Conclusion

After some 	ve years of development
 foil has reached a kind of adolescence� it ex�
hibits some interesting behaviours but has not yet matured su�ciently to withstand
the crucible of large real�world applications� Several extensions of its basic approach
show great promise
 especially in areas like learning control heuristics� We are con�
	dent that further research on general�to�speci	c induction over the next few years
will lead to powerful tools for learning in 	rst�order domains�

The current version of foil �written in C� is available by anonymous ftp from
ftp�cs�su�oz�au
 directory pub
 	le foil��sh�

Acknowledgements

This research was made possible by a grant from the Australian Research Council
and assisted by research agreements with Digital Equipment Corporation� We thank
Stephen Muggleton
 Giovanni Semeraro and Michael Bain for providing the protein

document and KRK datasets respectively� We are grateful to William Cohen and
Stephen Muggleton for most helpful comments on a draft of this paper�

References

�� Aha
 D�W�
 Lapointe
 S�
 Ling
 C�X�
 and Matwin
 S� ��

��� Learning
recursive relations with randomly�selected small training sets� Proceedings
Eleventh International Conference on Machine Learning
 New Brunswick
 New
Jersey
 ������ San Francisco� Morgan Kaufmann�

�� Ali
 K�
 and Pazzani
 M�J� ��

��� hydra� a noise�tolerant relational concept
learning algorithm� Proceedings Thirteenth International Joint Conference on
Arti�cial Intelligence
 Chambery
 France
 ���������� San Francisco� Morgan
Kaufmann�

�� Bain
 M�E� ��

��� Learning logical exceptions in chess� PhD thesis

Department of Statistics and Modelling Science
 University of Strathclyde

Scotland�

��

�� Bell
 S�
 and Weber
 S� ��

��� On the close logical relationship between foil

and the frameworks of Helft and Plotkin� Proceedings Third International
Workshop on Inductive Logic Programming
 Bled
 Slovenia
 ��������

�� Bratko
 I� ��

��� Prolog Programming for Arti�cial Intelligence ��nd edition��
Wokingham
 UK� Addison�Wesley�

�� Cameron�Jones
 R�M�
 and Quinlan
 J�R� ��

�a�� Avoiding pitfalls when
learning recursive theories� Proceedings Thirteenth International Joint
Conference on Arti�cial Intelligence
 Chambery
 France
 ���������� San
Francisco� Morgan Kaufmann�

�� Cameron�Jones
 R�M�
 and Quinlan
 J�R� ��

�b�� First order learning
 zeroth
order data� Proceedings AI
�� Australian Joint Conference on Arti�cial
Intelligence
 Melbourne
 �������� Singapore� World Scienti	c�

�� Cameron�Jones
 R�M�
 and Quinlan
 J�R� ��

��� E�cient top�down induction
of logic programs� SIGART
 �
 ������

� Cohen
 W�W� ��

��� Pac�learning a restricted class of recursive logic
programs� Proceedings Third International Workshop on Inductive Logic
Programming
 Bled
 Slovenia
 ������

��� Cohen
 W�W� ��

�a�� Recovering software speci	cations with inductive logic
programming� Proceedings AAAI
�� Twelfth National Conference on Arti�cial
Intelligence
 Seattle
 Washington
 �������� Menlo Park� AAAI Press�

��� Cohen
 W�W� ��

�b�� Grammatically biased learning� learning logic
programs using an explicit antecedent description language� Arti�cial
Intelligence� ��
 ��������

��� De Raedt
 L�
 Lavra$c
 N�
 and D$zeroski
 S� ��

��� Multiple predicate
learning� Proceedings Thirteenth International Joint Conference on Arti�cial
Intelligence
 Chambery
 France
 ���������� San Francisco� Morgan Kaufmann�

��� DeJong
 G�
 and Mooney
 R� ��
���� Explanation�based learning� an
alternative view� Machine Learning� �
 ��������

��� Dietterich
 T�G� ��
���� The methodology of knowledge layers for inducing
descriptions of sequentially ordered events� Technical Report R��������

Department of Computer Science
 University of Illinois at Urbana�Champaign

USA�

��� F!urnkranz
 J� ��

��� fossil� a robust relational learner� Technical Report
TR�
����
 Austrian Research Institute for Arti	cial Intelligence
 Vienna�

��� Gold
 E�M� ��
���� Language identi	cation in the limit� Information and
Control� ��
 ��������

��

��� John
 G�S�
 Kohavi
 R�
 and P�eger
 K� ��

��� Irrelevant features and the
subset selection problem� Proceedings Eleventh International Conference on
Machine Learning
 New Brunswick
 New Jersey
 ������
� San Francisco�
Morgan Kaufmann�

��� Kijsirikul
 B�
 Numao
 M�
 and Shimura
 M� ��

��� Discrimination�based
constructive induction of logic programs� Proceedings AAAI
�� Tenth
National Conference on Arti�cial Intelligence
 San Jose
 CA
 ����
� Menlo
Park� AAAI Press�

�
� Lavra$c
 N�
 and D$zeroski
 S� ��

��� Inductive Logic Programming� Techniques
and Applications� London� Ellis Horwood�

��� Leckie
 C�
 and Zukerman
 I� ��

��� An inductive approach to learning search
control rules for planning� Proceedings Thirteenth International Joint
Conference on Arti�cial Intelligence
 Chambery
 France
 ���������� San
Francisco� Morgan Kaufmann�

��� Michalski
 R�S� ��
���� Pattern recognition as rule�guided inductive inference�
IEEE Transactions on Pattern Analysis and Machine Intelligence� �
 ��
�����

��� Mitchell
 T�M�
 Keller
 R�M�
 and Kedar�Cabelli
 S�T� ��
����
Explanation�based generalization� a unifying view� Machine Learning� �

������

��� Moore
 A�W�
 and Lee
 M�S� ��

��� E�cient algorithms for minimizing
cross�validation error� Proceedings Eleventh International Conference on
Machine Learning
 New Brunswick
 New Jersey
 �
���
�� San Francisco�
Morgan Kaufmann�

��� Muggleton
 S�
 and Buntine
 W� ��
���� Machine invention of 	rst�order
predicates by inverting resolution� Proceedings Fifth International Conference
Machine Learning
 Ann Arbor
 Michigan
 ��
����� San Mateo� Morgan
Kaufmann�

��� Muggleton
 S�
 Bain
 M�
 Hayes�Michie
 J�
 and Michie
 D� ��
�
�� An
experimental comparison of human and machine learning formalisms�
Proceedings of the Sixth International Machine Learning Workshop Ithaca

NY� San Mateo� Morgan Kaufmann
 ��������

��� Muggleton
 S�
 and Feng
 C� ��

��� E�cient induction of logic programs� In
S� Muggleton �Ed��
 Inductive Logic Programming
 �����
�� London�
Academic Press�

��� Muggleton
 S
 King
 R�D�
 and Sternberg
 M�J� ��

��� Protein secondary
structure prediction using logic�based machine learning� Protein Engineering�
�
 ��������

��

��� Pazzani
 M�J�
 Brunk
 C�A�
 and Silverstein
 G� ��

��� A knowledge�intensive
approach to learning relational concepts� Proceedings Eighth International
Workshop on Machine Learning
 Evanston
 Illinois
 �������� San Mateo�
Morgan Kaufmann�

�
� Pazzani
 M�J�
 and Kibler
 D� ��

��� The utility of knowledge in inductive
learning� Machine Learning� �
 �
 ���
��

��� Quinlan
 J�R�
 and Rivest
 R�L� ��
�
�� Inferring decision trees using the
Minimum Description Length Principle� Information and Computation
 ��

��������

��� Quinlan
 J�R� ��

��� Learning logical de	nitions from relations� Machine
Learning� �
 ��
�����

��� Quinlan
 J�R� ��

��� Determinate literals in inductive logic programming�
Proceedings Twelfth International Joint Conference on Arti�cial Intelligence

Sydney
 Australia
 �������� San Mateo� Morgan Kaufmann�

��� Quinlan
 J�R� ��

��� C���� Programs for Machine Learning� San Mateo�
Morgan Kaufmann�

��� Quinlan
 J�R�
 and Cameron�Jones
 R�M� ��

��� FOIL� a midterm report�
Proceedings European Conference on Machine Learning
 Vienna
 ����� Berlin�
Springer�Verlag�

��� Sammut
 C�A�
 and Banerji
 R�B� ��
���� Learning concepts by asking
questions� In R�S� Michalski
 J�G� Carbonell and T�M� Mitchell �Eds��

Machine Learning� An Arti�cial Intelligence Approach �Vol ��� Los Altos�
Morgan Kaufmann�

��� Sammut
 C�A� ��

��� The origins of inductive logic programming� a
prehistoric tale� Proceedings Third International Workshop on Inductive Logic
Programming
 Bled
 Slovenia
 ��������

��� Semeraro
 G�
 Brunk
 C�A�
 and Pazzani
 M�J� ��

��� Traps and pitfalls when
learning logical theories� a case study with foil and focl� Technical Report

����
 Department of Information and Computer Science
 University of
California
 Irvine
 USA�

��� Shapiro
 E�Y� ��
���� Algorithmic Program Debugging� Cambridge
 MA� MIT
Press�

�
� Winston
 P�H� ��
���� Learning structural descriptions from examples� In P�H�
Winston �Ed�
 The Psychology of Computer Vision� New York� McGraw�Hill�

��� Wogulis
 J�
 and Pazzani
 M�J� ��

��� A methodology for evaluating theory
revision systems� results with Audrey II� Proceedings Thirteenth International
Joint Conference on Arti�cial Intelligence
 Chambery
 France
 ���������� San
Francisco� Morgan Kaufmann�

��

��� Zelle
 J�M�
 and Mooney
 R�J� ��

��� Combining foil and EBG to speed�up
logic programs� Proceedings Thirteenth International Joint Conference on
Arti�cial Intelligence
 Chambery
 France
 ���������� San Francisco� Morgan
Kaufmann�

��� Zelle
 J�M�
 and Mooney
 R�J� ��

��� Inducing deterministic Prolog parsers
from Treebanks� a machine learning approach� Proceedings AAAI
�� Twelfth
National Conference on Arti�cial Intelligence
 Seattle
 Washington� Menlo
Park� AAAI Press�

��� Zelle
 J�M�
 Mooney
 R�J�
 and Konvisser
 J�B� ��

��� Combining top�down
and bottom�up techniques in inductive logic programming� Proceedings
Eleventh International Conference on Machine Learning
 New Brunswick
 New
Jersey
 �������� San Francisco� Morgan Kaufmann�

��

